

Physics at the ILC

Sven Heinemeyer, IFCA (CSIC, Santander)

Abingdon, 11/2014

- 1. The bigger picture
- 2. Physics we can do for sure at the ILC
- 3. Physics we can do likely at the ILC
- 4. How to go ahead in the next 10 years?

1

1. The bigger picture

The ILC could start operations in the middle of the next decade

World of High Energy Physics in the year \sim 2025:

LHC detectors (ATLAS/CMS) will have accumulated \sim 300 fb⁻¹

Initial LHC physics goals are accomplished:

- state compatible with a Higgs found corresponding couplings (ratios) measured to 5–30%
- SUSY-like signatures observed (if realized at the EW scale) (or not ...???)
- Extra dimensions or ...-like signatures observed (or not ...???)

LHC probably awaits luminosity upgrade

What can the ILC add?

 \Rightarrow Implicit in the physics to follow!

Linear e^+e^- collider, $\sqrt{s} = 250 - 1000$ GeV

based on superconducting cavities (cold technology)

Energies: $\sqrt{s} = 250 \text{ GeV}$, 350 GeV, 500 GeV ... 1000 GeV

Possible features:

Schematic:

- two detectors in one interaction region (push-pull)
- undulator based e^+ source
- polarized beams for e^- and e^+ ($P_{e^-} = 80\%$, $P_{e^+} = 60\%$)
- tunable energy

• GigaZ:

running with high luminosity at low energies (Z pole, WW threshold)

• $\gamma\gamma$:

use both beams to produce high-energy photons (e.g. heavy Higgs production in the s channel, $\Gamma(H \rightarrow \gamma \gamma)$, ...)

• $e^-\gamma$:

use one e^- beam to produce high-energy photons produce charged particles in the s channel

• e⁻e⁻:

produce doubly charged particles in the s channel

\Rightarrow to optimize physics potential!

4

Possible candidate sites

(Ratified in independent technical evaluation by KEK and LCC) No "formal" political decision taken yet.

[taken from N. Walker, '14]

• The ILC is a mature project.

- Main technologies exist
- But clearly much engineering" to be done (requiring substantial funding)
- The primary hurdles now are political
- Focus on Japan

ilc

- MEXT evaluation should be complete by next Spring
- Further evaluation by SCJ
- Expecting some statement from Japan in 2016
- European and US HEP strategies both make positive statements on a "Japanese hosted ILC"
 - But negotiations with governments has not yet started waiting for Japan to make "first move"

International technical effort (LCC) focused on site-dependent design

- But we are totally under resourced!
- Making progress where we can
- US funding situation (post-P5) looks better
- All scenarios put first physics towards the end of 2020's
 - 10 construction & commissioning schedule
 - Can't possibly start before 2016 (and likely to be later).

[taken from N. Walker, '14]

Physics at the ILC \Rightarrow determined by experimental data!

Physics at the ILC \Rightarrow determined by experimental data!

What we know for sure:

- discovery of a Higgs particle
- top quark
- gauge bosons: W^{\pm}, Z

- . . .

 \Rightarrow clear physics case

Physics at the ILC \Rightarrow determined by experimental data!

What we know for sure:

- discovery of a Higgs particle
- top quark
- gauge bosons: W^{\pm}, Z

- . . .

 \Rightarrow clear physics case

Other experimental data:

- dark matter
- the anomalous magnetic moment of the muon, $(g-2)_{\mu}$

— . . .

 \Rightarrow "likely" (additional) physics case

The time we have: possible running/luminosity scenarios

[D. Asner et al., Snowmass study, '13]

	$\mathcal{L}_{\text{int},1}$	0	$E_{CM,1}$	+	$\mathcal{L}_{int,2}$	0	$E_{CM,2}$	+	$\mathcal{L}_{int,3}$	0	$E_{CM,3}$	AT
Name	[fb ⁻¹]		GeV		$[fb^{-1}]$		GeV		$[fb^{-1}]$		GeV	[10 ⁷ s]
ILC (250)	250	0	250									3.3
ILC (500)	250	0	250	+	500	0	500					6.0
ILC (1000)	250	0	250	+	500	0	500	+	1000	0	1000	8.7
ILC (LumUp)	1150	0	250	+	1600	0	500	+	2500	0	1000	17.4

 \Rightarrow time includes "ramp up" etc.

 \Rightarrow ILC (1000) : up to nine years

 \Rightarrow Luminosity upgrade

 \Rightarrow ILC (LumUp) : up to additional nine years

We have a discovery!

We have a discovery!

But what is it?

