Particle Physics from Cosmology (November 2014)

Pedro G. Ferreira University of Oxford

Desiderata...

- The inflationary era (what kind of fields, potentials, energy scales)
- Dark energy (what is it, what energy scales)
- Ultra-light fields (neutrinos, ultralight axions)
- The dark matter (what kind of dark matter particle, cross section)
- Gravity (what is it, precision tests)

Background cosmology: parameters

Hubble parameter

$$H^2(a) \equiv \left(\frac{\dot{a}}{a}\right)^2 = H_0^2 \left[\frac{\Omega_M}{a^3} + \frac{\Omega_R}{a^4} + \frac{\Omega_K}{a^2} + \frac{\Omega_{DE}}{a^{3(1+w)}}\right]$$

critical density $\rho_c = 1.9 \times 10^{-26} h^2 \text{kgm}^{-3}$ $P_{DE} = w \rho_{DE}$

$$D_H = \frac{c}{H_0} = 3000 \ h^{-1} \ \text{Mpc} \qquad D_C = \int_t^{t_0} \frac{cdt'}{a(t')} = c \int_a^1 \frac{da}{a^2 H(a)}$$

Luminosity distance:
$$D_L = (1+z) \begin{cases} \frac{D_H}{\sqrt{\Omega_k}} \sinh[\sqrt{\Omega_k}D_C/D_H] & \text{for } \Omega_k > 0\\ D_C & \text{for } \Omega_k = 0\\ \frac{D_H}{\sqrt{|\Omega_k|}} \sin[\sqrt{|\Omega_k|}D_C/D_H] & \text{for } \Omega_k < 0 \end{cases}$$

Angular diameter distance:
$$D_A = \frac{D_L}{(1+z)^2}$$

Background cosmology: deceleration

Background cosmology: CMB

Large scale structure: cosmic web

Large scale structure: cosmic web

Linear versus non-linear

Courtesy of Devriendt & Slyz 2014

Data: the State of the Universe

- Simple flat Λ CDM model still fits (most) data
- New data from Planck rules out array of possible deviations, strengthened with improved BAO.
- Some mild tensions between CMB and low redshift measures (clusters, H₀).
- Lensing (both galaxy and CMB) starting to play role in 'best' constraints. First measure of HI spectrum made.
- Little knowledge of DE behaviour; need future measurements.

Data: CMB

Planck collaboration 2013

Data: CMB

ΛCDM

Parameter	Value (68%)
$\omega_b h^2$	0.02207 ± 0.0003
$\omega_c h^2$	0.1198 ± 0.0026
$100\theta_*$	1.04148 ± 0.00062
au	0.091 ± 0.014
n_s	0.9585 ± 0.0070
H_0	67.3 ± 1.2
Ω_{Λ}	0.685 ± 0.017 Dark Energy 68.5%
σ_8	0.828 ± 0.012
$z_{ m re}$	11.1 ± 1.1

Friday, 14 November 14

Initial Conditions: BICEP2

BICEP2

Initial Conditions: BICEP2

Flauger et al 2014

Dark Energy: BAO*

BOSS, Anderson et al 2013.

* Baryon Acoustic Oscillations

Friday, 14 November 14

Data: Baryon Acoustic Oscillations

BOSS, Anderson et al 2013.

$$D_{\rm V}(z) = \left[(1+z)^2 D_{\rm A}^2(z) \frac{cz}{H(z)} \right]^{1/3}$$

Dark Energy: Supernovae la

Dark Energy: CMB+SN+BAOs

 $w = w_0 + w_a(1-a)$

test of curvature

time evolution of equation of state

Anderson et al 2013

Dark Energy: CMB+SN+BAOs

w = constant

$$w = w_0 + w_a(1-a)$$

 $w = -1.13 \pm 0.12$ (68% Planck + WMAP + BAO)

Dark Energy: CMB+SN+BAOs

Dark Energy: CMB+BAOs vs SN

Dark Energy: CMB Weak Lensing

Dark Energy: model discrimination?

