Pippa Wells, CERN, on behalf of the ATLAS and CMS Collaborations UK HEP Forum – Cosener's House Future Colliders, November 2014

Physics at the High-Luminosity LHC

HL-LHC Physics

- Detector performance underpins any physics measurement
 - Pileup mitigation
 - Extensions and improvements in the forward region
- Higgs boson measurements
 - Precision coupling measurements
 - Rare processes
- Beyond the Standard Model
 - In the Higgs sector
 - Exotica
 - SUSY
- Conclusions
- Links to more information: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradePhysicsStudies</u> <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFP</u> ECFA HL-LHC workshop: https://indico.cern.ch/event/315626/

Pippa Wells, CERN

Pileup basics and key questions

- Luminosity of 5x10³⁴cm⁻²s⁻¹ corresponds to an *average* pileup of 140 events
 - Upper estimate of average number of pileup events for this lumi partly accounts for bunch-to-bunch variation
 - Average of a Poisson distribution with a sigma of about 12 events
- Key questions:
 - Can the detectors work with even higher (average) pileup to allow 3000 /fb to be delivered more quickly?
 - Can a longer beam spot help pileup mitigation?
- Need to take into account in-time pileup (same bunch crossing) and out-of-time pileup (previous crossings) - particularly for ATLAS colorimeter and for muon spectrometers

Detector configurations

- ATLAS performance evaluated with full simulation
 - Run 2 detector with μ =50 (for 300/fb studies)
 - Phase II LoI baseline tracker (ITK) in Run 1 calo+muon systems, studied with varying µ and beam spot shapes
 - Parametrised response functions for physics projections
- CMS performance evaluated with
 - 2019 detector with μ =50
 - New pixel detector
 - 2019 detector "aged" after 1000/fb and with μ =140
 - New pixel detector, aged strip detector
 - Aged calorimeter
 - Phase II 2013 detector with
 - 2019 pixel detector, new strips, calorimeter recovered
 - In future studies with upgraded pixel det, endcap calo...
 - Parametrised responses in Delphes with tracking to |η| < 4 for some physics studies (not tuned to full simulation)

Pippa Wells, CERN

Primary vertex finding

- ttbar events with the CMS Phase I and Phase II detectors
- (Reconstructed Generated) vx positions for no PU, 50 PU, 140 PU

140 PU and aged tracker: vertex finding efficiency increases from 84% to 90% with improved algorithm

140 PU and Phase II strips: vertex finding efficiency increases from 90% to 96% with improved algorithm

Effect of a longer beam spot

- Generate ttbar events with pileup, ATLAS Phase II tracker, µ=140
 - (ttbar events are high multiplicity easiest for PV finding)
 - Different longitudinal (z) beam spot profiles: Gaussian with σ =5cm or Long beam spot, ~flat to ±10cm

Generated tracks

Reconstructed vertices

Effect of a longer beam spot - primary vertex

b-tagging - CMS Phase II

- Increased pileup and detector aging cause misid rate to increase
 - Performance is not recovered even if the true PV is used
- Phase II detector with μ =140 nearly recovers performance to that of the Phase I detector with μ =50
- Performance of aged detector is much worse

Pippa Wells, CERN

HL-LHC Physics

Pippa Wells, CERN

Muon performance

- CMS Muon performance strongly affected by aging
- eg. Efficiency vs η

ATLAS and CMS Phase II
 trackers will both improve the muon p_T resolution

Pileup Per Particle Identification arXiv:1407.6013 [hep-ph]

Jet reconstruction in CMS

- Anti-k_t jets with R=0.4 from
 - 1. All Particle Flow candidates (PF)
 - 2. Plus rejecting charged hadrons from pileup vertices (CHS)
 - 3. PF candidates weighted by Puppi algorithm best resolution

Jets and MET

- Pileup jet rate Puppi lowest •
- Rate defined as ratio between ٠ all reco jets and reco jets matched to a generated hardscatter jet in a multijet sample
- MET resolution degrades with aging
- Plot: the component of the hadronic recoil perpendicular to the Z direction in $Z \rightarrow \mu \mu$ events

