


Searching for dark matter at colliders

Indirect detection

® 3 independent approaches to

>
DM SM searching for Weakly Interacting
Massive Particles (WIMPs)
® At colliders, aim to produce
dark matter particles
DM SM
T

production at colliders

direct detection

Direct
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Searching for dark matter at colliders

. LHC can produce heavier
particles beyond the SM that |
decay to WIMP pairs and SM |
particles 'i

e . ==

. LHC can directly produce |
| WIMP pairs

.}é LHC cannot produce WIMPs

i?

Slide taken from Tim Tait talk at Moriond

Sarah Alam Malik



The Large Hadron Collider

- proton-proton collider

2011 2012 2015 - - two general, multi-purpose detectors
" - ATLAS and CMS

8 TeV 13 TeV

- Energy 7 TeV

- Integrated 5 iy

luminosity



Collider basics

- Constituents of protons (quarks/antiquarks, gluons) means that a proton
beam offers wide range of collision energies

- Fraction of energy of proton carried by a parton (x)

- Distribution of partons in the proton ascertained from Deep Inelastic
Scattering experiments.

- Because p-p collisions are not collisions between pointlike particles, this

complicates kinematics
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Transverse quantities

PT
t P
0 Pz
> <«
beam | beam 2

® Hadronic center of mass frame is not the same as parton center of mass frame
® parton center of mass frame, longitudinal momentum unknown, partons carrying
unknown fraction x of proton momentum

e Use kinematic quantities that are invariant under longitudinal boosts, such as
transverse momentum

¢ Transverse momentum conserved, can assume it to be zero before collision
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Energy and Luminosity

At high energy, collision occurs between partons within the proton which are
carrying only a fraction (x|, x2) of the proton momentum

s = (p; -HUQ)2

M? = (x1p1 + 56‘22?2)2
/s =8TeV

/

center of mass energy squared available to
produce new particle of mass M

So, with 8 TeV collider,
To produce a DM particle of mass 100 GeV need x1,x2 = 0.0125 (for 13 TeV,

X = 0.008)
For DM =3 TeV, need x1,x2 =0.38 (for 13 TeV, x=0.23)

So, to produce heavier DM particle, need higher energy!
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Energy and Luminosity

Energy is not enough, we need luminosity too

Number of events N — 0 X L ) Sy luminosity :
produced for a provided by
given process per f machine

sec :
cross section of

process of
interest

For a process with small cross section, need high luminosity L
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Energy and Luminosity

~_http://arxiv.org/pdf/hep-ph/0508097v|.pdf

Colliding beam

Luminosity roughly scales as

# of particles per

L1 1N9 —
L X f bunch

a
/ Y {ransverse profile

beam crossing of bunches

frequency

Under nominal design conditions for 14 TeV LHC,
- Each proton beam has 2808 bunches
- Each bunch containing 101 protons
- Design luminosity 1034 cm-2s-1
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Energy and Luminosity

Instantaneous luminosity gradually
Increases over time.

As a result, more pp interactions
per bunch crossing
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Collisions

Event with 29 pp interactions
Looklng for 2 DM partlcles in thls'

o,

\ ™,

CMS Expcnment atLHC CERN

Data recorded: ThuApr $:05:47: kY4 2012 CEST
Run/Event: 190401)/\] 2545076
tumi section: \75
Orbit'Crossing; 19495845 / 1347

Sarah Alam Malik

-y
-




Passage of particles through the CMS detector

Om im 2m im am 5m 6m /m

Key:

Muon

Electron

Charged Hadron (e.q. Pion)

-~ = — - Neutral Hadron (e.g. Neutron)

----- Photon
©)

AT

1
Neutral
hadron

Photon

L |-
Silicon
Tracker
TS :
> L: % . "y aHabla e
PR - 2o GO

© "’;' NEE /RSN -
Electromagnetic z
e Charged Z
) Calorimeter T §
4 hadron UL 3
Hadron Superconducting e f
Calorimeter Solenoid &
Iron return yoke interspersed i
Transverse slice with Muon chambers 3
o

through CMS

Neutrinos traverse the detector without any interaction
DM particles, being neutral and weakly interacting will look much like neutrinos in our

detectors
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Missing Transverse Energy

At the heart of all DM searches at colliders : Missing transverse energy (MET)

B

= DM neutral and weakly interacting
= only infer its presence in detector from “Y
Imbalance in transverse momentum of all
visible particles

i€all

=MET = negative of the vector sum of the transverse
momenta of all particles reconstructed in the event

Sarah Alam Malik
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Missing Transverse Energy

MU Missing transverse energy (MET) has been a major tool in our
discovery of new phenomena at hadron colldiers

T

MET used by UAI| experiment in

“C Fmissing p, component

- D opposite to electron p. 1983 to discover W boson
_ | - Discovery made using just 6 events
= 0 ' | and mass determined to 3% due to
imbq ! i ability of UAI to infer presence of E,
. neutrinos with resolution of a few T
VISID

GeV.

