

CMS: Vector-boson production plus N-jets

Eric Takasugi, University of California, Los Angeles (UCLA) on behalf of CMS Jet Vetoes and Multiplicity Observables

University of California, Los Angeles (UCLA)

Takasugi (UCLA)

Introduction

- Precise knowledge of W+jets and Z+jets is crucial as important backgrounds to BSM searches
- Both processes have large cross-sections, controllable background which enables precision measurement

Can confront predictions from theory in high end tails

High statistics allows access to phase spaces not tested before

Overview:

- 1. W + Jets
- 2. Z + Jets
- 3. γ + Jets
- 4. Z/γ Ratio

W+jets, √s=7 TeV

- W $\rightarrow \mu \nu$ decays
- Muon p_T>25GeV, $|\eta|$ <2.1
- Jets are anti-k_T, Δ R=0.5, p_T>30GeV, $|\eta|$ <2.4, Δ R(Jet, μ)>0.5

Jet multiplicity at 7 TeV

- Agreement up to 4 jets for BlackHat+Sherpa, 6 jets for Sherpa 1.4 and Madgraph
- Can test quantities with high accuracy up to 6 jets
 - Uncertainty at highest jet multiplicty is 30%, below 15% up to 4 jet multiplicity

arXiv:1406.7533

Jet p_T at 7 TeV

MadGraph
 overestimates in
 second leading
 jet.

arXiv:1406.7533

Z+jets, √s=7 TeV and 8 TeV

- Z→II decays
- Leptons p_T >20GeV, $|\eta|$ <2.4
- 71<M_{II}<111GeV
- Jets are anti-k_T, Δ R=0.5, p_T>30GeV, $|\eta|$ <2.4, Δ R(Jet,I)>0.5

Leading jet p_T

4^{th} and 5^{th} leading jet p_T at 8 TeV

CMS-SMP-13-007

Takasugi (UCLA)

Exclusive jet multiplicity

Takasugi (UCLA)

p_T^Z Spectrum, $N_{Jets} \ge 1$ at 8 TeV

- Error band is statistics and systematics combined
- Black bar is statistics only
- MadGraph, Sherpa1.4 overestimate the high end tail by 15-30%
- Very good agreement between MadGraph and data in shape and rate at low end
- BlackHat+Sherpa is 10% lower in rate but flat Takasugi (UCLA) in shape

p_T^Z Spectrum, $N_{Jets} \ge 2$ at 8 TeV

- MadGraph, Sherpa overestimate the high end tail by approx. 30%
- Sherpa1.4 underestimates the low end
- Very good agreement between MadGraph and data in shape and rate at low end
- BlackHat is flat in shape and rate
- Overall conclusions from before still hold

p_T^Z Cross Section Ratios at 8 TeV

Syst error are taken to be fully correlated (leads to cancellation, e.g. Jet and lepton scale and resolution uncertainties, etc.)

- BlackHat overestimates by approx. 10%
 - Recall: BlackHat underestimated rate in 1jet case
- Sherpa1.4 underestimates in the low end
- MadGraph performs well through the Takasugi (UCLA) entire range

p_T^Z Cross Section Ratios at 8 TeV

- BlackHat is more accurate than before
- Sherpa1.4 underestimates in the low end as before
- MadGraph performs well

$p_T^Z/H_T N_{Jets} \ge 2 \text{ at } 8 \text{ TeV}$

- Data well reproduced in MadGraph
- Sherpa1.4 underestimates in the low end
- BlackHat has a drop at 1.2 where BlackHat changes from NLO to LO

$\log_{10}(p_T^{Z}/p_T^{1}), N_{Jets} \ge 2 \text{ at } 8 \text{ TeV}$

- Ratio works well in MadGraph
- Sherpa1.4 underestimates in the central area
- BlackHat has a drop at 0.3 where BlackHat changes from NLO to LO

γ+jets, √s=7 TeV

- Photons $|\eta^{\gamma}| < 2.5$
- Jets are anti-k_T, Δ R=0.5, p_T>30GeV, $|\eta|$ <2.5
- ΔR(Jet,γ)>0.4

p_T^{γ} Spectrum, 7 TeV

- The different canvases represent different jet eta selections
 - η^{jet} | η^{jet} |<1.5 on left, 1.5<| η^{jet} |<2.5 on right
- The different distributions on each canvas represent different η^{γ} selections.
- Good agreement over several orders of magnitude!
 - Forward photons at high p_T are off by 10-20%

p_T^{γ} Spectrum, 7 TeV

- Ratio plots for the previous distributions
- We again see good agreement over orders of magnitude
 - Forward photons at high p_T are off by 10-20%
 Takasugi (UCLA)
 - JHEP 06 (2014) 0099

γ+jets, 8 TeV

- Photons $|\eta^{\gamma}| < 1.4$
- Jets are anti-k_T, Δ R=0.5, p_T>30GeV, $|\eta|$ <2.4
- ΔR(Jet,γ)>0.4

p_T^γ Spectrum, N_{Jets}>1 at 8 TeV

- No k-factor applied
- Qualitatively flat up to 200 GeV
 - Lower by approx. 20%
- Upward trend in ratio analogous to Z
- Largest uncertainty is template systematics (10%)

p_T^{γ} Spectrum, $N_{Jets} \ge 2$ at 8 TeV

- Similar trends as before
- MadGraph underestimates in the low end
- Similar trend to the Z case as well