12

Pippa Wells, CERN

Pileup jet suppression with tracks - ATLAS

- Efficiency for pileup jets vs. hardscatter jets (20-30 GeV), scanning a track-vertex match variable
- Pileup jets do not match any true jet
- Performance degrades with µ

Mean number of jets

 (p_T>20 GeV) vs. number of
 reconstructed vertices, before/
 after pileup suppression with a
 charged fraction variable

Improvements with tracker to |n|<4

- Possible to reject 90% of low p_T pileup jets even in the forward region while keeping 95% of hard scatter jets
- ETmiss resolution is improved
- Small contribution from adding tracks in the soft term
- Bigger effect from rejecting pileup jets

Jet Substructure - leading jet mass

Form R=0.3 subjets in R=1.0 jet. Reject low p_T subjets, pileup "area" correction. Less efficient and worse mass resolution for higher pileup (up to μ =300) NB: Algorithms "out of the box". No systematic error evaluation. Pippa Wells, CERN HL-LHC Physics

Prospects for the Higgs boson

- Compare prospects with "LHC" 300 fb⁻¹ and "HL-LHC" 3000 fb⁻¹
 - Full exploitation of the LHC investment
 - Explore the properties of the new boson
- Focus here on the measuring the rate of all possible production and decay modes. Deviations from the SM indicate new physics
 - Precise measurements of main processes
 - Observation of rare processes
 - Interpretation in terms of Higgs boson couplings
 - Searches for additional Higgs bosons and indirect constraints from the coupling measurements
- Mass & width are hard to improve beyond Run 2
 - Direct measurement of width limited by resolution. Indirect constraints from interference effects or on-shell vs. off-shell measurements
- Dominant spin/parity should already be well established
 - HL-LHC will allow constraints on additional non-standard contributions

Pippa Wells, CERN

A Higgs boson factory with 3000 fb⁻¹

- Over 100 million SM Higgs bosons in total
 - Over 1 million for each of the main production mechanisms (→ production cross sections)

- Spread over many decay modes (→ branching ratios)
 - 20k H→ZZ→IIII
 - 400k H→γγ
 - 40k H→μμ
 - Only 50 leptonic H→J/ψγ (a very rare mode)

Pippa Wells, CERN

Account for detector performance

- ATLAS uses detector response functions based on full simulation for
 - Phase I detector with new pixel layer, pile-up of 50
 - Phase II detector with pile-up of 140
 - Results are shown with and without theory uncertainty
- CMS extrapolate from the present 7-8 TeV analyses, assuming that the upgrades maintain the detector performance.
 - Scenario 1 Experimental systematic and theoretical uncertainties unchanged. Statistical uncertainties scale with 1/JL
 - Scenario 2 Statistical and experimental systematic uncertainties scale with 1/JL, theoretical uncertainties reduced by a factor 2.
- Systematic uncertainties are therefore always included, but with different assumptions on possible detector/algorithm/theoretical improvements.

Example - $H \rightarrow ZZ \rightarrow 4$ leptons

• High purity signal. Measure all 5 main production modes with 3000 fb⁻¹

Signal events	ggH	VBF	ttH	WH	ZH
3000 fb ⁻¹	3800	97	35	67	5.7

WH, ZH events have extra leptons

Pippa Wells, CERN

HL-LHC Physics

W.Z

a

Extension of detector coverage

- ATLAS and CMS are both studying increasing/improving forward parts of the detectors
 - Increased acceptance for some channels
 - Improved rejection of pileup jets and ETmiss resolution

Signal strength precision $\Delta\mu$ for ATLAS VBF H $\rightarrow\tau\tau$ (lep-had) with assumptions on pileup jet rejection (No loss of hard scatter jets) Factor 3 improvement in $\Delta\mu$ from 0.24 to 0.08

forward pile-up jet rejection	50%	75%	90%
forward tracker coverage		$\Delta \mu$	
Run-I tracking volume		0.24	
$ \eta < 3.0$	0.18	0.15	0.14
$ \eta < 3.5$	0.18	0.13	0.11
$ \eta < 4.0$	0.16	0.12	0.08