- **Q:** Is it a Higgs boson? \Rightarrow yes according to CERN!
- **Q:** Is it "the" Higgs boson (i.e. of the SM)?
- **Q:** Is it a supersymmetric Higgs boson?
- **Q:** Is it a Higgs boson of a different model?
- **Q:** Is it an impostor? \Rightarrow no according to CERN!

We have a discovery!

But what is it?

- **Q:** Is it a Higgs boson? \Rightarrow yes according to CERN!
- **Q:** Is it "the" Higgs boson (i.e. of the SM)?
- **Q:** Is it a supersymmetric Higgs boson?
- **Q:** Is it a Higgs boson of a different model?
- **Q:** Is it an impostor? \Rightarrow no according to CERN!

How can we decide?

How can we fully establish the Higgs mechanism?

 \Rightarrow crucial for a model independent coupling measurement!

 \Rightarrow clear, testable prediction!

\Rightarrow ILC can test all three types!

ILC: absolute couplings, total width, invisible width, ...

Expected precision for fermionic and gauge decay modes: [ILC TDR '13]

	4	$\Delta g/g$		
	<i>ZH</i> @ 250 GeV	<i>ZH</i> @ 500 GeV	$ u \overline{ u} H$ @ 500 GeV	
mode	$(250 \ {\rm fb}^{-1})$	$(500 \ { m fb}^{-1})$	$(500 \ {\rm fb}^{-1})$	combined
$H o b\overline{b}$	1.0%	1.6%	0.60%	1.3%
$H \to \tau^+ \tau^-$	3.6%	4.6%	11%	1.8%
$H \to c \overline{c}$	6.9%	11%	5.2%	2.3%
H ightarrow gg	8.5%	13%	5.0%	2.4%
$H \to WW^*$	8.1%	12.5%	3.0%	1.9%
$H \rightarrow ZZ^*$	26%	34%	10%	4.7%
$H \to \gamma \gamma$	23-30%	29-38%	19-5%	(13-17%)

Total width: $\Delta \Gamma_H / \Gamma_H$: 4.8% – 1.2%

Invisible width: $\Delta \Gamma_{inv} / \Gamma_{inv}$: 0.44 - 0.26% ($\sqrt{s} = 250 - 1000 \text{ GeV}$)

More complete future options:

LHC300, HL-LHC, ILC250, ILC500, ILC1000, ILC1000-LumiUp

Future scenario	PDF	α_s	m_c, m_b, m_t	THU ¹	$BR(H \rightarrow NP)$ constraint
LHC300 (S1)	100%	100%	all 100%	100%	conservative, Eq. (13)
LHC300 (S2, csv.)	50%	100%	all 100%	50%	conservative, Eq. (13)
LHC300 (S2, opt.)	50%	100%	all 100%	50%	optimistic, Eq. (15)
HL-LHC (S1)	100%	100%	all 100%	100%	conservative, $Eq. (14)$
HL-LHC (S2, csv.)	50%	100%	all 100%	50%	conservative, Eq. (14)
HL-LHC (S2, opt.)	50%	100%	all 100%	50%	optimistic, Eq. (16)
ILC250	-	50%	all 50%	50%	$\sigma(e^-e^+ \to ZH)$
ILC500		50%	all 50%	50%	$\sigma(e^-e^+ \to ZH)$
ILC1000	-	50%	all 50%	50%	$\sigma(e^-e^+ \to ZH)$
ILC1000-LumiUp	e-	50%	all 50%	50%	$\sigma(e^-e^+ \to ZH)$
HL-LHC \oplus ILC250 $(\sigma_{ZH}^{\text{total}})^2$	50%	50%	all 50%	50%	$\sigma(e^-e^+ \to ZH)$
$\text{HL-LHC} \oplus \text{ILC250}$	50%	50%	all 50%	50%	$\sigma(e^-e^+ \to ZH)$
$HL-LHC \oplus ILC500$	50%	50%	all 50%	50%	$\sigma(e^-e^+ \to ZH)$
$HL-LHC \oplus ILC1000$	50%	50%	all 50%	50%	$\sigma(e^-e^+ \to ZH)$
$\text{HL-LHC} \oplus \text{ILC1000-LumiUp}$	50%	50%	all 50%	50%	$\sigma(e^-e^+ \to ZH)$

[P. Bechtle, S.H., O. Stål, T. Stefaniak, G. Weiglein '14]

assumption: $BR(H \rightarrow NP) = BR(H \rightarrow inv.)$

[P. Bechtle, S.H., O. Stål, T. Stefaniak, G. Weiglein '14]

