

### PINGU, MicroBooNE & LAr1-ND













## The MSW effect

Atmospheric neutrinos pass through the Earth

> Feel an interaction with the Earth's matter

Electron neutrinos feel an additional interaction

- > Acts like a refractive index
- > This effectively changes the mixing angles







All flavours

**Electron flavour** 





### Neutrino oscillations in matter





### Neutrino oscillations in matter

8







The University of Manchester

### PINGU

- 40 new strings in the central region of IceCube & DeepCore
  - > 20 m between strings
  - 5 m vertically between DOMs
- Energy threshold down to a few GeV





The University of Manchester

DeepCore



DeepCore released impressive new oscillation measurements this summer



# The University of Manchester Hierarchy sensitivity

arXiv:1401.2046



At least  $3\sigma$  sensitivity after four years of running

 $\succ$  Can be even easier to determine, depending on the value of  $\theta_{23}$ 

### The University of Manchester The global situation after Blennow et al., arXiv:1311.1822

; LBNE 34 kt LBNE 10 kt Preliminary Sensitivity [ $\sigma$ ] =  $\sqrt{\Delta\chi^2}$ Hyper-K PINGU JUNO TNO 2 NOvA 0 2015 2020 2025 2030 Date

#### PINGU is the most competitive medium-term experiment

Supported in the recent P5 report

#### A very affordable option

MANCHESTER

- <10% the price of LBNE</p>
- > A small contribution can make the UK a major player



## UK groups

### Manchester

- Convener of mass hierarchy group
- Working on DeepCore oscillation analysis

### Queen Mary

Expertise in neutrino interactions and cross sections

### Oxford

- Theory group
- Significant European involvement
  - Germany, Belgium, Sweden, Denmark

### This effort is currently unfunded by STFC

> Since it came along after the programmatic review

### Risk of losing a major opportunity for UK particle physics

> To determine the mass hierarchy within the decade



The University of Manchester



Queen Mary University of London





## Sterile neutrinos



LSND and MiniBooNE see  $v_e$  appearance signals consistent with short-baseline oscillations

But is this a non-neutrino background? Or an inherent  $v_e$  component of the beam?
15



## MicroBooNE



#### Repeat MiniBooNE

- > But with a superior detector: liquid argon TPC
- > Greater ability to reject NC electromagnetic activity



## **MicroBooNE**

87 ton active mass 2.5x2.4x10.4 m<sup>3</sup> TPC

- Recently moved into its final location in the Booster Neutrino beam
- Commissioning will occur this autumn
- First neutrino events by the end of the year





## **UK involvement**

#### Oxford

- > Level-2 project manager for the TPC
- Cosmic muon detector system for commissioning
- Development of run control software
- Event reconstruction

#### Cambridge

> Development of PANDORA event reconstruction chain

#### Manchester

- > Not yet MicroBooNE members, but a new academic (Georgia Karagiorgi) will join in January
- Convener of MicroBooNE oscillation group
- > Commissioning MicroBooNE readout
- >  $n-\overline{n}$  and proton-decay analyses



UNIVERSITY OF

The University of Manchester



### MANCHESTER The University of Manchester The need for a Near Detector

MicroBooNE alone may not answer the sterile neutrino question

- $\succ$  It can tell us if the excess is really electron neutrinos
- It can't tell us if those electron neutrinos are intrinsically in the beam or arise via oscillation

### MicroBooNE @ 470 m





## LAr1-ND



### A liquid argon near detector for MicroBooNE

- > Characterize the beam composition
- A near-far comparison cancels many systematic uncertainties (e.g. cross sections)



### LAr1-ND





### The benefits of a Near Detector





## UK hardware contribution

### UK will build much of the TPC

- Sheffield: anode frame
- Manchester: anode wiring
- Liverpool: cathode plane
- Lancaster: cold testing
- VCL: high voltage feedthrough

### Vital part of our LBNE proposal

- > Sets us up to make a significant construction contribution to the LBNE FD
- LAr1-ND builds IL experience and demonstrates that the UK can build a working TPC

### Oxford and Cambridge are also collaborators









PINGU

 $\geq$ 

neutrinos



**MicroBooNE** 

Investigating the MiniBooNE lowenergy excess with a liquid argon TPC

#### LAr1-ND

Forming a highly sensitive twodetector search for sterile neutrinos