Rare processes

- $H \rightarrow \mu \mu$ second generation
 - ATLAS and CMS expect >5σ significance with 3000 fb⁻¹
 - → coupling measured to 5-10%
- ttH, $H \rightarrow \mu \mu$ (ATLAS)
 - ~30 signal events in 3000 fb⁻¹ but good signal:background
- H→Zγ
 - Tests the loop structure of the decay (compare with H→ZZ and H→γγ)
 H→YY
 W,b,t

 $\lim_{\gamma \to \infty} \gamma$

 ~4σ significance possible with 3000 fb⁻¹ despite the challenging background

Pippa Wells, CERN

Signal strength precision

- All production modes can be observed for ZZ and $\gamma\gamma$ final states •
- Combine production modes for best information on branching ratios •

Signal strength precision

Scenario 1 (present errors). Scenario 2 (scaled errors).

CMS Projection

CMS Projection

Summary of precision (%): 4~5% for main channels, 10~20% on rare modes ATLAS without/with theory uncertainty, CMS Scenario 1 and Scenario 2

L(fb ⁻¹)	Exp.	γγ	WW	ZZ	bb	ττ	Zγ	μμ
300	ATLAS	[9, 13]	[8, 13]	[7, 11]	[26 , 26]	[18, 21]	[44, 46]	[38,39]
	CMS	[6, 12]	[6, 11]	[7, 11]	[11, 14]	[8, 14]	[62, 62]	[40,42]
3000	ATLAS	[4, 9]	[5, 11]	[4, 9]	[12, 14]	[15, 19]	[27, 30]	[12,16]
	CMS	[4, 8]	[4, 7]	[4, 7]	[5, 7]	[5, 8]	[20, 24]	[14,20]

Pippa Wells, CERN

Interpretation as coupling scale factors

- Experiments measure cross section times branching ratio
- Interpretation with coupling scale factors, κ, is model dependent

gluon-gluon fusion

Coupling fits - the small print...

• The cross section times branching ratio for initial state *i* and final state *f* is given by

$$\sigma \cdot Br(i \to H \to f) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$$

- The total width Γ_H is too narrow to measure
 - Assume it is the sum of the visible partial widths no additional invisible modes
 - (Charm coupling is assumed to scale with top coupling)
- Cross sections and branching ratios scale with κ^2 ($\rightarrow \Delta \kappa \sim 0.5 \Delta \mu$)
- Gluon and photon couplings can be assumed to depend on other SM couplings, or to be independent to allow for new particles in the loop

Pippa Wells, CERN

General coupling fit

Photon, gluon, heavy fermions each have have their own scale factor •

ATLAS and CMS general coupling fits compared (%) ۲

L(fb ⁻¹)	Exp.	κγ	ĸw	ĸZ	Кд	к _b	к _t	Kτ	ĸZγ	κμμ
300	ATLAS	[9, 9]	[9, 9]	[8, 8]	[11, 14]	[22, 23]	[20, 22]	[13, 14]	[24, 24]	[21, 21]
	CMS	[5, 7]	[4, 6]	[4, 6]	[6, 8]	[10, 13]	[14, 15]	[6, 8]	[41, 41]	[23, 23]
3000	ATLAS	[4, 5]	[4, 5]	[4, 4]	[5, 9]	[10, 12]	[8, 11]	[9, 10]	[14, 14]	[7, 8]
	CMS	[2, 5]	[2, 5]	[2, 4]	[3, 5]	[4, 7]	[7, 10]	[2, 5]	[10, 12]	[8, 8]

