

$t\bar{t}$ production with N-jets and with jet vetoes at CMS

Carmen Diez Pardos for the CMS collaboration

DESY

Outline

Introduction

Normalised differential $\sigma_{t\bar{t}}$ as a function of N Jets

 $\sigma_{t\bar{t}}$ as a function of N additional jets

Kinematic distributions for the leading $p_{\mathcal{T}}$ additional jets

Veto on additional jets

Summary

Motivation

- At LHC energies, about half of $t\bar{t}$ events are produced with additional hard jets (not coming from the $t\bar{t}$ decay).
- Precise understanding of these events is important:
 - Test higher-order QCD predictions
 - Anomalous production of $t\bar{t}(+jets)$ could reveal new physics
 - $t\bar{t}$ +jets is a background for many searches and for $t\bar{t}H$
- In general, sizeable uncertainty from QCD radiation for many top quark analysis
 - Theory predictions and models need to be tuned and tested with new measurements
- Large samples of *tt* events provide a great opportunity to study the details of the production mechanisms
 - Potential of constraining QCD radiation at the scale of the top quark mass

Top quark production and decay

W decay defines final state:

C. Diez Pardos (DESY)

Introduction

Present studies of $t\bar{t}$ +jets with 7 TeV data, both in the dilepton and the lepton+jets channels, and 8 TeV data in the dilepton channels.

- Measurements performed:
 - ◊ Differential cross-section measurement in the dilepton and I+jets channels as a function of jet multiplicity
 - \diamond I+jets: $t\bar{t}$ production as a function of the additional jet multiplicity.
 - $\diamond\,$ dilepton: properties of additional jets, $t\overline{t}$ production with a veto on additional jet activity.
 - \longrightarrow Measurements in visible phase space, corrected to particle level.
- 7 TeV results: arXiv:1404.3171, submitted to EPJC (lepton+jets, dilepton channels)
- 8 TeV results: CMS-PAS-TOP-12-041 (dilepton channel)

Generator setups for $t\bar{t}$ at CMS

- Matrix Element + Parton Shower generators
 - Better description of high multiplicities
 - $\bullet\,$ Initial and final state radiation (ISR/FSR) modelling via ME from assumed Q^2 variation
 - Matching procedure to remove double counting between partons produced by ME and PS
- Next to Leading Order generators
 - More accurate in normalisation
 - Smaller uncertainty on Q²

Matrix element	Shower & Hadronization	PDF	Tune
MadGraph v5	Pythia 6	cteq6l	Z2 (7 TeV) Z2* (8 TeV)
Powheg	Pythia 6	cteq6m (7 TeV) CT10 (8 TeV)	Z2 (7 TeV) Z2* (8 TeV)
MC@NLO v3.4	Herwig 6 + Jimmy	cteq6m	default tune

Radiative corrections

- The Q² scale variations address two aspects:
 - renormalisation and factorisation scale (ME)
 - amount of ISR/FSR
- For each event, Q² is defined as:
 - MadGraph: $Q^2 = m_t^2 + \sum p_T^2$ Powheg/MC@NLO: $Q^2 = m_t^2$

 - Parton showering:
 - shares Q^2 factor α_s with ME
 - implicitely: starting scale changes with ΔQ^2
 - MadGraph(+Pythia), the default MC, uses:
 - tree-level diagrams for hard radiation and interferences (up to 3 final-state partons for $t\bar{t}$)
 - parton showering for soft and collinear region (with Pythia 6.42X)
 - matching with ktMLM (ensures smoothness of $N \rightarrow N+1$ jet rates), thresholds varied by a factor 0.5 and 2.0 (nominal = 20 GeV)

 \rightarrow Uncertainty on radiation covered by variations of Q² and ME-PS matching C. Diez Pardos (DESY) Durham, 18 July 2014 7/42

Event selection

Dilepton channels

- Event reconstruction: Kinematic reconstruction of the $t\bar{t}$ system
- Background estimation:
 - $\diamond~Z/\gamma^*{+}{\rm jets}$ estimated from data
 - $\diamond~$ Other BGs (single top, dibosons, etc) estimated from MC

Lepton+jets channels

- Background estimation
 - \diamond W+jets estimated from data
 - ◊ QCD: data driven
 - \diamond Single top, Z/γ^*+ jets and diboson are from MC

 \rightarrow Signal: $t\bar{t}$ MadGraph+Pythia (normalised to NNLO+NNLL)

C. Diez Pardos (DESY)

Introduction

Control Plots: Reconstructed jet multiplicity 7 TeV, dilepton: $p_T > 30$ GeV, 1+jets: $p_T > 35$ GeV

C. Diez Pardos (DESY)

Normalised differential cross sections

$$\frac{1}{\sigma_{t\bar{t}}}\frac{d\sigma^{i}}{dN_{j}} = \frac{1}{\sigma_{t\bar{t}}}\frac{x^{i}}{\Delta_{X}^{i}L}$$