$$\begin{split} V(\phi) &= AM_P^2 M_H^2 \mathcal{P}(\phi) \\ \mathcal{P}(\phi) &= c_\Lambda \xi_\Lambda + f(\phi) + \sum_{n_{\min}}^{n_{\max}} c_n \xi_n b_n(\phi) \end{split}$$

Model	$b_n(\phi)$	Cn	n_{\min}	$f(\phi)$	ϕ_i
Kac	ϕ^n	1	1	0	[-1, 1]
Weyl	ϕ^n	$1/\sqrt{n!}$	1	0	[-1, 1]
Monomial	0			ϕ^N	[0,4]
EFT	ϕ^n	$(\epsilon_{\rm F})^n$	p_E	$\xi_2\epsilon_{ m F}^2\phi^2+\ \xi_4\epsilon_{ m F}^4\phi^4$	$[-\epsilon_{\rm F}^{-1},\epsilon_{\rm F}^{-1}]$
Axion	$\cos(n\epsilon_{\rm F}\phi)$	$(\epsilon_{\rm NP})^{n-1}$	2	$1 + \cos \epsilon_{\rm F} \phi$	$\left[-\frac{\pi}{\epsilon_{\rm P}}, \frac{\pi}{\epsilon_{\rm P}}\right]$
Modulus	$e^{\alpha(p_D-n)\phi}$	$(\epsilon_{\rm D})^n$	0	0	[-1, 1]

Marsh et al (2014)

Ultra light fields: Neutrinos

Ultra light fields: Neutrinos BAO+Planck BAO+Planck (full; AL free) BAO+Planck (full; $A_L = 1$) <0.25eV 5 prob. <0.44eV <0.56eV 1.0 Planck+BAO+WiggleZ Planck+WiggleZ 0.8 Planck+HST 0.2Ŏ.0 1.00.40.60.8Probability Σm_{ν} Planck+BAO 0.6 Planck 2.50.4 $\Lambda CDM + m_{\nu}$ $\Lambda CDM + m_{\nu}$ (w SN) 2.0Riemer-Sørensen, 0.2 wCDM+m_v wCDM+m_v (w SN) Parkinson, Davis 2013 oΛCDM+m, . 1.0p. $o\Lambda CDM + m_{\nu}$ (w SN) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 $\sum m_{v} [eV]$ 0.50.0└ 0.0 0.4 0.20.60.81.0 $\sum m_{\nu}$

Aubourg et al (2014)

Ultra light fields: ultra-light axions

Ultra light fields: ultra-light axions

Marsh et al (2014)

Ultra light fields: ultra-light axions

Marsh et al (2014)

Gravity: quasi-static limit

• For a perturbed line element of the form:

$$ds^{2} = a^{2}(\tau) \left[-(1+2\Phi)d\tau^{2} + (1-2\Psi)\gamma_{ij}dx^{i}dx^{j} \right]$$

the equations of motion are:

$$\label{eq:alpha} \begin{split} \frac{1}{a} \frac{d(a\mathbf{v})}{d\tau} &= -\nabla \Phi \ \ \text{(non-relativistic particles)} \\ \frac{d\mathbf{v}}{d\tau} &= -\nabla_{\perp} (\Phi + \Psi) \ \ \text{(relativistic particles)} \end{split}$$

$$-k^2 \Phi = 4\pi G \mu a^2 \rho \Delta$$
$$\gamma \Psi = \Phi$$

Gravity: Redshift space distortions

Guzzo et al 2008

Gravity: Redshift space distortions

Macaulay et al ArXiv:1303:6583

Gravity: RSDs and Lensing

Simpson et al 2012 (CFHTLens)

Inconsistencies: Hubble constant

Inconsistencies: Hubble constant

Inconsistencies: BBN and Lithium

Inconsistencies: Weak Lensing

Friday, 14 November 14

Inconsistencies: CMB large angles

Particle Physics from Cosmology

- Simple flat ΛCDM model still fits (most) data
- Strong constraints on ultralight fields
- Some constraints on inflation
- Little knowledge of DE behaviour.
- Weak constraints on gravity
- Some inconsistencies...