Cosmological Structure Formation: probing the nature of dark matter and dark energy with computers

CLEVELAND POTASH

CPL are proud to host Boulby Underground Laboratory for Dark Matter Research Searching for the missing mass of the Universe

The Hunt for Dark Matter

ZEPLIN-III WIMP Detector

How can computers help us to understand dark matter?

What do we know about the Universe?

The Universe was smoother in the past

The Universe – 380,000 years after the Big Bang

The Universe is much lumpier today: Galaxies are clustered

The APM Galaxy survey Maddox Sutherland Efstathiou & Loveday

Two degree field galaxy redshift survey

THE EXPANDING UNIVERSE: A CAPSULE HISTORY

The Universe – the Planck view

Before Planck

After Planck

Key ideas: cosmic structure

- Gravity is the primary cosmic architect
- Small primordial density ripples from Inflation
- Dark matter dominates over normal matter: collisionless, non-baryonic, gravitational force

Density ripples in an expanding Universe

- Overdense sphere
- Initially expands with Universe
- Behaves like a miniuniverse with a different density parameter
- Eventually reaches a maximum radius and collapses under gravity
- Increase expansion rate: harder to collapse

The growth of a baryonic perturbation

Why do we need simulations?

- Perturbation theory breaks down
 - write down fluid equations in linear form
 - perturbation theory works when fluctuations are small
- Can follow perturbation growth in special cases
 - spherical top-hat: parametric solutions

Simulations: the basic idea

- Follow gravitational instability over cosmic history
- Need to take into account expansion of Universe
- Represent matter using particles: these are not cold dark matter particles!
- Choose box size and particle number to suit problem (and resources!)
- Simulation box has periodic boundary conditions

The N-body method uses a finite set of particles to sample the underlying distribution function

"MONTE-CARLO" APPROACH TO COLLISIONLESS DYNAMICS

We discretize in terms of N particles, which approximately move along characteristics of the underlying system.

$$\ddot{\mathbf{x}}_i = -\nabla_i \Phi(\mathbf{x}_i)$$
$$\Phi(\mathbf{x}) = -G \sum_{j=1}^N \frac{m_j}{\left[(\mathbf{x} - \mathbf{x}_j)^2 + \epsilon^2\right]}$$

The need for gravitational softening:

- Prevent large-angle particle scatterings and the formation of bound particle pairs.
- Ensure that the two-body relexation time is sufficiently large.
- Allows the system to be integrated with low-order intergations schemes.

(from Volker Springel)

Gravitational force law

- Need efficient algorithm to compute gravitational force
- Small scales: direct pair count: scales as N^2
- Large scales: mesh and Fourier transfrom: NlogN
- Periodic boundary conditions
- Softening: avoid two body effects and relaxation

Efstathiou et al 1985

Two conflicting requirements complicate the study of **hierarchical** structure formation

DYNAMIC RANGE PROBLEM FACED BY COSMOLOGICAL SIMULATIONS

Want small particle mass to resolve internal structure of halos

Want large volume to obtain respresentative sample of universe

Problems due to a small box size:

- Fundamental mode goes non-linear soon after the first halos form.
 → Simulation cannot be meaningfully continued beyond this point.
- No rare objects (the first halo, rich galaxy clusters, etc.)

At any given time, halos exist on a large range of mass-scales !

Problems due to a large particle mass:

- Physics cannot be resolved.
- Small galaxies are missed.

(from Volker Springel)

Why temperature of dark matter is important

Cosmic web

WARM

Ben Moore

What have we learnt from the large-scale structure of the Universe?