- xⁱ number of events after background subtraction, corrected for detector efficiencies, acceptances and migration to particle level (regularised unfolding).
- $\sigma_{t\bar{t}}$ inclusive $t\bar{t}$ cross section in the same phase space (visible).
- Δ_X : bin width (=1)

Measurement done in the visible phase space:

- p_T^{\prime} >20(30) GeV, $|\eta^{\mu}|$ <2.4 (2.1) dilepton (I+jets), $|\eta^{e}|$ <2.5
- $p_T^{jet} > 30(35)$ GeV dilepton (I+jets), $|\eta^{jet}| < 2.4$, jets required $\Delta R(j, l) > 0.4$, b-jets identified by B-hadron
- Comparing results to predictions from:
 - Different generators (POWHEG+Pythia, MC@NLO+Herwig)
 - MadGraph+Pythia with varied Q^2 scale, matching threshold

C. Diez Pardos (DESY)

Systematic uncertainties

• Sources considered:

- Jet energy scale and resolution
- Background estimate
- Model uncertainties: Q² scale (using samples with 2*Q, 0.5*Q), jet-parton matching threshold (threshold halved/doubled), hadronisation model, the color reconnection modelling and PDF
- Other sources: luminosity, pileup, b-tagging, lepton identification and trigger efficiencies
- Uncertainties determined individually for each bin.
- Normalised cross sections: bin-to-bin correlated uncertainties cancel (luminosity, flat SF, etc.), only shape uncertainties contribute (shape variation for b-tag, BG, scale, hadronisation etc.)

Total syst. uncertainty varies from 3-6% in the low multiplicity bins to 20-30% for the highest multiplicities.

Most important sources: JES and Q^2 scale and ME/PS Matching

Normalised diff. $\sigma_{t\bar{t}}$ as a function of NJets

Results 7 TeV: dilepton and I+jets channels

- $\diamond \ \ \mathsf{MadGraph+Pythia}, \ \mathsf{POWHEG+Pythia} \ \mathsf{provide} \ \mathsf{a} \ \mathsf{reasonable} \ \mathsf{description}$
- MC@NLO+Herwig doesn't describe large jet multiplicities

C. Diez Pardos (DESY)

Normalised diff. $\sigma_{t\bar{t}}$ as a function of NJets

Results 7 TeV: dilepton and I+jets channels

 $\bullet\,$ Comparison with MadGraph, varying Q^2 scale and jet/parton matching threshold up and down

Choice of lower scale gives slightly worse description of the data.

C. Diez Pardos (DESY)

Normalised diff. $\sigma_{t\bar{t}}$ as a function of NJets Results 8 TeV: dilepton for jets $p_T > 60$ GeV, $p_T > 100$ GeV

- Larger data samples allow to measure higher Pτ
- MadGraph+Pythia, POWHEG+Pythia provide a reasonable description, MC@NLO+Herwig describes data better for high jet-p_T.
- Choice of lower Q² scale gives slightly worse description of the data.
- Results consistent with
 7 TeV measurement.

C. Diez Pardos (DESY)

Jets

Durham, 18 July 2014

Jet $p_T > 60 \text{ GeV}$

Cross section as a function of the additional jet number 7 TeV: Lepton+jets channel

- Categorise every tt MC event as a function of the number of generated jets NOT matching any of top decay products (b quarks, light quarks and prompt lepton)
- Jets with $\Delta R > 0.5$: additional radiated jets

ightarrow classification of events in $t \overline{t} + 0, 1, \geq 2$ additional jets

- Extracting rates of these $t\overline{t}$ classes from data via a template fit
- Selection: similar to previous section, but selection events with at least 4 jets with $p_T > 30$ GeV.

Template fit results

- Simultaneous fit to data in three jet multiplicity bins in e/μ +jets channels
- Templates built from smallest χ of any jet combination (using b-tag info)

$$\chi = \sqrt{\left(\frac{m_{W^{had}}^{\rm rec} - m_{W^{had}}^{\rm true}}{\sigma_{W^{had}}}\right)^2 + \left(\frac{m_{t^{had}}^{\rm rec} - m_{t^{had}}^{\rm true}}{\sigma_{t^{had}}}\right)^2 + \left(\frac{m_{t^{\rm lep}}^{\rm rec} - m_{t^{\rm lep}}^{\rm true}}{\sigma_{t^{\rm lep}}}\right)^2}$$

from full event reconstruction

• χ lower if all jets from the $t\overline{t}$ decay are reconstructed

Diff. cross section: additional jet multiplicity

- Systematic uncertainties evaluated with pseudoexperiments
- Best agreement with MadGraph+Pythia and POWHEG+Pythia, MC@NLO+Herwig shows discrepancies
 - C. Diez Pardos (DESY)