[P. Bechtle, S.H., O. Stål, T. Stefaniak, G. Weiglein '14]

no theory assumptions, full fit

[P. Bechtle, S.H., O. Stål, T. Stefaniak, G. Weiglein '14]

 \Rightarrow discrimination between models! \Rightarrow possible deviations: \mathcal{O} (few%)

Example: Higgs couplings in the 2HDM:

\Rightarrow measurable deviations

Particularly challening: Higgs self-coupling

[ILC TDR '13]

Sven Heinemeyer (CSIC, Santander) UK Forum on Future Colliders, Cosener's House, 13.11.2014 21

ZHH@500 GeV

 $\nu \bar{\nu} HH@1000$ GeV

\Rightarrow currently full simulations are performed

Expected sensitivity on
$$\lambda$$
: ~ 14% (2 ab⁻¹ @ 1000 GeV) [ILC TDR '13]

putting everything together:

\Rightarrow any deviation from straight line indicates BSM physics!

Top physics at the ILC

Particle masses are not direct physical observables one can only measure cross sections, decay rates, ...

Additional problem for the top mass:

what is the mass of a colored object?

Top pole mass is not IR safe (affected by large long-distance contributions), cannot be determined to better than $O(\Lambda_{QCD})$

Measurement of m_t :

- At Tevatron, LHC: kinematic reconstruction, fit to invariant mass distribution
 ⇒ "MC" mass, close to "pole" mass?
- At the ILC: unique possibility threshold scan \Rightarrow threshold mass \Rightarrow **SAFE!** transition to other mass definitions possible, $\delta m_t \lesssim 100 \text{ GeV}$

At the ILC: unique possibility threshold scan \Rightarrow threshold mass \Rightarrow **SAFE!**

[ILC TDR '13]

transition to other mass definitions possible $\Rightarrow \delta m_t^{\text{exp+theo}} \sim 0.1 \text{ GeV}$

Top mass in the SM: crucial for the Fate of the universe

[Degrassi et al. '12] [Alehkin et al. '12]

Is the Higgs potential (and thus our universe) stable? (neglecting gravity/Planck scale)

\Rightarrow ILC precision for m_t needed!

Top/Higgs physics in BSM:

Nearly any model: large coupling of the Higgs to the top quark:

 \Rightarrow one-loop corrections $\Delta M_H^2 \sim G_\mu m_t^4$

 $\Rightarrow M_H$ depends sensitively on m_t in all models where M_H can be predicted (SM: M_H is free parameter)

SUSY as an example: $\Delta m_t \approx \pm 1 \text{ GeV} \Rightarrow \Delta M_h \approx \pm 1 \text{ GeV}$

Top/Higgs physics in BSM:

Nearly any model: large coupling of the Higgs to the top quark:

 \Rightarrow one-loop corrections $\Delta M_H^2 \sim G_\mu m_t^4$

 $\Rightarrow M_H$ depends sensitively on m_t in all models where M_H can be predicted (SM: M_H is free parameter)

SUSY as an example: $\Delta m_t \approx \pm 1 \text{ GeV} \Rightarrow \Delta M_h \approx \pm 1 \text{ GeV}$

\Rightarrow Precision Higgs physics needs ILC precision top physics

 \Rightarrow indirect prediction of the Higgs mass in the SM

[LEPEWWG '12]

\Rightarrow fits with today's precision

Improvements with the ILC:

Experimental errors of the precision observables:

	today	Tev./LHC	ILC	GigaZ
$\delta \sin^2 \theta_{\rm eff}(\times 10^5)$	16	16	_	1.3
δM_W [MeV]	15	$\lesssim 15$	3-4	3-4
δm_t [GeV]	0.9	$\lesssim 1$	0.1	0.1

 M_W : from direct reconstruction and threshold scan [G. Wilson '13]

 $\sin^2 \theta_{\text{eff}}$: 1/2 year GigaZ run, polarization important

 α_s : Improvement from GigaZ run

Most precise M_H test with the ILC:

$\Rightarrow \delta M_H^{\text{ind}} \lesssim 6 \text{ GeV}$ $\Rightarrow \text{ extremely sensitive test of SM (and BSM) possible}$
A word of caution: The W boson mass

Experimental accuracy:

