Dijet production with a jet veto

Latest results on multi-jets production, and beyond-DGLAP (BFKL, saturation) studies with jets

Shima Shimizu

KOBE UNIVERSITY

(Kobe University)

on behalf of the ATLAS collaboration

Introduction

Next-to-leading-order (NLO) perturbative QCD succeeds to describe the LHC TeV data.

- e.g. Dijet production cross sections
 - m_{jj} measured up to 5 TeV
 - well described by the predictions.

However, higher-order corrections may get important in some region of phase-space.

Approaches to higher-order calculations:

• BFKL approach:

resummation in terms of In(1/x)

 DGLAP approach: resummation in terms of In(Q²)

Dijet production with a jet veto

Resummation of higher-order terms has large contribution in dijet topologies with:

- Large rapidity separation between two jets.
- A veto on additional jet activity (Gap Events)

 Δ y: Gap separation Q₀ : Jet veto scale pT^{avg}=(pT¹+pT²)/2

Large ∆y → BFKL dynamics

 $p_T^{avg} >> Q_0$

→ wide-angle soft gluon radiation

With both limits

 \rightarrow t-channel colour singlet exchange.

Measured observables

The following observables are measured.

- Gap Fraction: $f(Q_0) = \sigma_{jj}(Q_0) / \sigma_{jj}$, Q_0 is the veto scale.
- Mean number of jets in the rapidity interval:
- Azimuthal decorrelations in terms of angular moments: $<\cos(n(\pi \Delta \phi))>$ ref. arXiv:0702158, arXiv:1106.6172
 - 1st moment: $<\cos(\pi \Delta \phi) >$
 - □ 2nd moment: $<\cos(2\Delta \phi)>$
- Double differential cross sections as a function of $\Delta \phi$ and Δy

Measurements are unfolded and compared to

- POWHEG predictions : DGLAP approach
- HEJ predictions: BFKL approach

Measured for inclusive events and gap events.

Data analysis

2010 and 2011 data are used to complement different phase-space.

2011 data have more "pileup", i.e. simultaneous pp interactions in the same bunch crossing.

2010 data: 38 pb⁻¹

→ Explore larger ∆y

Jets: p⊤>20 GeV, |y|<4.4

Veto scale: Q₀=20 GeV

Events with only 1 primary vertex

anti-k_t jets, R=0.6

2011 data: 4.8 fb⁻¹

→ Explore higher pT

Jets: p⊤>30 GeV, |y|<2.4

Veto scale: Q₀=30 GeV

 $\Delta y > 1$

Jets should have >75% of its momentum coming from the vertex

Dijet selection leading jet p_T>60 GeV, subleading jet p_T>50 GeV

Unfolding

Detector effects are corrected by Bayesian unfolding.

- PYTHIA 6.4
- Each distribution is unfolded in 4 or 6 dimensions.
 (2 or 3 variables x gap/non-gap)

Check of model-dependence:

- PYTHIA is reweighted to reproduce the data distribution.
- Reweighted PYTHIA is unfolded by the nominal PYTHIA
- \rightarrow Bias is considered as uncertainty.

Systematic uncertainties

The following sources are considered

- Jet energy scale (JES)
- Jet energy resolution (JER)
- Jet ϕ resolution

- Trigger effects
- Unfolding
- Luminosity (only for cross sections)
- \rightarrow JES is the dominant uncertainty.

Theoretical predictions

HEJ predictions

Leading-log (LL) calculation of the perturbative terms

→ BFKL approach

- HEJ (purely partonic)
- HEJ+ARIADNE
 - Parton shower with hadronisation by PYTHIA
 - Soft and collinear radiations are included.

CT10 PDF sets, $\mu_{R} = \mu_{F} = p_{T}^{\text{leading parton}}$ are used.

Uncertainties:

- PDF uncertainties
- Scale variations by x2 and x0.5.

POWHEG predictions

Next-to-leading order dijet matrix elements

→ DGLAP approach

Interfaced to leading-order MCs.