Coupling ratios

- Systematic uncertainties partly cancel
- Ratios are almost model independent

L(fb ⁻¹)	Exp.	$\frac{K_g \cdot K_Z}{K_H}$	$\frac{\kappa_{\gamma}}{\kappa_{Z}}$	$\frac{K_W}{K_Z}$	$\frac{K_b}{K_Z}$	$\frac{K_{\tau}}{K_Z}$	$\frac{\kappa_Z}{\kappa_g}$	$\frac{\kappa_t}{\kappa_g}$	$\frac{\kappa_{\mu}}{\kappa_{Z}}$	$\frac{\kappa_{Z\gamma}}{\kappa_Z}$
300	ATLAS	[4,6]	[5,6]	[5,5]	[17,18]	[11,12]	[10,13]	[15,17]	[20,20]	[23,23]
	CMS	[4,6]	[5,8]	[4,7]	[8,11]	[6,9]	[6,9]	[13,14]	[22,23]	[40,42]
3000	ATLAS	[2,6]	[2,3]	[2,3]	[7,10]	[8,9]	[5,9]	[5,9]	[6,6]	[14,14]
	CMS	[2,5]	[2,5]	[2,3]	[3,5]	[2,4]	[3,5]	[6,8]	[7,8]	[12,12]

- This results in better agreement between the two experiments
 - Can achieve 2~3% precision in main channels if systematic uncertainties are controlled
- HL-LHC yields a factor 2~3 improvement in coupling ratio determination

Mass scaled couplings

• Coupling factors plotted as a function of particle mass

Pippa Wells, CERN

TL-LTC PHYSICS

۷2

Theoretical uncertainties

- ATLAS: Deduced size of theory uncertainty to increase total uncertainty by <10% of the experimental uncertainty
 - (MHOU missing higher order uncertainty)

Scenario	Status	atus Deduced size of uncertainty to increase total uncertainty					inty		
	2014	by ≲	;10% for	300 fb^{-1}	by $\leq 10\%$ for 3000 fb ⁻¹				
Theory uncertainty (%)	[10–12]	κ_{gZ}	λ_{gZ}	$\lambda_{\gamma Z}$	κ _{gZ}	$\lambda_{\gamma Z}$	λ_{gZ}	$\lambda_{ au Z}$	λ_{tg}
$gg \to H$									
PDF	8	2	-	-	1.3	-	-	-	-
incl. QCD scale (MHOU)	7	2	-	-	1.1	-	-	-	-
p_T shape and $0j \rightarrow 1j$ mig.	10–20	-	3.5–7	-	-	1.5–3	-	-	-
$1j \rightarrow 2j$ mig.	13–28	-	-	6.5–14	-	3.3–7	-	-	-
$1j \rightarrow VBF 2j mig.$	18–58	-	-	-	-	_	6–19	-	-
VBF $2j \rightarrow$ VBF $3j$ mig.	12–38	-	-	-	-	-	-	6–19	-
VBF									
PDF	3.3	-	-	-	-	-	2.8	-	-
tīH									
PDF	9	-	-	-	-	-	-	-	3
incl. QCD scale (MHOU)	8	-	-	-	-	-	-	-	2

Higgs pair production

• ~factor 2 increase in cross section if $\lambda \rightarrow 0$

NNLO σ^{SM} =40.8 fb

Number	of events
bbWW	30000
bbττ	9000
WWWW	6000
γγ bb	320
γγγγ	1

<u>HH→bbγγ</u>

- Parametrised object performances
 - CMS 2d fit of m(bb) and m(γγ) distributions (control background from data)
 - ATLAS cut based analysis (ATL-PHYS-PUB-2014-019)

bbyy results

- Numbers of events in 3000 fb⁻¹ in signal mass windows •
 - CMS preferred result uses a likelihood fit in a larger mass range, • which gives 60% relative uncertainty on the signal

process	ATLAS		CMS
SM HH→bbγγ	8.4±0.1		9.9
bbyy	9.7 ± 1.5	γγ+jets	8.5
ccyy, bbyj, bbjj, jjyy	24.1 ± 2.2	γ+jets, jets	7.4
top background	3.4 ± 2.2		1.1
ttH(yy)	6.1 ± 0.5		1.5
Z(bb)H(yy)	2.7 ± 0.1		3.3
bbH(yy)	1.2 ± 0.1		0.8
Total background	47.1 ± 3.5		22.6
S/√B (barrel+endcap)	1.2		
S/ \sqrt{B} (split barrel and endcap)	1.3		
Pippa Wells, CERN	HL-LHC Physics		32

<u>CMS HH→bbWW</u>

- Only consider dominant ttbar background
 - Other backgrounds negligible
 - Based on Delphes smearing
 - Signal region: Neural Network output > 0.97
- Result quoted as a function of background systematic uncertainty
 - Expect to constrain this to ~1% from data driven methods
- Challenging analysis would be sensitive to large deviation from SM

