

NA62 & Kaon Experiments

Evgueni Goudzovski (University of Birmingham) eg@hep.ph.bham.ac.uk

Outline:

- 1) Ultra-rare $K \rightarrow \pi v \overline{v}$ decays: theory vs experiment.
- 2) NA62 and other $K_{\pi\nu\nu}$ experiments.
- 3) UK responsibilities within NA62.
- 4) NA62 programme beyond the flagship mode.
- 5) The long-term future.

by the European Com

PPAP Community Meeting RAL • 22 July 2014

Flagship measurement: $K \rightarrow \pi v \overline{v}$

SM: box and penguin diagrams

Ultra-rare decays with the highest CKM suppression: $A \sim (m_t/m_W)^2 |V_{ts}^*V_{td}| \sim \lambda^5$

- ★ Hadronic matrix element related to a measured quantity (K⁺→ $\pi^0 e^+\nu$).
- SM precision surpasses any other FCNC process involving quarks.
- ✤ Measurement of $|V_{td}|$ complementary to those from B–B mixing or B⁰→ργ.

SM branching ratios Brod et al., PRD 83 (2011) 034030

	-		
Mode		BR _{SM} ×10 ¹¹	
K ⁺ →π ⁺ νν(γ)		7.81±0.75±0.29	
$K_L \rightarrow \pi^0 \nu \overline{\nu}$		2.43±0.39±0.06	
		CKM parametric	
	Theoretically clean, almost unexplored, sensitive to new physics.		

NA62 aim: collect O(100) SM $K^+ \rightarrow \pi^+ v \overline{v}$ decays with <20% background in 3 years of data taking using a novel decay-in-flight technique.

<u>Signature:</u> high momentum K⁺ (75GeV/c) → low momentum π⁺ (15–35 GeV/c).
 <u>Advantages:</u> max detected K⁺ decays/proton (p_K/p₀≈0.2); efficient photon veto (>40 GeV missing energy); good π⁺ vs μ⁺ identification with RICH.
 Un-separated beam (6% kaons) → higher rates, more background sources.

CERN NA48/NA62 experiments

NA62 detector & sensitivity

NA62 installation

Large-angle photon installation

Cherenkov kaon tagger (CEDAR+KTAG)

Spectrometer and RICH

Other $K_{\pi\nu\nu}$ experiments

ORKA proposal @ FNAL (K+)

KOTO @ J-PARC (K_L):

- ✤ Builds on BNL stopped-kaon technique. ♣ Builds on KEK E391a technique.
- ♦ Goal: O(10³) SM K⁺→ $\pi^+\nu\nu$ events.
- Higher sensitivity than NA62 due to more time scheduled for data taking.

22 May 2014: DOE P5 "cannot recommend moving ahead with ORKA at this time"

- ✤ E391a: BR<2.6×10⁻⁸ @ 90%CL.
- ✤ Expect ~10³ times higher sensitivity.
- ♦ Goal: ~3 SM $K_L \rightarrow \pi^0 v v$ events.
- ✤ Test run: ~100 hours in 2013.
- ✤ Test run results will be released soon.
- ✤ Data taking to be resumed: early 2015.

E. Goudzovski / RAL, 22 July 2014

NA62: UK responsibilities

Hardware and trigger:

- full responsibility for the KTAG subdetector;
- development and operation of the L0 muon trigger;
- ✤ at a later stage, the LO KTAG trigger.

Widening the physics programme:

- ♦ lepton flavour and number conservation tests in $K^+ \rightarrow \pi \ell \ell$ decays;
- ♦ lepton universality tests in $K^+ \rightarrow \ell^+ \nu$ decays;
- ✤ peak searches: heavy neutral leptons, the dark photon.

Coordination:

- co-convener of the lepton flavour working group;
- coordinator of the NA62-R_K (2007 data) analyses;
- software coordinator;
- chair of the Conference Committee;
- members of the Editorial Board (3 out of 10).

KTAG: technical run 2012

- ✤ NA62 technical run with partial setup: November 2012.
- Most subdetectors installed, none in its final version.
- ✤ Beam intensity: ~2% of the nominal.
- KTAG: 4 sectors of out 8 instrumented;
 - 32 PMTs/sector (will be 48 in 2014, to up 64 foreseen).
- ✤ Validation of KTAG operation, finalization of the design.

CEDAR+KTAG installed in the beam line

One of the eight "light boxes"

KTAG with 4 octants in 2012

- Pion, kaon and proton peaks are resolved.
- Mean number of detected photons per beam particle: ~8, similar to expectation. Mean number of detected photons per
- ✤ Measured PMT time resolution: 280 ps (rms).
- ✤ Kaon tag resolution: 100 ps, will be improved with the 8-sector setup.