Additional jets

Kinematic distributions for the leading p_T additional jets

Good agreement between data and MC (similar to 7 TeV results)

C. Diez Pardos (DESY)

p_T of 1^{st} and 2^{nd} leading additional jets (8 TeV)

- Comparison with various theory predictions
- Distributions at reconstructed level (no unfolding applied!), background is subtracted using MC predictions
- All predictions normalised to in situ measured cross-section (with MadGraph)

C. Diez Pardos (DESY)

Additional jets

η of 1st and 2nd leading additional jets (8 TeV)

- MadGraph+Pythia, Powheg+Pythia provide a reasonable description
- ◇ MC@NLO+Herwig fails to describe 2nd add. jet distributions
- Lower scale (Q²) sample predicts lower yields than data

$t\overline{t}$ production with a veto on additional jet activity gap fraction - dilepton channel

• Jet activity arising from quark and gluon radiation produced with the $t\bar{t}$ system is quantified with a jet veto

$$f(p_T) = \frac{N(p_T)}{N_{total}}$$

- N(p_T) are the events without 1 (2) additional jets with p_T above a threshold
- Sensitive to the (2nd) leading-p_T emission.

$$f(H_T) = \frac{N(H_T)}{N_{total}}$$

- $N(H_T)$ is the number of events in which the scalar sum of the p_T of the additional jets is less than a certain threshold, $H_T = \sum p_T^{add.jets}$
- Sensitive to all hard emission accompanying $t\bar{t}$ system

Gap fraction in data corrected for detector effects to particle level using MadGraph: for each value of the threshold the ratio of the "true" and "reconstructed" simulated gap fraction is computed and applied to data.

C. Diez Pardos (DESY)

Veto on additional jets

Gap fraction $(1^{st} \text{ add. jet}, 2^{nd} \text{ add. jet } p_T)$ Full pseudorapidity range

- MadGraph+Pythia, Powheg+Pythia provide a reasonable description for both jet-p_T threshold.
- $\label{eq:gap_star} \begin{array}{l} \diamond & \mbox{Gap fraction as a} \\ \mbox{function of } 1^{st} \mbox{ add. jet} \\ \mbox{$p_{\mathcal{T}}$ better described with} \\ \mbox{$MC@NLO+Herwig.$} \end{array}$
- MadGraph with decreased Q² scale predicts lower gap fraction values than the measured ones.

Gap fraction as a function of H_T $H_T = \sum p_T^{add.jets}$

- ♦ Reasonable agreement between MadGraph+Pythia, Powheg+Pythia and data.
- Gap fraction slightly better described by MadGraph with increased matching threshold.
 - C. Diez Pardos (DESY)

Gap fraction: p_T first additional jet Different rapidity ranges

Veto on additional jets

Gap fraction as a function of H_T

Different rapidity ranges

Summary and Outlook

- Presented *t* \overline{t} production with additional jet activity in the I+jets and in the dilepton channels.
 - \diamond Normalised $t\bar{t}$ production cross section as a function of jet multiplicity and additional jet multiplicity
 - Kinematics of the additional jets
 - ◊ Gap fraction
- Compared to different MCs and parameter variations from Madgraph.
- In general, good agreement between data-MC observed with different predictons.
- Consistent result among channels and measurements.
- Often, experimental precision smaller than spread due to parameter variation. → Variations could be reduced
- Working towards comparisons with other predictions (Powheg+Herwig) and NLO+Parton Showering multileg generators like aMC@NLO.

Questions

- Is it actually feasible/meaningful to constrain the MC radiation parameters $(Q^2, matching)$ with measurements?
- Which other measurements would be useful?
 - $\bullet\,$ Additional jets: diff. xsec as a function of kin. variables, $H_{\mathcal{T}}$
 - ratio Njets $\geq 2/N$ jets ≥ 1 as function of p_T^{tt} , $\langle NJet \rangle$ vs p_T^{tt} ?
 - ???

BACK UP

Summary

$t\bar{t}+b\bar{b}$: ratio of b- to light-flavour jets CMS-PAS-TOP-13-010

- Comparison with NLO QCD calculations
- Irreducible BG for $t\bar{t}$ +H($b\bar{b}$)

• Measure ratio $\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj)$: large cancellation of uncertainties

- Selection: dilepton events with $\geq\!\!4$ jets with $p_{\mathcal{T}}>20$ (40) GeV, $\geq\!\!2$ b-tagged jets
- Signal extraction by fit to the measured b-tagging algorithm discrimators
- Corrected to particle level
- Dominant systematic: mistag efficiency