Pippa Wells, CERN

ATLAS Prelimi ATLAS SUSY Searches* - 95% CL Lower Limits

ATLAS Preliminary

BSM - S. Willocq - ECFA workshop

BSM Higgs direct/indirect searches

- Models such as supersymmetry require more Higgs bosons
 - Neutral: h,H,A ; Charged: H⁺, H⁻ ("2 Higgs doublet model")
- Direct searches complemented by constraints from coupling fits
 - If the 125 GeV Higgs boson (which is "h" in this model) looks very like the SM Higgs, it rules out some other possibilities

Higgs portal to Dark Matter

- BR of Higgs decays to invisible final states
 - ATLAS: BR_{inv}< 0.13 (0.09 w/out theory uncertainties) at 3000fb⁻¹
 - CMS: BR_{inv}< 0.11 (0.07 in Scenario 2) at 3000fb⁻¹
- The coupling of WIMP to SM Higgs is taken as the free parameter
- Translate limit on BR to the coupling of Higgs to WIMP
- Compare with constraints from direct searches - LHC has more sensitivity in lower mass range

Mono-X searches for dark matter

- DM pair production with eg. initial $W \rightarrow lv$ •
 - Also probes contact interactions in $qq \rightarrow lv$ and W' production
- Shape discrimination in transverse mass distribution ٠
 - Significant separation between a DM model and Standard Model only achieved at HL-LHC

Distinction between DM ξ =0 and

 $\overline{\chi}$

Dilepton resonances

- Many extensions of the SM predict new resonances
 - Heavy gauge bosons W' and Z'
 - KK excitations of vector bosons
- Clean decay channels, eg $Z' \rightarrow e^+e^-$ or $\mu^+\mu^-$

Mass reach for exotic signatures

• Sensitivity in multi-TeV range increases by ~20% with HL-LHC

ATLAS @14 TeV	Z' → ee SSM 95% CL limit	g _{ĸĸ} → t t RS 95% CL limit	Dark matter M* 5σ discovery	
300 fb ⁻¹	6.5 TeV	4.3 TeV	2.2 TeV	
3000 fb ⁻¹	7.8 TeV	6.7 TeV	2.6 TeV	
Pippa Wells, CERN		HL-LHC Physics		40

Model discrimination after a discovery

- Ability to discriminate improves dramatically with HL-LHC
 - Separation between spin-1 (Z') or spin-2 (G $_{KK}$) interpretation and other interpretations ranges from ~2 to 5 σ
 - Use 2d likelihood with dilepton angular and rapidity distributions or forward-backward asymmetry

Supersymmetry

 10^{6} 10^{12} $\sqrt{s} = 14 \text{TeV}$ 10^{5} Followed prescriptions in 1206.2892 [hep-ph] $pp \rightarrow \tilde{g}\tilde{g}$ 10^{11} 10^{4} $pp \rightarrow \tilde{q} \tilde{q}^*$ 10^{10} 10^{3} $p p \rightarrow \tilde{t}\tilde{t}^*$ Cross Section [pb] $pp \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ 10^{2} 10^{8} ap 10^{1} ŝ 10^{7} 10^{0} Events in 10^{6} 10^{-1} 10^{5} 10^{-2} 10^{4} 10^{-3} 10^{3} 10^{-4} 10^{2} 10^{-5} 10^{1} 10^{-6} 10^{0} 2000 3000 500 1000 1500 2500 Mass [GeV] **Strong prod. of stops** EW prod. of $\chi_1^+\chi_2^0$ ppW $\tilde{\chi}_1^{\pm}$ $\tilde{\chi}_1^0$ $\tilde{\chi}_2^0$ pp

Motivated by naturalness, dark matter...