- POWHEG+PYTHIA8
- POWHEG+HERWIG6.5

Gap fraction / N_{Jets} vs Δy

- POWHEG predictions underestimate Gap fractions at high Δy .
- Partonic HEJ overestimate Gap fraction.
- Addition of ARIADNE improves the description.

- Exponentially suppressed gap fraction for larger Δy due to exchange of colour in t-channel.
- Deviation from exponential behaviour at highest Δy .
 - Steeply falling parton distributions reduces additional jet activity.
 - Colour singlet exchange.

Gap fraction / NJets VS pTavg

- 0.64 Data 2011 (N_{jets} in rapidity interval) **POWHEG+PYTHIA 8** 0.56 POWHEG+HERWIG HEJ (partonic) HEI+ARIADNE 0.48 0.40 0.32 $\Delta y > 1$ 0.24 $Q_0 = 30 \text{ GeV}$ **ATLAS Preliminary** 0.16 $\sqrt{s} = 7 \text{ TeV} / \mathcal{L} dt = 4.5 \text{ fb}^{-1}$ 1.2 Theory/Data 1.0 0.8 0.6 1000 60 100 200 300 500 न [GeV]
- Exponentially suppressed gap fraction for larger pT^{avg}, following naive expectation due to exchange of colour in t-channel.
- Deviation from exponential behaviour at highest $p_{\text{T}^{\text{avg}}}$
 - Steeply falling parton distributions reduces additional jet activity.

- POWHEG+PYTHIA and HEJ+ARIADNE provide good description.
- POWHEG+HERWIG gives too many jets.
- Poor description by HEJ at large ln(pT^{avg}/Q₀).

1st angular moment (Inclusive)

- Larger angular correlation ↔ Larger angular moment
- POWHEG predictions underestimate the data.
- partonic HEJ overestimates the data.
- Larger differences at high Δy and low p_T^{avg} .

1st angular moment (Gap events)

 $\mbox{ \bullet Different } \Delta y$ dependence for Gap events

- Partonic HEJ overestimates the data.
- ARIADNE parton shower makes HEJ prediction give better description, but the agreement is worse than in the inclusive case.
- POWHEG+PYTHIA gives reasonable description, especially at high prave.

2nd/1st moments (Inclusive)

- 2nd moments, $\langle \cos(2\Delta \phi) \rangle$, falls more rapidly than the 1st, as the dijet deviates from a back-to-back topology.
- More discrimination power for BFKL-like and DGLAP-like predictions than 1st moment only.
- Best description is given by HEJ+ARIADNE.

2nd/1st moments (Gap events)

- HEJ+ARIADNE also deviates from the data.
- POWHEG+PYTHIA gives the best description, especially at high pTavg.

Cross-section (Inclusive)

• POWHEG predictions are consistent with data, except for high $\Delta \phi$ in the low Δy bins.

 HEJ predictions underestimate the data.

Cross-section (Gap events)

 Similar tendency as in inclusive events.

Summary

- Gap fraction and azimuthal decorrelation are measured as functions of Δy and p_T^{avg} , with $\Delta y < 8$ and $p_T^{avg} < 1.5$ TeV, at $\sqrt{s} = 7$ TeV.
- Theoretical predictions are compared to the measured data.
 HEJ (BFKL approach) vs POWHEG (DGLAP approach):
 - POWHEG+PYTHIA gives reasonable descriptions except for azimuthal variables at large Δy or small p_T^{avg}/Q_0 .
 - POWHEG+HERWIG predicts too many jets.
 - Partonic HEJ gives a poor description of data.
 - HEJ+ARIADNE gives reasonable descriptions.
 - None of them can describe the whole phase-space measured simultaneously.
 - → Improved theoretical prediction is needed.
- <cos(2 $\Delta \phi$)>/<cos(π - $\Delta \phi$)> gives best discrimination of DGLAP approach and BFKL approach.
- Measurement can be a crucial input for parton shower modelling and for discussions on BFKL effects or colour-singlet exchange.

Backup

Gap fraction vs Q₀