Today: LEP2, Tevatron: $M_W^{\text{exp}} = 80.385 \pm 0.015 \text{ GeV}$

ILC/TLEP: – polarized threshold scan - kinematic reconstruction of W^+W^- [G. Wilson '13] - hadronic mass (single W) $\delta M_{W}^{\exp,ILC} \lesssim 3 \text{ MeV}, \quad (\text{from thr. scan}) \quad \leftarrow \text{theory uncertainties neglected}$ Theoretical accuracies: intrinsic today: $\delta M_W^{\text{SM,theo}} = 4 \text{ MeV}, \quad \delta M_W^{\text{MSSM,today}} = 5 - 10 \text{ MeV}$ intrinsic future: $\delta M_W^{\text{SM,theo,fut}} = 1 \text{ MeV}, \quad \delta M_W^{\text{MSSM,fut}} = 2 - 4 \text{ MeV}$ parametric today: $\delta m_t = 0.9 \text{ GeV}, \ \delta(\Delta \alpha_{had}) = 10^{-4}, \ \delta M_Z = 2.1 \text{ MeV}$ $\delta M_W^{\text{para},m_t} = 5.5 \text{ MeV}, \quad \delta M_W^{\text{para},\Delta\alpha_{\text{had}}} = 2 \text{ MeV}, \quad \delta M_W^{\text{para},M_Z} = 2.5 \text{ MeV}$ parametric future: $\delta m_t^{\text{ILC/TLEP}} = 0.1 \text{ GeV}, \ \delta (\Delta \alpha_{\text{had}})^{\text{fut}} = 5 \times 10^{-5}$ $\Delta M_W^{\text{para,fut},m_t} = 1 \text{ MeV}, \quad \Delta M_W^{\text{para,fut},\Delta\alpha_{had}} = 1 \text{ MeV}$

Experimental accuracy:

Today: LEP, SLD: $\sin^2 \theta_{eff}^{exp} = 0.23153 \pm 0.00016$

GigaZ: both beams polarized, Blondel scheme

 $\delta \sin^2 \theta_{\text{off}}^{\text{exp,ILC}} = 1.3 \times 10^{-5} \quad \Leftarrow \text{ theory uncertainties neglected}$ Theoretical accuracies: $[10^{-6}]$ intrinsic today: $\delta \sin^2 \theta_{eff}^{SM,theo} = 47$ $\delta \sin^2 \theta_{eff}^{MSSM,today} = 50 - 70$ intrinsic future: $\delta \sin^2 \theta_{\text{off}}^{\text{SM,theo,fut}} = 15$ $\delta \sin^2 \theta_{\text{off}}^{\text{MSSM,fut}} = 25 - 35$ parametric today: $\delta m_t = 0.9 \text{ GeV}, \ \delta(\Delta \alpha_{had}) = 10^{-4}, \ \delta M_Z = 2.1 \text{ MeV}$ $\delta \sin^2 \theta_{\text{eff}}^{\text{para},m_t} = 70, \quad \delta \sin^2 \theta_{\text{eff}}^{\text{para},\Delta \alpha_{\text{had}}} = 36, \quad \delta \sin^2 \theta_{\text{eff}}^{\text{para},M_Z} = 14$ parametric future: $\delta m_t^{\text{ILC/TLEP}} = 0.1 \text{ GeV}, \ \delta (\Delta \alpha_{\text{had}})^{\text{fut}} = 5 \times 10^{-5}$ $\Delta \sin^2 \theta_{\text{off}}^{\text{para,fut},m_t} = 4$, $\Delta \sin^2 \theta_{\text{off}}^{\text{para,fut},\Delta \alpha_{\text{had}}} = 18$

3. Physics we can do likely at the ILC

The SM cannot be the ultimate theory!

Some facts:

- 1. the hierarchy problem gravity is not included
- 2. Dark Matter is not included
- 3. neutrino masses are not included
- 4. anomalous magnetic moment of the muon shows a $\sim 4 \sigma$ discrepancy

The SM cannot be the ultimate theory!

Some facts:

- the hierarchy problem ← physics for the ILC gravity is not included
- 2. Dark Matter is not included \leftarrow physics for the ILC
- 3. neutrino masses are not included \leftarrow physics for the ILC
- 4. anomalous magnetic moment of the muon \leftarrow physics for the ILC shows a $\sim 4 \sigma$ discrepancy

3. Physics we can do likely at the ILC

The SM cannot be the ultimate theory!

Some facts:

- 1. the hierarchy problem gravity is not included
- 2. Dark Matter is not included \leftarrow more detailed example
- 3. neutrino masses are not included
- 4. anomalous magnetic moment of the muon \leftarrow more detailed example

shows a $\sim 4 \sigma$ discrepancy

We need physics beyond the Standard Model!

We need physics beyond the Standard Model!