CMS-SMP-14-005

p_T^γ Spectrum Cross Section Ratios at 8 TeV

• N_{Jets}=2/N_{Jets}=1

- Syst error are taken to be fully correlated (leads to cancellation, e.g. jet and photon scale and resolution uncertainties, etc.)
- MadGraph performs well through the entire range

Z/γ RATIO

Systematics Correlation

- Systematics from the same source are treated as fully correlated as in previous cross section ratios
 - JES, JER and luminosity uncertainty are treated as fully correlated
- Systematics are added quadratically
- Statistics are propagated assuming gaussianindependent error propagation with the diagonal element of the covariance matrix
- We removed the NNLO k-factor on the Z distribution
 - we compare the LO cross section ratio for MC

Z/ γ ratio: N_{Jets} \geq 1 at 8 TeV

- R is the ratio between the cross section of Z over gamma
- Measured for average dilepton, R_{lep}=0.0322±0.0007(stat)±0.0023(stat+sys)
- Rate overestimated by MadGraph by 20%, $R_{lep,MC} = 0.0370$
- $R_{lep}/(B.R. Z \rightarrow l^+l^-) = 0.957 \pm 0.068$
- Agreement in shape

Z/ γ ratio: N_{Jets} \geq 2 at 8 TeV

• Similar to $N_{\text{Jets}} \ge 1$

CMS-SMP-14-005

Conclusions

- Measured
 - Z and $\gamma \ p_T$ spectra
 - Jet p_{T} spectra in W, Z and γ
 - Ratios in Z and $\gamma \ p_T$ spectra
 - Jet multiplicities
- Observe similar trends in Z and γ p_{T} spectra
- Differential jet multiplicity ratios agree between data and MadGraph
- Plateau is observed in both Madgraph and data in ratio between Z and $\boldsymbol{\gamma}$
 - Slight disagreement in scale but agreement in shape
- Dominated by statistical errors in tails
- Dominated by systematics at low p_T

References

- W [7TeV]
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP12023
 - http://cds.cern.ch/record/1712497
 - http://arxiv.org/abs/1406.7533
- Z [8TeV]
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP13007
 - http://cds.cern.ch/record/1728322
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP14005
 - http://cds.cern.ch/record/1740969?ln=en
- Z [7TeV]
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP12017
 - http://cds.cern.ch/record/1667906?In=en
- Photon [7TeV]
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsQCD11005
 - http://arxiv.org/abs/1311.6141
 - JHEP 06 (2014) 009
- Photon [8 TeV]
 - https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP14005
 - http://cds.cern.ch/record/1740969?ln=en

BACKUP

Templates and Purity

- Fit Variable: photon isolation with foot print removal
 - Rho corrections computed to minimize pileup dependencies
- Fit templates:
 - σ_{iηiη} < 0.011
- Background template:
 - σ_{iηiη} ≥ 0.011
- Signal template is taken from RandomCone (RC) as in 7TeV PAS-SMP-13-001
- A purity fit is performed in each analysis bin
 - Signal and Background templates are taken with coarser bins
- Agreement in different order of magnitude

p_T^Z Spectrum, $N_{Jets} \ge 3$ at 8 TeV

- MadGraph, Sherpa overestimate the high end tail by 10%
- Very good agreement between MadGraph and data in shape and rate at low end
- BlackHat accurate in rate and shape but suffers from statistics

p_⊤^z Spectrum, H_⊤ ≥ 300 at 8 TeV

H_{T} for Z + Jets

Leading Jet $|\eta|$ for Z + Jets

5thJet $|\eta|$ for Z + Jets at 8 TeV

nclusive jet multiplicity, Z + jets

$p_T^Z/H_T N_{Jets} \ge 3 \text{ at } 8 \text{ TeV}$

- As before:
 - Ratio works well in MadGraph
 - Sherpa underestimates in the lower end
 - BlackHat has a drop at 1.1 where BlackHat changes from NLO to LO

- Ratio works well in MadGraph
- Sherpa underestimates in the central area
- BlackHat has a drop at 0.3 where BlackHat changes from NLO to LO

1.4

1.3

0.9 08 0.7

0.6

-1

-0.8

-0.6

-0.4

MadGraph k_{NNLO}

0.6

 $\log_{10} (p_T^Z / p_T^{j1})$

MadGraph Stat. Err.

0

0.2

0.4

-0.2

p_T^{γ} Spectrum, N_{Jets}>3 at 8 TeV

• Similar to N_{Jets}>2

p_T^{γ} Spectrum, $H_T > 300$ GeV at 8 TeV

Z/ γ ratio: N_{Jets} \geq 3 at 8 TeV

• Similar to $N_{Jets} \ge 1$ and $N_{Jets} \ge 2$

Z/ γ ratio: H_T> 300 GeV at 8 TeV

• Due to a mixture of statistics and the high uncertainty on the photon purity measurement, shown for p_T >100 GeV