Gluinos not necessarily first to be discovered (many different mass spectra possible)

Pippa Wells, CERN

Electroweak processes eg $\chi_1^+ \chi_2^0$ production

- May be the dominant SUSY processes if squarks/gluinos heavy
 - weak process benefit from high luminosity

Pippa Wells, CERN		HL-LHC Physics	43
WH (bb analysis)	[CMS]	350-460 GeV	Up to 950 GeV
WH (3l analysis)	[ATLAS]	(<5ơ reach)	Up to 650 GeV
WZ (3l analysis)	[CMS]	Up to 600 GeV	Up to 900 GeV
WZ (31 analysis)	[AI LAS]	Up to 560 GeV	Up to 820 GeV

Stop and sbottom

- Naturalness motivates stop/sbottom searches where the third family squarks are lightest
 - ATLAS stop & sbottom pair production

- CMS gluino pair production with decay via stop to $tt\chi$

5σ discovery, simplified model	300 fb ⁻¹	3000 fb⁻¹
stop mass from direct production [ATLAS]	Up to 1.0 TeV	Up to 1.2 TeV
gluino mass with decay to stop [CMS]	Up to 1.9 TeV	Up to 2.2 TeV
sbottom mass from direct production [ATLAS]	Up to 1.1 TeV	Up to 1.3 TeV
Pippa Wells, CERN HL-LHC Ph	vsics	44

ATLAS stop/sbottom

• Results in m(LSP)-m(squark) plane from simplified models

ATL-PHYS-PUB-2013-011

ATL-PHYS-PUB-2014-010

Summary of simplified models

ATLAS projection	gluino mass	squark mass	stop mass	sbottom mass	χ ₁ + mass WZ mode	χ ₁ ⁺ mass WH mode
300 fb ⁻¹	2.0 TeV	2.6 TeV	1.0 TeV	1.1 TeV	560 GeV	None
3000 fb ⁻¹	2.4 TeV	3.1 TeV	1.2 TeV	1.3 TeV	820 GeV	650 GeV

- HL-LHC increases discovery reach by
 - ~20% for gluino, squark, stop
 - ~50 to 100% for electroweak production of $\chi_1^+ \chi_2^0$

Full spectrum SUSY models

- 3 pMSSM models motivated by naturalness, different LSP
 - NM1(2): bino-like with low(high) slepton mass; NM3: higgsino-like
- 2 p(C)MSSM models, DM relic density, different coannihilation

Exploring experimental signature space

- STC: stau + χ_1^0 coann; STOC: stop + χ_1^0 coann.
- Explored:
 - 9 different experimental signatures
 - 5 different types of SUSY models
- Different models lead to different patterns of discoveries in different final states after different amounts of data

Analysis	Luminosity	Model				
	$({\rm fb}^{-1})$	NM1	NM2	NM3	STC	STOC
all-hadronic (HT-MHT) search	300					
	3000					
all-hadronic (MT2) search	300					
	3000					
all-hadronic \widetilde{b}_1 search	300					
	3000					
1-lepton \tilde{t}_1 search	300					
	3000					
monojet \tilde{t}_1 search	300					
	3000					
$m_{\ell^+\ell^-}$ kinematic edge	300					
	3000					
multilepton + b-tag search	300					
	3000					
multilepton search	300					
	3000					
ewkino WH search	300					
	3000					
	$< 3\sigma$ 3 – 5 σ	$> 5\sigma$				

Exploring SUSY model space

The next 6-12 months...

- Optimise the Phase II detector layouts for cost/performance/ physics sensitivity
 - Interplay of layout and reconstruction algorithms

http://xkcd.com/1445/

THE REASON I AM SO INEFFICIENT STUDIES TAKE A LONG TIME

Conclusion and outlook

- Very good progress with evaluating the baseline Phase II layouts in ATLAS and CMS
 - A combination of new detector components and improved algorithms provide pileup mitigation
 - Need to continue to quantify how the performance changes with layout and algorithm improvements
- The main Higgs couplings can be measured to a few percent precision with HL-LHC
 - Also sensitivity to rare processes
 - Constraints on physics beyond the Standard Model
- HL-LHC extends discovery reach in strongly motivated areas
 - If discoveries or hints observed in Runs 2 & 3, HL-LHC will be crucial to unravel what is seen
- Full exploitation of the LHC needs the high-luminosity upgrade to address questions of electroweak symmetry breaking, dark matter and gravity