- PTi
mwy =81+ 5 GCV/02 icall

T 30 40 Gev rse
electron p

Sarah Alam Malik | 4



number of events / 15 GeV

10*

10°

10?

10

10

Missing Transverse Energy

CMS Preliminary 2012
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- challenging quantity to measure

- sensitive to mis-measurements,
detector effects, backgrounds

- but well controlled
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Phenomenology

Assumptions:
- DM particle is only new state accessible to the collider
- Effective field theory so interaction between DM and SM particles is contact interaction

Sarah Alam Malik |7



Phenomenology

Fermi 4-fermion contact interaction

U

Below the weak
Interaction scale

/ 14
« strength of nte> e
represented by Gr

My = Geguv VY V| |[WY v
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Phenomenology

Fermi 4-fermion contact interaction

Below the vvea<\

Interaction scale

4@%} of | nte>

represented by Gr
After discovery of parity violation n 1957

Sarah Alam Malik
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Phenomenology

After discovery of W boson

U

t —quqv/myk,

5 ) -
F gt — My, Y

Sarah Alam Malik
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Phenomenology

Assumptions:

- DM particle is only new state accessible to the
collider

- Effective field theory so interaction between DM
and SM particles is contact interaction

E—— e — ——

|

‘ |
af £:£5M+iX7“3uX—MXXX+5:5: (i;_; (XT; X] [aTq],

q ]
oM R/"—“/ SE -
Lagrangian kinetic terms for DM RN
set of 4-Fermion interactions

Operators I' describe scalar, pseudoscalar, vector, axial

vector, tensor interactions

Sarah Alam Malik
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Phenomenology

Assume DM is a Dirac fermion and interaction is characterized by

contact interaction, Bai, Fox and Harnik,
JHEP 1012:048 (2010)

Set mass of mediator (M) to very high value

SM DM

SM

R —

(a) For vector mediator, effective operator

_ _ spin-
0, — X1Xx)(@7"9) A= M/\/9x3q

A2

Sarah Alam Malik
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Signatures for dark matter searches

Dark matter pair production at LHC

- DM particles produce missing energy
- radiation of a photon/jet from initial state

q q

- X -
q X q X
monophoton +MET monojet +MET

Sarah Alam Malik
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Signatures for dark matter searches: Mono-X

~Mono-photon  ~ Mono-jet Mono-7

q q
%x %x
q X q X

Mono-to
u; V d; X
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Simple and striking signature

Monojet Signature

- Simplest collider signature

- visible energy from jet, recoiling
against particle(s) that do not interact
with detector

Sarah Alam Malik
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Measurement Strategy

- ‘cut and count’ : apply event selection and count number of events in signal region
- look for excess of events above those expected from SM backgrounds
- understanding of backgrounds is crucial

Sarah Alam Malik
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Measurement Strategy

- ‘cut and count’ : apply event selection and count number of events in signal region
- look for excess of events above those expected from SM backgrounds
- understanding of backgrounds is crucial

Sarah Alam Malik
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Measurement Strategy

- ‘cut and count’ : apply event selection and count number of events in signal region
- look for excess of events above those expected from SM backgrounds
- understanding of backgrounds is crucial

Signal

Backgrounds

Z—VV +jet, irreducible background,
looks just like signal

Sarah Alam Malik
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Measurement Strategy

- ‘cut and count’ : apply event selection and count number of events in signal region
- look for excess of events above those expected from SM backgrounds
- understanding of backgrounds is crucial

Signal

Backgrounds

Z—VV +jet, irreducible background, W+jets, e/u is not detected, tau
looks just like signal decays hadronically
Vv e/ p/T‘
y 4 \2'4 Av

Sarah Alam Malik
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Measurement Strategy

- ‘cut and count’ : apply event selection and count number of events in signal region

- look for excess of events above those expected from SM backgrounds

- understanding of backgrounds is crucial

Signal

Backgrounds

Z—VV +jet, irreducible background,
looks just like signal

W-jets, e/u is not detected, tau
decays hadronically

QCD, jet is mismeasured,
producing Met.

e/p/T
WA'
ety

jet

Mis-measured jet

:%
jet

Sarah Alam Malik
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Selecting monojet events

Basic Selection and Event Cleaning

* Primary vertex

* cuts based on jet constituents (charged and
neutral hadron and electromagnetic energies ),

removes cosmics, instrumental backgrounds

T ——

Sarah Alam Malik
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Selecting monojet events

