CMB observations

Jo Dunkley

Oxford Astrophysics

YETI, Jan 8

History of early universe

Inflation? CDM decoupling?

Quark-hadron transition Neutrino Decoupling

Big Bang Nucleosynthesis Matter-Radiation Equality Recombination

	$T \sim ~10^{15}~GeV$	$t \sim 10^{-35} s$
	T ~ 10 GeV?	$t \sim 10^{-8} s$
	T~ GeV	t ~ 10 ⁻⁶ s
	$T \sim IMeV$	t~ls
	T ~ 100 keV	t ~ 10 min
7	$T \sim 0.8 eV$	t ~ 60000 yr
	$T \sim 0.3 eV$	t ~ 380000 yr
V		

Established/constrained 6-parameter 'ACDM' model

ACT maps, Das et al 2013

Measured to smaller scales by ACT & SPT (2007-11)

Story et al 2012, Das et al 2013

Clearly any deviations from the concordance model would have to be small Power of these data are to limit extensions to ΛCDM

Aside: actually making CMB maps

d = Pm+n, solve

 $\mathsf{P}^{\mathsf{T}} \mathsf{N}^{\mathsf{-}\mathsf{I}} \mathsf{P} m = \mathsf{P}^{\mathsf{T}} \mathsf{N}^{\mathsf{-}\mathsf{I}} d$

d = raw data set (>3TB of data)
m = desired map (200 MB per map)
N = noise covariance between data
P = pointing matrix

I season = 100,000 CPU hours on the 22nd fastest supercomputer in the world.

But N is not diagonal.
I. Detectors have non-white noise
2. Any mechanical/electric coupling in camera
3. Atmosphere

Planck 2009-12/13

Low Frequency Instrument (LFI) – 33-70 GHz High Frequency Instrument (HFI) – 100-857 GHz.

HFI actively cooled to 0.1K so took data until Jan 2012. LFI observed until Oct 2013. Bigger mirror: few arcmin resolution

The CMB temperature sky

Small-scale components at ~150 GHz

CMB

tSZ

Components Summed

1.4°x 1.4°

KSZ/OV Point Sources

Have to marginalize small-scale foregrounds

Das et al 2013, Dunkley et al 2013

Planck

The 6-parameter ΛCDM model

(1) Contents and expansion Baryon density $\Omega_{\rm h}h^2$ $\Omega_{c}h^{2}$ CDM density $\theta (\sim r_s/D_A)$ Peak position

(2) Initial fluctuations Amplitude at k=0.05/Mpc Spectral index n

(3) Impact of reionization Reionization optical depth τ

(1) Contents and expansion rate **Baryon fraction** $\Omega_{\rm h}$ **CDM** fraction Ω_{c} $\Omega_{\Lambda} = 1 - \Omega_{\rm b} - \Omega_{\rm c}$ Cosmol constant fraction **Expansion** rate H₀

(2) Late-time size of fluctuations Amplitude on 8 Mpc/h scales σ_8

(3) Reionization Redshift of reonization

Z_{re}

Assumptions:

- Geometry/contents: Flat, w=-1, Σm_v =0.06eV, no warm dark matter, N_{eff}=3.04, Y_P=0.25
- Primordial fluctuations: adiabatic, power-law $P(k) = A(k/k_0)^{n-1}$, no tensors, no cosmic strings •
- Smooth, quick reionization of universe •

Cosmology from the higher acoustic peaks

- I. Measure Silk damping, test recombination [neutrinos, helium, early dark energy, dark matter annihilation, time-varying constants]
- 2. More decades for primordial spectrum [index and its running]
- 3. Probe scales where non-'standard' fluctuations could be seen [cosmic strings, isocurvature]

(I) Primordial helium

Usually assume Y_p predicted by BBN: $Y_p = 0.2485 + 0.0016[(273.9\Omega_bh^2-6) + 100 (S-1)]$

Instead can test BBN: more helium decreases electron density, increasing mean free path and Silk damping: $n_e = n_b(1-Y_P)$