Supersymmetry as a show case:

Standard particles

SUSY particles

Sven Heinemeyer (CSIC, Santander) UK Forum on Future Colliders, Cosener's House, 13.11.2014 35

We need physics beyond the Standard Model!

Supersymmetry as a show case:

Standard particles

SUSY particles

\Rightarrow Hierarchy prob., DM, $(g-2)_{\mu}$ solved, more Higgses, ... \Rightarrow Cases I, II, III

Sven Heinemeyer (CSIC, Santander) UK Forum on Future Colliders, Cosener's House, 13.11.2014 35

Case I: Dark Matter: is it a particle?

– Dark matter:	WIMP/axion?
 Renormalizability: 	Н
 Weak interactions: 	W^{\pm}, Z^0
 Strong dynamics: 	Gluons
- CP violation:	Third generation
– FCNC:	Charm
– Flavour SU(3):	Quarks
– Flavour SU(3):	Ω-
 Absence of lepton number violation: 	Second neutrino
 Nucleon-nucleon interactions: 	Pion
– Continuous spectrum in β decay:	Neutrino
 Nuclear spectra: 	Neutron
 QM and Special Relativity: 	Antimatter
postulate a new particle:	

 \Rightarrow "particle concept" works!

Production with a heavier particle:

Production with an initial state radiation photon:

Reconstructing DM at the ILC:

\Rightarrow DM can be reconstructed!

Sven Heinemeyer (CSIC, Santander) UK Forum on Future Colliders, Cosener's House, 13.11.2014 38

Reconstructing DM at the ILC:

 \Rightarrow DM can be reconstructed to match astrophysical data!

Sven Heinemeyer (CSIC, Santander) UK Forum on Future Colliders, Cosener's House, 13.11.2014 38

Case II: Latest analysis on $(g-2)_{\mu}$:

[M. Benayoun, P. David, L. DelBuono, F. Jegerlehner '12]

 \Rightarrow more than 4 σ deviation! \Rightarrow BSM physics needed?!

BSM example: SUSY easily explains the deviation:

Feynman diagrams for MSSM 1L corrections:

- Diagrams with chargino/sneutrino exchange
- Diagrams with neutralino/smuon exchange

Experimental results require:

- not too heavy scalar muons, neutrinos
- not too heavy charginos, neutralinos
- \Rightarrow precision ILC analyses

\Rightarrow (sub)per-cent precision possible at the ILC

Case III: A light Higgs boson below 125 GeV

We have discovered a Higgs at $\sim 125~\text{GeV}$

 \Rightarrow this need not be the lightest Higgs in the spectrum!

In principle also possible:

 $M_{h_1} < 125~{
m GeV}$ $M_{h_2} pprox 125~{
m GeV}$

Consequences:

- several Higgs bosons very light
- rich(er) Higgs phenomenology

Constraints:

- direct searches for the lightest Higgs
- direct searches for other heavier neutral Higgses
- direct searches for the charged Higgses
- flavor constraints (BR($B_s \rightarrow \mu^+ \mu^-$) etc.)

Is such a light Higgs detectable at the LHC and/or ILC?

LHC:

- $h_2 \rightarrow h_1 h_1$ strongly suppressed for $M_{h_1} \gtrsim$ 63 GeV
- so far no LHC searches for a Higgs with $M_{h_1} \lesssim 100~{\rm GeV}$ (difficult . . .)
- Possible: SUSY ightarrow SUSY h_1 , e.g. $ilde{\chi}^0_2
 ightarrow ilde{\chi}^0_1 h_1$

ILC:

- good SUSY production mode: $e^+e^- \rightarrow hA$
- good general production mode: $e^+e^- \rightarrow t\bar{t}h_1$
- \Rightarrow could be a unique opportunity for the ILC!

The LHC finds only a SM-like Higgs and nothing else

Q: Do we still need the ILC (incl. GigaZ)?

Possible scenario:

The LHC finds only a SM-like Higgs and nothing else

Q: Do we still need the ILC (incl. GigaZ)?

A: Of course!

Possible scenario:

The LHC finds only a SM-like Higgs and nothing else

Q: Do we still need the **ILC** (incl. GigaZ)?

A: Of course! Or better: even more!

The ILC+GigaZ provides:

- precise Higgs coupling measurements (ILC)
- precision observable measurements (GigaZ)
- precise top mass measurement (ILC/GigaZ)
- additional discovery potential at the $\ensuremath{\text{ILC}}$

Possible scenario:

The LHC finds only a SM-like Higgs and nothing else

Q: Do we still need the **ILC** (incl. GigaZ)?

A: Of course! Or better: even more!

