

DM searches at the LHC

Sarah Alam Malik Imperial College London

Searching for dark matter at colliders

DM at colliders phenomenology

From Tim Tait

Sarah Alam Malik

Outline of talk

- SUSY searches
- Mono-X searches
- Invisible Higgs searches
- Interpretation of results
- Projections for 14 TeV

The Large Hadron Collider

	2011	2012	2015
Energy	7 TeV	8 TeV	14 TeV
Integrated luminosity	5 fb-1	20 fb-1	40 fb ⁻¹ ?

- proton-proton collider

- two general, multi-purpose detectors

ATLAS

- ATLAS and CMS

The Large Hadron Collider

Missing Transverse Energy

At the heart of all DM searches at colliders : Missing transverse energy (MET)

 DM neutral and weakly interacting
only infer its presence in detector from imbalance in transverse momentum of all visible particles

➡MET = negative of the vector sum of the transverse momenta of all particles reconstructed in the event

Missing Transverse Energy

At the heart of all DM searches at colliders : Missing transverse energy (MET)

- challenging quantity to measure
- sensitive to mis-measurements, detector effects, backgrounds
- but well controlled

Searches for SUSY

Searching for dark matter at colliders

Supersymmetry

- symmetry between fermions and bosons

- heavy super-partners for each SM particle

R-parity : new quantum number

Requiring R-parity conservation

- →SUSY particles are produced in pairs
- ➡The lightest SUSY particle (LSP) is stable

Theories designed to address the gauge hierarchy problem naturally

- predict stable, weakly interacting particles with mass ~ weak scale
- the correct relic abundance required to be dark matter.

SUSY searches at LHC

Generic searches requiring

- missing energy,
- many jets
- possibly leptons

Missing Energy:

from LSP

Multi-Jet:

from cascade decay (gaugino)

Multi-Leptons:

from decay of charginos/neutralios

SUSY searches at LHC

LHC pushing mass scales in constrained SUSY models

SUSY and Dark Matter : Evolution with time

Source: http://mastercode.web.cern.ch/mastercode

Global fit to direct and indirect constraints on SUSY

Global fits to SUSY and Dark Matter

arxiv: 1405.0622

Global fit to 15-dimensional pMSSM

Global fits to SUSY and Dark Matter

Invisible Higgs

Invisible Higgs searches

assuming SM production cross section and kinematics

Invisible Higgs searches

Mono-X searches

Searching for dark matter at colliders

Mono-X

Complementarity with direct defection ^q

*

Phenomenology

Operators Γ describe scalar, pseudoscalar, vector, axial vector, tensor interactions

Setting limits on DM-nucleon cross section

Translate collider limits to the same plane as direct detection experiments

For vector operator

$${\cal O}_V = rac{(ar\chi\gamma_\mu\chi)(ar q\gamma^\mu q)}{\Lambda^2}$$

 $\mathcal{O}^{N} = f_{q}^{N} \frac{\left(\bar{N}\gamma^{\mu}N\right)\left(\bar{\chi}\gamma_{\mu}\chi\right)}{\Lambda^{2}}$ fficient relates nucleon and

coefficient relates nucleon and quark operator

$$\sigma_{SI} = \frac{\mu^2}{\pi \Lambda^4} f_q^{N2}$$

- Upper limits on mono-X cross sections converted to lower limits on Λ
- Lower limits on Λ then translated to spinindependent DM-nucleon cross-section

Monojet

Sarah Alam Malik

Mono-photon

CMS-EXO-12-047

Mono-leptons

CMS-EXO-13-004

- DM produced together with W, which decays to lv
- Adapted from search for W'
- consider vector and axial-vector interactions

Mono-t and mono-tt

CMS-B2G-12-022

CMS-B2G-13-004

Sarah Alam Malik

Mono-Z

Sarah Alam Malik

Interpretation of searches

Limitations of EFT

arXiv:1308.6799

O. Buchmueller,^a Matthew J. Dolan,^b and Christopher McCabe^b

- EFT is valid when mediator mass > a few TeV
- The couplings required are large
- Comparing this with known couplings:
 - strong interaction ~1.2
 - weak interaction ~0.6
- Theory is non-perturbative if $\sqrt{g_q g_{\text{DM}}} > 4 p i$
- Width larger than mass, so unlikely mediator will be identified as a particle

Limits of EFT and beyond EFT

Phenomenology

Light mediator

- Assume DM interaction is mediated by light particle
- Effective theory breaks down and explicitly have to include mediator mass.

Minimal Simplified model of dark matter

Based on work from : O. Buchmueller, M. Dolan, S. Malik, C. McCabe

s-channel

Define simplified model with (minimum) 4 parameters		DM		Consider comprehensive set of diagrams for mediator	
Mediator mass (M _{med})	DM mass (M _{DM})	Dirac fermion	Scalar - real	Vector	Axial-vector
g	g dm	Majorana fermion	Scalar - complex	Scalar	Pseudoscalar

Using CMS monojet search and LUX

Projections for 14 TeV

Projections for 14 TeV

Simplified Dark Matter Model

8 TeV 20 fb⁻¹ 14 TeV 300 fb⁻¹ 14 TeV 3000 fb⁻¹

Vector

Axial vector

Projections

Projections for invisible Higgs

From Jim Brooke talk

Run 1 (8 TeV)

- ggH(inv) interpretation of monojet search
- Run 2-3 (13-14 TeV 300 fb⁻¹)
 - VBF, Z(II)H, monojet, ttH ?
 - ► Exp limit : BR(H→inv) ~ 10-15% ?
- HL-LHC (14 TeV, Lint = 5E34)
 - Scaling 8 TeV results to 3000 fb⁻¹
 - ► Assume systematics scale with 1/√L
 - Expected limits :
 - VBF : BR(H→inv) < 5% (~200 fb)</p>
 - ► ZH : BR(H→inv) < 6% (~40 fb)</p>
- Implies huge assumptions about :
 - Trigger acceptance
 - PU rejection

Limits on BF(H₁₂₅ \rightarrow invisible) at few-% level may be possible with HL-LHC

Summary

Showed limits from collider searches for dark matter

- via SUSY
- vis generic mono-X signatures
- Higgs invisible decays

Lot of complementarity with direct detection experiments

- in particular, low mass DM
- spin-dependent interactions of DM

Future projections, similar complementarity going forward

Future projections for DM

Snowmass Cosmic Frontier

http://arxiv.org/abs/1401.6085