(I) Relativistic species

Usually assume 3 neutrino species.

$$\rho_{rel} = \left[\frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{eff}\right] \rho_{\gamma}$$

More species: longer radiation domination, suppress early acoustic oscillations, and add phase shift

ACT+SPT+WMAP9: $N_{eff} = 3.4 \pm 0.4$ (Calabrese et al 2013) Planck+: $N_{eff} = 3.4 \pm 0.3$ (Planck Collab 2013)

ACT: Sievers, Hlozek et al. 2013

(2) Primordial spectrum: spectral index n<1

(3) Cosmic strings

 $G\mu < 1.1 \times 10^{-7}$ (95%, ACT+WMAP, Sievers et al 2013)

Spectral index less than unity: hybrid inflation disfavored. Similar limits from Planck.

(3) No evidence for isocurvature

Upper limits on fractional primordial contribution (β), or fractional contribution to CMB power (α):

Model	$\beta_{\rm iso}(k_{\rm low})$	$\beta_{\rm iso}(k_{\rm mid})$	$\beta_{\rm iso}(k_{\rm high})$	$\alpha_{\rm RR}^{(2,2500)}$	$\alpha^{(2,2500)}_{I\bar{I}}$	$lpha_{\mathcal{R}I}^{(2,2500)}$
General model:						
CDM isocurvature	0.075	0.39	0.60	[0.98:1.07]	0.039	[-0.093:0.014]
ND isocurvature	0.27	0.27	0.32	[0.99:1.09]	0.093	[-0.18:0]
NV isocurvature	0.18	0.14	0.17	[0.96:1.05]	0.068	[-0.090:0.026]
Special CDM isocurvature cases:						
Uncorrelated, $n_{II} = 1$, ("axion")	0.036	0.039	0.040	[0.98:1]	0.016	-
Fully correlated, $n_{II} = n_{RR}$, ("curvaton")	0.0025	0.0025	0.0025	[0.97:1]	0.0011	[0:0.028]
Fully anti-correlated, $n_{II} = n_{RR}$	0.0087	0.0087	0.0087	[1:1.06]	0.0046	[-0.067:0]

Planck Collab XXII 2013

Lensing of the CMB

Integrated mass fluctuations along the line of sight Deflection is a couple of arcminutes, but coherent on degree scales. re and polarisation Unlensed 2'. These deflecgenerate small-scale 7), non-Gaussianity of the dominant *E*a & Seljak 1998). nuisance, in that it & Song 2002), as mation; the characasure of the distriiate redshifts (typithere exist accurate on the CMB power 3 optimal estimators

direction \hat{n} at conformal time η (the conformation η_0). The angular-diameter distance the curvature of the Universe, and is given b

$$f_{K}(\chi) = \begin{cases} K^{-1/2} \sin(K^{1/2}\chi) & \text{for } K \\ \chi & \text{for } K \\ |K|^{-1/2} \sinh(|K|^{1/2}\chi) & \text{for } K \end{cases}$$

The lensing potential is a measure of the inbution back to the last-scattering surface. It c on both the gravitational potentials Ψ To firthe CMB is to introduce a correlation betw perature and the gradient of the unlensed ten which can be exploited to make a (noisy) r MB last-scattering sur-& Efstathiou 1989) derature and polarisation e of 2'. These deflec-6), generate small-scale 1997), non-Gaussianity ion of the dominant *E*riaga & Seljak 1998). th a nuisance, in that it Lox & Song 2002), as nformation; the characmeasure of the distrimediate redshifts (typiork, there exist accurate ing on the CMB power ell as optimal estimations ensing (Hu & Okamoto

Here χ is conformal distance (with $\chi_* \approx 14000$) the distance to the CMB last-scattering surface is the gravitational potential at conformal dista direction \hat{n} at conformal time η (the conformal to noted as η_0). The angular-diameter distance f_K the curvature of the Universe, and is given by

$$f_{K}(\chi) = \begin{cases} K^{-1/2} \sin(K^{1/2}\chi) & \text{for } K > 0 \\ \chi & \text{for } K = 0 \\ |K|^{-1/2} \sinh(|K|^{1/2}\chi) & \text{for } K < 0 \end{cases}$$

The lensing potential is a measure of the integration back to the last-scattering surface. It contains both the gravitational potentials Ψ To first or the CMB is to introduce a correlation between perature and the gradient of the unlensed temperature which can be exploited to make a (noisy) record lensing potential itself.