Select topology
e | arge missing energy, Met > 350 GeV

e One energetic jet,py > |10 GeV, |n| < 2.4
e Allow one additional jet (if it has pt > 30 GeV)

¢ Veto event if it has more than 2 jets

[
Sarah Alam Malik 32



Selecting monojet events

Number of Events

b
o
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o
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Basic Selection and Event Cleaning

* Primary vertex
* cuts based on jet constituents (charged and
neutral hadron and electromagnetic energies ),

removes cosmics, instrumental backgrounds

Select topology

e L arge missing energy, Met > 200 GeV

e One energetic jet,py > |10 GeV, |n| < 2.4
e Allow one additional jet (if it has pt > 30 GeV)

¢ Veto event if it has more than 2 jets

e ——— e @
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Selecting monojet events

Basic Selection and Event Cleaning

llllllllllllllIlllllllllllllllllll

B Z—vv
CMS Preliminary W—lv

\s =8 TeV B t

B -1 B i
det- 19.51fb QCD
B ZoIT

-o- Data

p—y
o
@

Number of Events / 0.1
o

10° B

Ap(Jett, Jet2)

-1 \—j\—\-l— VIV VVILIL IoWVIALWU Wi LUI WVIiIIDy 1T1TUWVITIY ,

-veto events with isolated tracks
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Selecting monojet events

> llllllllllllll]llllIlllllllllllllllllll
8107 -Z—wv
9 CMS Preliminary Woshv
210°s Vs=8TeV B
& [
8108 jL dt=19.5 b’ aco
B zorr
10 e, 0 e ADDM,=2TeV,5 =3

...... DMA =09TeV, Mz =1GeV
...... UNPd =17, A, =2 TeV

<<<<<<
md S ST b
papeey  "Tew

_______

ET* [GeV]

this is what a potential signal
would look like
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.| CMS Experiment at LHC, CERN

C i| Data recorded: Fri Oct 5 20:41:32 2012 CEST
Run/Event: 204553 / 26729384

Lumi section: 31

A typical monojet

event
Jet 0, - jet with hi
SO one jet with high pr
eta = -0.463 V (900 GeV)
phi=2.508 | - MET of 900 GeV
- '. '
z N
a \
B _
= ~ \
\
! =
2 3
2 = —
- <$ — \ ,
) o MET O,
pt = 913.68
S eta = 0.000

\ | phi=-0.657
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Results

Z(W)+jets 2569 + 188
W+jets 1044 £ 51
tt 32 £ 16
Z(Il)+jets 8+4
Single top [ 3.5
QCD muliijets 3+1.5
Total Background 3663 £ 196
Observed in data 3677

No excess of events over expected SM backgrounds
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Setting limits on DM-nucleon cross section

Translate collider limits to the same plane as direct detection experiments

Sarah Alam Malik 39



Setting limits on DM-nucleon cross section

Translate collider limits to the same plane as direct detection experiments

SM

SM

DM

-=)

Atomic nucleus : /

Dark matter
B ——— ]
particle

y Recoiling

qleus

Nucleon

Sarah Alam Malik
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Setting limits on DM-nucleon cross section

Translate collider limits to the same plane as direct detection experiments

SM DM Atomic nucleus | /
Dark matter |

]

particle |

Nucleon

Recoiling

qleus

SM

For vector operator

| XYuX W‘q\
OV:( ﬂ'jzg ) (Q,N: . A2

coefficient relates nucleon and
quark operator

Sarah Alam Malik 4]



Setting limits on DM-nucleon cross section

Translate collider limits to the same plane as direct detection experiments

Atomic nucleus

SM DM
Dark matter
particle
Nucleon
SM DM

For vector operator

/

Recoiling

qleus

NARN) (£7,x)
ONZféV( Y A)Z(X%JJX)

/

coefficient relates nucleon and
quark operator

vV — A2

e Upper limits on monojet cross sections
N 2 converted to lower limits on A
m ® | ower limits on A then translated to spin-
independent DM-nucleon cross-section
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Setting limits on DM-nucleon cross section

Translate collider limits to the same plane as direct detection experiments

Recoiling

qleus

Atomic nucleus

SM DM
Dark matter
particle
Nucleon
SM DM

For axial-vector operator

r N
‘

OAV — (X7M’Y5X) (q—'Y“'YSQ) ONq _ Af,V (N’}”“’}'sN) ()—(7#75)()

A2 AZ
sum of quark helicities
9 e Upper limits on monojet cross sections
Ngq 3 v ( A N)2 converted to lower limits on A
g = — .
) ™ A4 4 ® | ower limits on A then translated to spin-

dependent DM-nucleon cross-section
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Dark matter spin dependent limits

