PDF Reweighting and Uncertainties on W+Jets

Maria Fiascaris University of Oxford In collaboration with Alessandro Tricoli and Amanda Cooper-Sarkar

ATLAS-UK SM Meeting, 21st May 2007

Overview

- Aim:
 - Evaluate PDF uncertainties on W+jets events
 - Make a comparison with systematic experimental uncertainties
 - Final goal is to estimate effect of PDF uncertainties on the cross section as a function of cumulative jet multiplicity.
- SM sample not available yet. A SUSY sample was used with high filter cuts.
- In this talk:
 - Test of PDF Reweighting Techniques
 - Preliminary results on PDF uncertainties for Et and rapidity distributions of electrons and jets and for jet multiplicities.

- SUSY Sample: **W(**→ **e nu)**+ **jets**
 - csc11 data (AlpgenJimmyWenu) made with Alpgen/Herwig
- Simulation with Athena release 11.0.42, Reconstruction in 12.0.4
- PDF set: **CTEQ6LL**

Dataset	#Partons	Incl/excl	#events	σ (pb)
5223	2	exc	2090	504
5224	3	exc	5853	122
5225	4	ехс	6249	28.4
5226	5	inc	5802	6.1

- Generator Event Filter (EF):
 - > N Jets (Pt>40GeV) \geq 4
 - MissEt > 80GeV
 - Leading Jet: Pt>80GeV

Info at: <u>https://twiki.cern.ch/twiki/bin/view/Atlas/WplusJetsAlpgen</u>

PDF Reweighting Technique

- Use PDF Reweighting to avoid many Monte Carlo generations
- Generate a MC sample with PDF set 1 and weight every event to PDF 2:

 $EW = \frac{f_{PDF_2}(x_1, flav_1, Q)}{f_{PDF_1}(x_1, flav_1, Q)} \cdot \frac{f_{PDF_2}(x_2, flav_2, Q)}{f_{PDF_1}(x_2, flav_2, Q)}$

- \rightarrow Reweight SUSY sample to 40 PDF error sets (CTEQ6M) to evaluate PDF Uncertainties. First need to test Reweighting Technique
- To test we generated 3 samples of W+3partons with different PDFs (CTEQ6L, MRST2001lo, MRST2001nlo) and compared reweighted events with generated events. Requirements:
 - High statistics (~500,000 events per sample)
 - Generated samples consistent with SUSY sample (EF Cuts)
- Generation:
 - Hard Process with ALPGEN
 - Hadronization + Parton Shower (PS) with Herwig/Jimmy within Athena framework (release 11.0.42)
 - Simulation with AtlasFast (release 12.0.6)

ALPGEN Generation

- ALPGEN: exact matrix element calculation at LO for multiparton final states in hadronic collisions
- Problems:
 - Long warm-up for generation grid
 - Low efficiency: Unweighting Jet-Parton matching Tight EF Cuts (SUSY)

Npart	Unw Eff	MLM Eff	EF Eff
2	3.81x10 ⁻³	0.54	0.0024
3	4.4x10 ⁻⁴	0.43	0.0646
4	2.3x10 ⁻⁴	0.35	0.0203
5	4.0x10 ⁻⁵	0.49	0.290

PDF Reweighting Results

- Compare MRST2001nlo generated with MRST2001nlo weighted (from CTE6L)
- Large weights (LO \rightarrow NLO):

 $0.6 < \frac{MRST2001nlo}{CTEQ6L} < 1.8$

- Reweighting accurate to few percent in measurable regions
- Affected by statistical effects at edges of kinematic regions
- Parton Shower does not have any significant effect

PDF Reweighting and Uncertainties on W+Jets

Partons: Et (Pre/Post PS)

Partons: Eta (Pre/Post PS)

21st May 2007

PDF Reweighting and Uncertainties on W+Jets

PDF Reweighting: Results

Partons Before PS (No cuts)		Partons Before PS (Centr.Region)			
Variable	Mean(%)	var	Variable	Mean(%)	var
Et	-0.44	0.85	Et	0.85	0.43
Eta	1.61	0.95	Eta	0.06	0.14
Partons After PS (No cuts)					
Partons Af	ter PS (No cut	s)	Partons Aft	er PS (Centr.I	Region)
Partons Af Variable	ter PS (No cut Mean(%)	s) var	Partons Aft Variable	er PS (Centr.I Mean(%)	Region) var
Partons Af Variable Et	ter PS (No cut Mean(%) -0.32	s) var 0.99	Partons Aft Variable Et	er PS (Centr.l Mean(%) 0.60	Region) var 0.46

W Bef PS (No cuts)		W Bef PS (Centr.Region)			
Variable	Mean(%)	var	Variable	Mean(%)	var
Et	0.43	0.54	Et	1.01	0.34
У	-1.15	0.69	У	0.25	0.26
W After PS (No cuts)		W After PS (Centr. Regionl)			
Variable	Mean(%)	var	Variable	Mean(%)	var
Et	-0.19	0.60	Et	0.80	0.37
У	1.53	0.84	у	0.26	0.26

- Relative difference between two samples:
- $(MRST_{wgt} MRST_{gen})/MRST_{gen}$
- No significant effect from PS
- Mean Accuracy: 1% in cent. regions:

-2.5 < η < 2.5

$$50 < Et_{part,ele} < 400 GeV$$

$$100 < Et_W < 400 GeV$$

Electrons (No cuts)				
Variable	Mean	var		
Et	2.33	1.6		
Eta	0.65	1.23		
Electrons (Centr.Region)				
Variable	Mean	var		
Et	55	0.82		
	5.5	0.02		

PDF Reweighting and Uncertainties on W+Jets

PDF Uncertainties

 SUSY sample produced with CTEQ6L(LO) but PDF error sets only for CTEQ4M (NLO)

Need to reweight:

- 1. CTEQ6L→CTEQ6M central
- 2. CTEQ6L \rightarrow 40 CTEQ6M error sets

Significant Reweighting (average event weight~1.2)

Look at distributions of electrons, partons, jets in Et and Eta

PDF Uncert: Electrons at Det.

PDF Uncert: Jets at Det.

PDF Uncert. on Jet multiplicity

Uncertainty on cross section depends on jet multiplicity:

 PDF uncert below 10%, except for Njets=9 (15-17%)

Compare with Jet Energy Scale uncertainty (results from Alessandro Tricoli, ATLAS CSC Note W/Z + Jets, 14th February 2007)

can be much higher than 20%

Conclusions

- Tested Reweighting technique on CTEQ6L and MRST2001nlo
 - accurate to 1% on average in central kinematic regions (except for electron Et)
 - affected by statistical effects at edge of kinematic regions
 - Effect of parton shower not significant

Pretty good considering that we are reweighting from LO to NLO!

- Evaluated PDF Uncertainties on SUSY sample of W+jets (tight filter cuts)
 - Weighted CTEQ6L \rightarrow CTEQ6M central + 40 error sets
 - PDF Uncertainties of the order of 5% at low Et and central η region
 - Increases above 10% at high Et and edges of η region
 - PDF Unc. on Jet multiplicity is less than 10% (except for Njets=9), lower than jet energy scale uncertainty
- Further Studies
 - Investigate uncertainties on Cumulative Jet Multiplicity
 - Compare PDF uncertainties with experimental systematic uncertainties
 - Same studies on SM sample of W+jets (should be available soon)