 $\begin{array}{l} R{=}0.023{\pm}0.003({\rm stat.}){\pm}0.005({\rm sys.}) \mbox{ for 20 GeV [MadGraph (Powheg): 0.016 (0.017)]} \\ R{=}0.022{\pm}0.004({\rm stat.}){\pm}0.005({\rm sys.}) \mbox{ for 40 GeV [MadGraph (Powheg): 0.013 (0.014)]} \end{array}$

C. Diez Pardos (DESY)

19.6 fb⁻¹ at vs = 8 TeV First Additional 03 04 CMS Preliminan Second Additional Data/MC

Top quarks

C. Diez Pardos (DESY)

- Full 2011 data (7 TeV, 5.0 \pm 0.1 fb⁻¹) and 2012 data (8 TeV, 19.7 \pm 0.1 fb⁻¹)
- ◊ Signal: t̄t MadGraph+Pythia (normalised to NNLO+NNLL)
 - For comparison: POWHEG+Pythia and MC@NLO+Herwig MadGraph+Pythia with varied hadronisation/renormalization scale (Q²) and jet-parton matching threshold.

♦ Backgrounds:

- Z/γ^* +jets: MadGraph+Pythia (dominant BG *ee*, $\mu\mu$ channels)
- W+jets: MadGraph+Pythia (dominant BG I+jets)
- Single top (s-, tW-channel): POWHEG+Pythia
- Diboson (WW,WZ,ZZ): Pythia
- QCD: Pythia (data driven for I+jets)

Dilepton channels

• Event reconstruction: Kinematic reco. underconstrained (2 ν)

- $\diamond m_W \equiv$ 80.4 GeV, $m_t \equiv m_{\bar{t}}$ fixed
- $\diamond \ p_T^{\nu_1} + p_T^{\nu_2} = E_T^{miss}$
- \diamond vary m_T between 100-300 GeV (1 GeV steps)
- ◊ prefer solutions with b-tagged jets
- $\diamond\,$ choose solution with best reco. neutrino energy w.r.t MC spectrum

• Background estimation:

- ♦ Z/γ^* +jets estimated from data: The normalisation is determined using the events inside the Z-peak region, after substracting the contamination from non- Z/γ^* +jets, derived with $e\mu$ events.
- ◊ Other BGs (single top, dibosons, etc) estimated from MC
- Scale Factors: PU, Lepton selection, trigger SF, b-tag SF and kinematic reconstruction

lepton+jets channels

• Background estimation

- \diamond W+jets estimated from data:
 - Normalization is from data using charge asymmetry property of W+jets events.
 - Jet multiplicity shape is from MC
 - Additional correction of heavy flavour fraction
- ◊ QCD: data driven
 - Define sideband (1 b-tag) and signal (\geq 2 b-tag) regions with events with inverted lepton isolation
 - Fit MET from sideband to obtain the QCD normalization parameter
 - Multiply the QCD shape in the signal region by the QCD normalization parameter
- $\diamond~$ Single top, $Z/\gamma^*+{\rm jets}$ and diboson are from MC
- Scale Factors: PU, Lepton selection, trigger SF, b-tag SF

Phase space definitions

 Measurements are presented at particle level in the visible phase space. Additionally GenJets must fullfill: ΔR(genJet,selected leptons)>0.4

C. Diez Pardos (DESY)

Good description of data within uncertainties.

C. Diez Pardos (DESY)

Results: dilepton channel

Jet $p_{\mathcal{T}} > 60~\text{GeV}$

- MadGraph+Pythia, POWHEG+PYTHIA provide a reasonable description
- MC@NLO+HERWIG doesn't generate large jet multiplicities.
- Choice of lower scale gives slightly worse description of the data.

C. Diez Pardos (DESY)

Gap fraction: results 7 TeV

Gap fraction in data corrected for detector effects to particle level using MadGraph

рт

 H_T

Gap fraction better described by MC@NLO+HERWIG

Dominant systematic uncertainties: JES uncertainty, BG contamination

C. Diez Pardos (DESY)

Gap fraction: results 7 TeV

Decreasing the Q^2 scale, jet-parton matching threshold worsens the agreement with data

C. Diez Pardos (DESY)

p_T second additional jet

• Gap fraction for different pseudorapidity ranges.

Matching scale (MadGraph only)

MadGraph uses

- tree-level diagrams for hard radiation & interferences (up to 3 final state partons)
- parton-showering for soft & collinear region (with Pythia 6.42x)
- matching via ktMLM (k_T instead of cone algorithm)

41/42

Matching scale (MadGraph only)

MadGraph uses

- tree-level diagrams for hard radiation & interferences (up to 3 final state partons)
- parton-showering for soft & collinear region (with Pythia 6.42x)
- matching via ktMLM (k_T instead of cone algorithm)

 study smoothness N-jet vs N+1-jet transitions (y-axis) as function of scale

matching thresholds (xqcut) drives the optimal matching scale (qcut)