Clumpiness of galaxy distribution: gravitational instability

Quantifying clustering: two point statistics

Early 1990s: more clustering than expected

IRAS Survey: Saunders et al. 1991; APM Survey: Maddox et al. 1990

2002: CMB + LSS Dark energy

Baryonic acoustic oscillations

- First predicted by Peebles & Yu 1970, Zeldovich 1970
- Clear peaks in radiation spectrum
- Peaks out of phase between Cl and P(k)
- Reduced amplitude in matter P(k)
- BAO scale related to sound horizon at recombination
- Considered as a standard ruler

Divide matter spectrum by Featureless reference to Emphasize BAO signal

Detection of BAO

- 47,000 SDSS LRGs
- 0.72 cubic Gpc
- Constraint on spherically averaged BAO scale
- Constrain distance parameter:

Detection of BAO

Durham

Cole et al. 2005 2dFGRS main galaxy sample

2014 Shaw Prize in Astrophysics: Shaun Cole, John Peacock, Daniel Eisenstein

Is Lambda-CDM the right answer?

- Seen it works well on large scales
- But, what is the cosmological constant?
- Does it work on small scales?

The nature of dark matter halos

Navarro, Frenk & White 1997

 $\mathbf{z}_{\mathbf{z}}$

Early time

Late time

The structure of DM haloes

- Rotation curves of galaxies
- Dark matter annihilation signal
- Density and angular momentum of gas

The fitting formulae we have used to describe the mass profile of our simulated haloes are the following: (i) The NFW profile, given by

$$\rho(r) = \frac{\rho_{\rm s}}{(r/r_{\rm s})(1 + r/r_{\rm s})^2};\tag{2}$$

(ii) the modification to the NFW profile proposed by M99,

$$\rho(r) = \frac{\rho_{\rm M}}{(r/r_{\rm M})^{1.5} [1 + (r/r_{\rm M})^{1.5}]},\tag{3}$$

and (iii) the Einasto profile,

$$\ln[\rho(r)/\rho_{-2}] = (-2/\alpha)[(r/r_{-2})^{\alpha} - 1].$$
(4)

Do galaxies really live in CDM halos?

CDM halos have cuspy cores:

Imply more dark matter in centre

Than suggested by measured **Rotation curves:**

Dwarf galaxies – dominated by Dark matter – favour isothermal -- constant density cores

radius

Moore 1994

20

Cusps vs cores

Moore et al 1999

N-body simulations of clusters: more particles, same answers?

Moore 2000

Formation of a Milky Way like DM halo

Aquarius halo: Volker Springel et al. 2008

Dark Matter Substructures

Springel et al 2008

Hierarchies of substructure

Springel et al 2008

Is substructure a problem for CDM?

Milky Way Satellite Problem:

Identifying dark matter subhalos with galaxies, CDM predicts more satellite galaxies than we observe around the Milky Way

Moore et al 1999

Too big to fail?

More massive CDM subhalos appear too dense compared to observed satellites

Boylan-Kolchin et al. 2011

Small scale problems of CDM

• CDM haloes too cuspy

- galaxies rotate too quickly in centre
- observations favour constant density core
- CDM haloes have too much substructure
 - matching subhalos to galaxies gives too many Milky Way satellites
- CDM subhaloes too dense
 - massive subhaloes too dense

Solutions?

More satellites observed

Willman et al. 2005 Belokurov et al. 2007 Tollerund et al. 2008

Image by M Geha

Need to worry about baryons

Benson et al. 2003

Impact of baryonic physics

Dark matter

stars

Sawala et al 2014

Impact of baryonic physics

Sawala et al 2014

Impact of baryonic physics

Sawala et al 2014

Changing the dark matter particle

Cold dark matter

Warm dark matter: Resonantly produced 2KeV sterile neutrino

Lovell et al 2012.

WDM: solves too big to fail

Lovell et al 2012

Do we really need to abandon CDM?

Dark matter – photon interactions

Wilkinson et al. 2014

Constraints on interaction strength

Wilkinson et al. 2014

Impact on matter power spectrum

DM-photon interactions and Milky Way Satellites

Changing interaction strength changes number of subhaos

Much tighter constraint on cross-section than from CMB

Boehm et al. 2014

Impact on matter distribution

CDM

Schewtschenko et al. 2014

Further reading

- Large scale structure
 Springel, Frenk & White 2006
- Dark matter and cosmic structure Frenk & White 2012
- Cold dark matter controversies on small scales Weinberg et al. arXiv:1306.0913
- Local group galaxies emerge from the dark Sawala et al. arXiv:1412.2748