Detected photons / beam particle

LFNV in K[±] and π^0 decays

NA62 single event sensitivities: $\sim 10^{-12}$ for K[±] decays, $\sim 10^{-11}$ for π^0 decays. (modest L0 downscaling factors might be required for di-leptons)

Mode	UL at 90% CL $$	Experiment	Reference
$K^+ ightarrow \pi^+ \mu^+ e^-$	$1.3 imes10^{-11}$	BNL E777/E865	PRD 72 (2005) 012005
$K^+ o \pi^+ \mu^- e^+$	$5.2 imes10^{-10}$]		
$K^+ o \pi^- \mu^+ e^+$	$5.0 imes10^{-10}$	BNL E865 [*]	PRL 85 (2000) 2877
$K^+ ightarrow \pi^- e^+ e^+$	$6.4 imes 10^{-10}$		
$K^\pm o \pi^\mp \mu^\pm \mu^\pm$	$1.1 imes10^{-9}$ (CERN NA48/2	PLB 697 (2011) 107
$K^+ ightarrow \mu^- \nu e^+ e^+$	$2.0 imes10^{-8}$	Geneva-Saclay	PL 62B (1976) 485
$K^+ ightarrow e^- u \mu^+ \mu^+$	no data		
$\pi^0 ightarrow \mu^+ e^-$	$3.6 imes10^{-10}$	FNAL KTeV	PRL 100 (2008) 131803
$\pi^0 o \mu^- e^+$	$3.6 imes10^{-10}$		

* CERN NA48/2 sensitivities for these 3 modes are similar to those of BNL E865

Dimensional argument:

$$\frac{\Gamma_X}{\Gamma_{\rm SM}} \sim \left(\frac{g_X}{g_W} \cdot \frac{M_W}{M_X}\right)^4$$
$$g_X \approx g_W \quad \mathcal{B} \sim 10^{-12}$$
$$M_X \sim 100 \text{ TeV} \qquad 10$$

NA62 di-lepton L0 trigger

NA62 three-track decay rate upstream HOD: $F_{3track} = 640 \text{ kHz}$ \rightarrow Too high to collect all three-track decays (the NA48/2 approach)

Birmingham-led effort: di-lepton L0 trigger

- ✤ Q_N: at least N hodoscope quadrants;
- LKR(x): total LKr energy deposit of at least x GeV;
- ♦ MUV_N : hits in at least N MUV3 pads.

L0 trigger conditions for di-lepton collection:

<mark>ee</mark> pair: μe pair: μμ pair: $\begin{array}{l} \mathsf{Q}_2 \times \mathsf{LKR}(10) \\ \mathsf{Q}_2 \times \mathsf{LKR}(10) \times \mathsf{MUV}_1 \\ \mathsf{Q}_2 \times \mathsf{MUV}_2 \end{array}$

Di-muon ($\mu\mu$) rate dominated by accidentals; ee and μe rates dominated by $K^+ \rightarrow \pi^+ \pi^- \pi^- \pi^+ \pi^-$ Total rate F ~ 100 kHz: charge blind di-lepton collection is feasible.

Heavy neutral leptons below M_K

Long-term future

♦ Run 2014–2017: dedicated to K⁺→ $\pi^+\nu\nu$ (~100 SM events) and other rare/forbidden K⁺ and π^0 decays, likely with incremental hardware upgrades.

SPS LS2: 2018-2019

- Run 2020–2023 (non-exclusive) possibilities:
- a) Upgrades to improve precision on $K^+ \rightarrow \pi^+ \nu \nu$ (~1000 SM events).
- b) Switch to neutral beam to pursue $K_L \rightarrow \pi^0 \ell^+ \ell^-$ and prototype studies for $K_L \rightarrow \pi^0 \nu \nu$. Need ~10 times higher SPS proton intensity (~10¹³ ppp), well within SPS capability. A dedicated working group set up.
- c) Optimize for heavy neutral lepton searches (trigger, shielding upstream of the decay volume, ...).

SPS LS3: 2024

Run 2025–2028 possibility:

Next generation $K_L \rightarrow \pi^0 v v$ experiment: significant detector R&D required.

- ✤ Improving the experimental precision on BR(K→πνν) remains among the priority issues in flavour physics.
- The first NA62 physics run (at lower intensity) with the complete detector is starting in October 2014.
- The KTAG sub-detector (UK responsibility) delivered on time. KTAG test in 2012: main performance parameters are as expected.
- UK groups play a key role in shaping a wider NA62 programme (CLFV, lepton universality, heavy neutral leptons) and publishing results based on existing K⁺ data sets (2003, 2004, 2007).

NA62: $K_{\pi\nu\nu}$ signal region

92% of total BR(K⁺):

- Outside the signal kinematic region.
- ★ Signal region is split into Region I and Region II by the $K^+ \rightarrow \pi^+ \pi^0$ peak.

8% of total **BR(K**⁺) including multi-body:

 Span across the signal region (not rejected by kinematic criteria).
 Rejection relies on vetoes, PID. 18

NA62: from K⁺ to K_L

- Possibility of a neutral beam foreseen in the NA62 Technical Proposal: minor changes to production angle and upstream beam optics
- ✤ Running for K_L→ $\pi^0 vv$ or K_L→ $\pi^0 \ell^+ \ell^-$ will require a substantial increase in primary intensity, but well within what the SPS can provide.

	NA62 K ⁺ beam	Future NA62 K _L beam
Primary intensity (ppp)	3×10 ¹²	2.4×10 ¹³
Production angle (mrad)	0	2.4
Angular acceptance (µsr)	12.7	0.125
Momentum	(75±1) GeV/c	97 GeV/c (mean)
Rates in fiducial volume, MHz	525(π)+70(p)+45(K ⁺)	2000(γ)+800(n)+90(K _L)
K decays in fiducial volume	4.5 MHz	0.9 MHz
	(4.5×10 ¹² /year)	(0.9×10 ¹² /year)

TREK (E36) at J-PARC