For axial-vector mediator, in context of EFT...
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Dark matter spin dependent limits

For vector mediator, in context of EFT...
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Searches for dark matter with mono-X
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Interpretation of searches



Limitations of EFT

- Effective field theory is valid when mediator 20j

mass > a few TeV

- The couplings required are large

Comparing this with known couplings:
strong interaction ~1.2

weak interaction ~0.6

- Theory is non-perturbative if \/gogom > 4pi

- Width larger than mass, so unlikely

mediator will be identified as a particle

arXiv:1308.6799
O. Buchmueller,2 Matthew J. Dolan,P and Christopher McCabeP

-

o large

ISt Theory is non-
perturbative

p—— -

Relic density

f

\

Sarah Alam Malik

48



Phenomenology

Light mediator
- Assume DM interaction is mediated by light particle
- Effective theory breaks down and explicitly have to include mediator mass.

SM DM
SM DM
T — E—

SM DM
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Minimal Simplified model of dark matter

arXiv:1407.8257
SM DM

Mmec s-channel

89 8D
SM DM

Define simplified model with Consider comprehensive set
. DM . .
(minimum) 4 parameters of diagrams for mediator

Mediator mass DM mass Dirac Scalar -
(Mmed) (Mbm) fermion real

Vector Axial-vector

Majorana  Scalar -

g4 gDM fermion  complex Scalar Pseudoscalar

50



Simplified models :Vector/axial-vector

arXiv:1407.8257

O. Buchmueller, M. Dolan, S.A. Malik, C. McCabe

Axial vector

Vector
JA T _
. Vector: 90% CL limits \.\ 1000
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S === 94=9om=0.5 s [
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S S
= - =
& e a
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101 ' E
aaaaal —madaaaal PR L“.ll eaa d sl i daaaal
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A
- )
OQ ;;;;;;;; 0y .

| Axial vector: 90% CL limits |
' LHC8 19.5 fb™"

LUX 2013
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Elucidates more accurately the complementarity between collider and direct detection

experiments
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Simplified models :Vector/axial-vector

arXiv:1407.8257  O. Buchmueller, M. Dolan, S.A. Malik, C. McCabe

Vector Axial vector
104 ————— : oo e
Vector: 90% CL limits | E Axial vector: 90% CL limits
—— LHC8 19,5 fb™ ‘ : LHC8 19.5 fb™"
—— LUX 2013 - —— LUX 2013
9q=gom=1 ‘ 8001 ' —— Jg=gom=1
10%F  — — g4=0.3, gom=1 \ . | — — 9¢=0.3, gom=
= — - = 9g=gom=05 = el —" = 9a=Gom=05
S, S, \
p= p= - DD .
3 5 \ Collider
g 102 € 400 ‘
200k
10
eda taaaal 1 .......n. 0 — ———— el
10’ 102 10° 104 10° 0O 200 400 600 800 1000 1200
M, 4 [GeV] Mmed [GeV]

Elucidates more accurately the complementarity between collider and direct detection
experiments
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Simplified models : Scalar/pseudoscalar

arXiv:1411.0535
Philip Harris, Valentin V. Khoze, Michael Spannowsky, Ciaran Williams

Scalar Pseudoscalar
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Mpm
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Simplified models : Scalar/pseudoscalar

Philip Harris, Valentin V. Khoze, Michael Spannowsky, Ciaran Williams
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Future projections

arxiv:1409.4075
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barrier with HL-LHC
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Invisible Higgs - Higgs as a portal into
the dark sector



Invisible Higgs searches

- Higgs at 125 GeV, may have other decay channels not predicted by the
SM

- measure the Higgs invisible width by looking for decays of the Higgs to
Invisible particles, which could be DM

Sarah Alam Malik
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Invisible Higgs searches

Phys. Rev. Lett. 112, 201802
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Current limit on Branching fraction of H->invisible < 0.58 @ 95%CL

(assuming SM production cross section and kinematics)

Studies on future projections with 14 TeV, High Luminosity LHC 3000 fb-1
show that we may be able to constrain BF(H»s—invisible) at few-% level
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http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.201802
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.201802

Summary

® Many signatures being employed at LHC to search for dark

matter
® Results show a lot of complementarity with direct detection
experiments, in particular for
*low mass DM
* spin dependent interactions of DM
® Also searches for Higgs decay to invisible particles
® \ariety of topologies being used will become especially
important if signal is seen by direct detection and/or colliders
® Future projections for 13 TeV and High Luminosity LHC show

similar complementarity going forward
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