The ILC+GigaZ provides:

- precise Higgs coupling measurements (ILC)
- precision observable measurements (GigaZ)
- precise top mass measurement (ILC/GigaZ)
- additional discovery potential at the ILC
- ⇒ Only the ILC+GigaZ can find deviations from the SM predictions via the various precision measurements or new discoveries

\Rightarrow Only the ILC+GigaZ can point towards extensions of the SM

4. How to go ahead in the next 10 years?

(Not only) my personal view:

Discovery of a Higgs particle

together with top, W^{\pm} , Z, ..., DM, $(g-2)_{\mu}$, ...

is a **perfect physics case** for the ILC

4. How to go ahead in the next 10 years?

(Not only) my personal view:

Discovery of a Higgs particle

together with top, W^{\pm} , Z, ..., DM, $(g-2)_{\mu}$, ...

is a **perfect physics case** for the ILC

Staged approach:

- ILC as a Higgs and top factory
 - start at lower energies to produce $\mathcal{O}\left(10^{5}\right)$ Higgs bosons
 - go to higher energies for top physics
 - go to higher energies for Higgs-top, λ_{HHH}
 - go to higher energies for TeV scale exploration
- go to other options: GigaZ, $\gamma\gamma$, ...

4. How to go ahead in the next 10 years?

(Not only) my personal view:

Discovery of a Higgs particle

together with top, W^{\pm} , Z, ..., DM, $(g-2)_{\mu}$, ...

is a **perfect physics case** for the ILC

Staged approach:

- ILC as a Higgs and top factory
 - start at lower energies to produce $\mathcal{O}\left(10^{5}\right)$ Higgs bosons
 - go to higher energies for top physics
 - go to higher energies for Higgs-top, λ_{HHH}
 - go to higher energies for $\ensuremath{\mathsf{TeV}}$ scale exploration
- go to other options: GigaZ, $\gamma\gamma$, ...

\Rightarrow unique opportunity for the ILC!

\Rightarrow Let's go ahead!

Back-up

Measurement of the Higgs boson spin

 \Rightarrow easy at the ILC

[M. Schumacher '01]

Threshold scan for $\sigma(e^+e^- \rightarrow ZX)$: $X = H \Rightarrow \sigma \sim \beta$ (β from kinematics)

 20 fb^{-1} \Rightarrow identification easy

Indirect determination of unknown Higgs sector parameters

LHC/ILC reach for MSSM Higgs bosons:

LHC:

h : all $M_A - \tan \beta$ plane H, A : unreachable parts CMS, 30 fb⁻¹, m_h^{max} scenario:

ILC:

kinematic limit: $M_A \lesssim \sqrt{s}/2$ $\rightarrow \sqrt{s} = 800 \text{ GeV}$ $\rightarrow \sqrt{s} = 1000 \text{ GeV}$

 $\gamma\gamma$: kinematic limit: $M_A \lesssim 0.8\sqrt{s}$

Sven Heinemeyer (CSIC, Santander) UK Forum on Future Colliders, Cosener's House, 13.11.2014 48

Where is the light Higgs in the "heavy Higgs case"?

[P. Bechtle, S.H. O. Stål, T. Stefaniak, G. Weiglein, L. Zeune '12]

 \Rightarrow low M_h values, strongly reduced couplings

low- M_H scenario:

$$\begin{split} m_t &= 173.2 \; {\rm GeV}, \\ M_A &= 110 \; {\rm GeV}, \\ M_{\rm SUSY} &= 1500 \; {\rm GeV}, \\ M_2 &= 200 \; {\rm GeV}, \\ M_2 &= 200 \; {\rm GeV}, \\ M_{\tilde{t}^{\rm OS}} &= 2.45 M_{\rm SUSY} \\ A_b &= A_\tau = A_t, \\ m_{\tilde{g}} &= 1500 \; {\rm GeV}, \\ M_{\tilde{l}_3} &= 1000 \; {\rm GeV} \; . \end{split}$$

$\Rightarrow M_H \approx 125.5$ GeV can in principle be realized

low- M_H scenario:

$$\begin{split} m_t &= 173.2 \; {\rm GeV}, \\ M_A &= 110 \; {\rm GeV}, \\ M_{\rm SUSY} &= 1500 \; {\rm GeV}, \\ M_2 &= 200 \; {\rm GeV}, \\ M_2 &= 200 \; {\rm GeV}, \\ M_{\tilde{t}^{\rm OS}} &= 2.45 M_{\rm SUSY} \\ A_b &= A_\tau = A_t, \\ m_{\tilde{g}} &= 1500 \; {\rm GeV}, \\ M_{\tilde{l}_3} &= 1000 \; {\rm GeV} \; . \end{split}$$

\Rightarrow Interesting prospects also for the charged Higgs searches

\Rightarrow model independent limits!

