

Neutrinoless Double-Beta Decay

Dave Waters University College London

PPAP Community Meeting RAL, 22ndJuly 2014

Why is it so Important?

- Nature of neutrinos : Dirac ($v \neq \overline{v}$) or Majorana ($v = \overline{v}$)
 - ➡ See-saw mechanism, GUT scale physics, leptogenesis.
 - \rightarrow 0vββ is the only practical way of determining this.
- Absolute neutrino mass scale : only limits so far :
 - → $m_{\bar{v}_e} < 2.2$ eV (Tritium end-point)
 - ⇒ $\Sigma m_{v_i} < 0.3 \text{ eV}$ (Cosmology)
 - Οvββ is the most sensitive (although not the most model-independent) technique.
- Leptonic CP-violation
 - ➡ Dirac phase (LBL)
 - Majorana phases : 0vββ is the only practical way of discovering these.

Neutrino-Antineutrino Transitions on Femtometre Baselines [Furry, 1939]

- Candidate isotopes have :
 - Single-β decay energetically forbidden or highly suppressed.
 - Large $Q_{\beta\beta}$ -values (background separation).
 - Large natural abundance (or easily enriched).
 - Suitable physical properties (electrical, optical, mechanical, etc.)

Isotope	Q _{ββ} (MeV)	Nat. Abund. (%)
⁴⁸ Ca	4.272	0.187
⁷⁶ Ge	2.039	7.8
⁸² Se	2.996	9.2
¹⁰⁰ Mo	3.034	9.6
¹³⁰ Te	2.528	34.5
¹³⁶ Xe	2.459	8.9
¹⁵⁰ Nd	3.371	5.6

• 0vββ experiments constrain an effective neutrino mass (coherent sum over mass eigenstates)

How To Build a $\beta\beta$ -Experiment

How To Build a $\beta\beta$ -Experiment

It's All About Backgrounds

SuperNEMO Demonstrator Module

20 tons 1000 radon atoms in the tracker *1 decay every ~10 minutes*

Brazil Nut

4 grams 200,000 radon atoms 1 decay every ~2 seconds

- Cosmic rays. Work in underground labs (1000's m.w.e.)
- Naturally occurring radioactivity present in all materials :
 - ► T_{1/2}(²³²Th,²³⁸U) ~ 10¹⁰ years
 - T_{1/2}(0vββ) > 10²⁵ years
- Background from $2\nu\beta\beta$: resolution and isotope choice.

¹³⁶Xe Experiments: EXO and KamLAND-Zen

Overview of SuperNEMO

The goals of SuperNEMO :

- 1. Build on the experience of the extremely successful NEMO-3 experiment.
- 2. Use the power of the tracking-calorimeter approach to identify and suppress backgrounds. This will yield a zero-background experiment in the first (Demonstrator Module) phase.
- 3. Prove that a 100 kg scale experiment can reach the inverted mass hierarchy (~50 meV) domain.
- 4. In the event of a discovery by any of the next-generation experiments, demonstrate that the tracking-calorimeter approach is by far the best one for characterising the mechanism of $0\nu\beta\beta$ decay.

NEMO-3 Overview

- Tracking-calorimeter detector.
- Situated in Laboratoire Souterrain de Modane (LSM) : 4800 M.W.E.
- Ran from 2003 2011
- Decommissioned to make space for the Demonstrator Module

$0\nu\beta\beta$ Search with NEMO-3

World's Best Limits

SuperNEMO Demonstrator Module : Overview

SuperNEMO Construction Progress

SNO+

The goals of SNO+ :

- 1. Cost-effective repurposing of SNO as a giant liquid-scintillator detector.
- 2. Pursue a broad physics programme of $0v\beta\beta$, solar neutrinos, geo-neutrinos and SN.
- 3. Load the liquid scintillator with O(1 tonne) of isotope.
- 4. Have sensitivity to the inverted mass hierarchy region on a competitive timescale.

SNO+

Acrylic vessel (AV) 12 m diameter

780 tonnes of LAB LS Borexino & KamLAND-Zen have shown that LS can be extremely pure.

1700 tonnes H₂0 inner shielding

5700 tonnes H₂0 outer shielding

~9500 PMTs

O(tonne) 0vββ isotope Flexibility regarding choice of isotope and loading fraction

- Compensate modest resolution with large isotope mass.
- Increase loading fraction to reduce background index.

Higher Loading Fractions :

- Multi-tonne isotope mass.
- Studies ongoing to confirm no degradation of optical properties.

SNO+ : Construction Progress

Timescales

Timescales & Sensitivity

- A summary of the field of neutrinoless double-beta decay :
 - ► It's really important.
 - ► It's really difficult.
 - There's no reason to think we will not have to search for $0v\beta\beta$, whatever the outcome of neutrino oscillation or other experiments.
 - The UK is leading two of several worldwide efforts, and has the expertise to continue leading the field.
 - ▶ We need as many hands on deck as possible ...

Thanks !