In Fig. 1 we plot the noise power spectrum

CMB lensing measurements

 $\Psi(\boldsymbol{L}) \propto T(\boldsymbol{\ell})T^*(\boldsymbol{L}-\boldsymbol{\ell})$

Late-time physics

With primary CMB, cannot measure curvature.

Planck measures curvature through lensing (more closed, less dark energy \rightarrow more lensing)

 $\Omega_K = 0$

Similarly, probes neutrino mass and dark energy

without ACT-Lensing

Planck Collab XVII 2013

Sherwin, Dunkley, Das et al 2011

0.4

0.6

 Ω_M

0.8

1.0

1.2

n

1.0

0.8

0.6

0.4

0.2

0.0 **∟** 0.0

0.2

 Ω_{Λ}

CMB polarization

Generated at recombination from velocity
of photon-baryon fluid (E-modes) and
gravitational waves (E, B-modes)Generated at reionization by
quadrupole scattering

z=1000

Lensing mixes E/B

z~|-3

z~7

ACTPol maps, Naess et al 2014

The landscape of CMB polarization

Polarization acoustic peaks

TE correlation measured by WMAP and ground-based expts Validates ACDM model. Evidence for superhorizon fluctuations.

- TE+EE promises better limits on neutrino number, isocurvature fluctuations etc.

Planck 2014 (preliminary)

Planck Collaboration 2015, prep from Efstathiou Ferrara talk

Polarization spectra from ACTPol/SPTPol

BICEP2 measured a B-mode signal

How polarized is the Galaxy?

- Grains align perpendicular to magnetic field likely radiative torque. Preferentially emit along their long axis (so need some asphericity to generate polarization).
- Simple models say intrinsic polarization <~15%, then reduced due to line-of-sight averaging.

Dust polarization measured by Planck

Outlook for coming few years

SPIDER launched Jan I 2015!

CLASS deploy 2015 - Atacama

Keck Array 2014+ South Pole

AdvACT begin 2016- Atacama

From K Story

From K Story

Lensing: probe of neutrino mass

- Neutrinos free-stream when relativistic, and reduce damping of photon-baryon oscillations
- smears out matter clustering on scales where relativistic.
- In decade CMB lensing should reach detection of 0.05 eV

Cross-correlations of CMB lensing also made with radio galaxies, quasars, optical galaxies...

Summary

- CMB temperature measurements
 - Planck satellite measures 7 acoustic peaks (2013). Also limits 3-pt function.
- ACDM model tightly constrained; deviations are now strongly limited (e.g. likely no additional neutrino species)
- CMB polarization measurements: many underway.WMAP still provides large-scale measurement for optical depth. Planck measured TE/EE acoustic peaks.The future is in polarization (large and small scale).
- CMB lensing is fast-growing! It probes clustering of matter and expansion rate. Detected in ACT, SPT, PolarBear and Planck. Dark energy now required just from the CMB. Looking to neutrino mass detection.

(2) Primordial spectrum: running

- Test inflation: period of exponential expansion for > 60 e-folds.
- Fluctuations expected almost power law. Running index, expected ~0.001. $dn_s/dlnk = -0.004 \pm 0.012$ (ACT+WMAP7)

 $dn_s/dlnk = -0.015 \pm 0.009$ (Planck+)

$$\Delta_{\mathcal{R}}^2(k) = \Delta_{\mathcal{R}}^2(k_0) \left(\frac{k}{k_0}\right)^{n_s(k_0) - 1 + \frac{1}{2}\ln(k/k_0)dn_s/d\ln k}$$