Sven Heinemeyer (CSIC, Santander) UK Forum on Future Colliders, Cosener's House, 13.11.2014 53

Application of charged Higgs limits on low- M_H scenario:

 \Rightarrow that (particular incarnation of the) low- M_H scenario is excluded?

[HiggsBounds 4.1] 9 8 $\tan\beta$ 6 5 2.5 0.5 1.5 2 µ/Msusy

 \Rightarrow that (particular incarnation of the) low- M_H scenario is excluded?

Application of charged Higgs limits on low- M_H scenario:

Based on HDECAY and Prophecy4f:

$$\Gamma_H = \Gamma^{\text{HD}} - \Gamma^{\text{HD}}_{ZZ} - \Gamma^{\text{HD}}_{WW} + \Gamma^{\text{P4f}}_{4f}$$

Theoretical uncertainties: General recipe:

[LHCHXSWG '11]

- 1. Parametric Uncertainties: $p \pm \Delta p$
 - Evaluate partial widths and BRs with p, $p + \Delta p$, $p \Delta p$ and take the differences w.r.t. central values
 - Upper $(p + \Delta p)$ and lower $(p \Delta p)$ uncertainties summed in quadrature to obtain the Combined Parametric Uncertainty

2. Theoretical Uncertainties:

- Calculate uncertainty for partial widths and corresponding BRs for each theoretical uncertainty
- Combine the individual theoretical uncertainties linearly to obtain the Total Theoretical Uncertainty
- \Rightarrow estimate based on "what is included in the codes"!
- 3. Total Uncertainty:

Linear sum of the Combined Parametric Uncertainty and the Total Theoretical Uncertainties
Parameter	Central Value	Uncertainty	$m_q(m_q)$
$\alpha_s(M_Z)$	0.119	±0.002(90% CL)	
m_c	1.42 GeV	$\pm 0.03 \text{ GeV}(2\sigma)$	1.28 GeV
m_b	4.49 GeV	$\pm 0.06 \text{ GeV}(2\sigma)$	4.16 GeV
m_t	172.5 GeV	± 2.5 GeV	165.4 GeV

- $-m_b$, m_c : one-loop pole masses those masses accidentally show negligible dependence on α_s , so that their variation can be done independently from α_s
- $-m_b$, m_c uncertainties:

[K. Chetyrkin, J. Kühn, A. Maier, P. Maierhöfer, P. Marquard, M. Steinhauser, C. Sturm [arXiv:0907.2110]]

 \Rightarrow Lattice data much more optimistic . . .

 \Rightarrow but no consensus, not even in the lattice community ...?!

Current theoretical uncertainties:

Partial Width	QCD	Electroweak	Total
$H \to b \overline{b} / c \overline{c}$	$\sim 0.1\%$	\sim 1–2% for $M_H \lesssim$ 135 GeV	$\sim 2\%$
$H \to \tau^+ \tau^- / \mu^+ \mu^-$		\sim 1–2% for $M_H \lesssim$ 135 GeV	$\sim 2\%$
$H \to t \overline{t}$	$\lesssim 5\%$	\lesssim 2–5% for $M_H <$ 500 GeV	$\sim 5\%$
		$\sim 0.1 (rac{M_H}{1~{ m TeV}})^4$ for $M_H > 500~{ m GeV}$	\sim 5–10%
$H \to gg$	\sim 3%	$\sim 1\%$	\sim 3%
$H \to \gamma \gamma$	< 1%	< 1%	$\sim 1\%$
$H \to Z\gamma$	< 1%	$\sim 5\%$	$\sim 5\%$
$H \rightarrow WW/ZZ \rightarrow 4f$	< 0.5%	$\sim 0.5\%$ for $M_H < 500~{ m GeV}$	$\sim 0.5\%$
		$\sim 0.17 (rac{M_H}{1~{ m TeV}})^4$ for $M_H > 500~{ m GeV}$	$\sim 0.5 15\%$

- QCD corrections: scale change by factor 2 and 1/2
- EW corrections: missing HO estimation based on the known structure and size of the NLO corrections
- Different uncertainties on a given channel added linearly
- \Rightarrow Strong improvement in \sim 10 years possible, but . . .
 - ... they have to be consistently implemented into codes!
- \Rightarrow intrinsic uncertainty can/will be sufficiently under control?!

Channel	Γ [MeV]	$\Delta \alpha_s$	Δm_b	Δm_c	Δm_t	THU
$H \to b\overline{b}$	2.36	-2.3% +2.3%	+3.3% -3.2%	+0.0% -0.0%	+0.0% -0.0%	+2.0% -2.0%
$H \to \tau^+ \tau^-$	$2.59 \cdot 10^{-1}$	+0.0% +0.0%	+0.0% -0.0%	+0.0% -0.0%	$+0.1\% \\ -0.1\%$	+2.0% -2.0%
$H \to \mu^+ \mu^-$	$8.99 \cdot 10^{-4}$	+0.0% +0.0%	+0.0% -0.0%	$-0.1\% \\ -0.0\%$	$+0.0\% \\ -0.1\%$	+2.0% -2.0%
$H \to c\overline{c}$	$1.19 \cdot 10^{-1}$	-7.1% +7.0%	$-0.1\% \\ -0.1\%$	+6.2% -6.1%	$+0.0\% \\ -0.1\%$	+2.0% -2.0%
$H \to gg$	$3.57 \cdot 10^{-1}$	+4.2% -4.1%	$^{-0.1\%}_{-0.1\%}$	+0.0% -0.0%	-0.2% +0.2%	+3.0% -3.0%
$H \to \gamma \gamma$	$9.59 \cdot 10^{-3}$	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	$+1.0\% \\ -1.0\%$
$H \to Z\gamma$	$6.84 \cdot 10^{-3}$	+0.0% -0.0%	+0.0% -0.0%	$+0.0\% \\ -0.1\%$	$+0.0\% \\ -0.1\%$	+5.0% -5.0%
$H \to WW^*$	$9.73 \cdot 10^{-1}$	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	+0.5% -0.5%
$H \to ZZ^*$	$1.22 \cdot 10^{-1}$	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	+0.0% -0.0%	+0.5% -0.5%

Data available for $M_H = 122 \text{ GeV}, 126 \text{ GeV}, 130 \text{ GeV}$

 \Rightarrow used for ATLAS and CMS evaluations \Rightarrow provided to Snowmass/Higgs

Theory uncertainties at the "ILC times"?

Parametric uncertainties:

- largely driven by $\delta m_b \Rightarrow$ improvement unclear (to me) lattice community does not seem to agree
- some improvement in α_s possible

Intrinsic uncertainties:

 $H \rightarrow b\overline{b}, H \rightarrow c\overline{c}$: EW corrections can be included (they are known at 1L) $H \rightarrow \tau^+ \tau^-, H \rightarrow \mu^+ \mu^-$: EW corrections can be included (they are known at 1L)

- $H \rightarrow gg$: improvement difficult
- $H
 ightarrow \gamma\gamma$: already very precise . . .
- $H
 ightarrow Z \gamma$: EW corrections could help . . .
- $H \rightarrow WW^*, H \rightarrow ZZ^*$: already very precise, two-loop corrections unclear

⇒ intrinsic uncertainty can/will be sufficiently under control?!

Optimistic(?!) lattice expectations for the future:

RHEINISCH-WESTFÄLISCHE TECHNISCHE

TH

 $\Leftarrow | \leftrightarrow \rightarrow | \Rightarrow$

Input Parameters

Lepage, Mackenzie, Peskin [arXiv:1404.0319]

- How well can the Higgs BRs be predicted in the future?
- Limitation due to parametric errors?
- use lattice gauge theory to improve α_s , m_b , and m_c (e.g. using current-current correlators) (stated errors already now quite small)
- optimistic projection for lattice improvements:

		$\delta m_b(10)$	$\delta \alpha_s(m_Z)$	$\delta m_c(3)$	δ_b	δ_c	δ_g	
current	errors [10]	0.70	0.63	0.61	0.77	0.89	0.78	
	+ PT	0.69	0.40	0.34	0.74	0.57	0.49	
	+ LS	0.30	0.53	0.53	0.38	0.74	0.65	
	$+ LS^2$	0.14	0.35	0.53	0.20	0.65	0.43	
+	-PT + LS	0.28	0.17	0.21	0.30	0.27	0.21	
+	$PT + LS^2$	0.12	0.14	0.20	0.13	0.24	0.17	
+ PT +	$LS^2 + ST$	0.09	0.08	0.20	0.10	0.22	0.09	
	ILC goal				0.30	0.70	0.60	(errors in $\%$)
time cooler 10 15 wears								
		ume-scale: 10-15 years						
	PD report Alexander Mück p. 7/12							
	DR Teport - Alexander Muck - p.77 T.							