Imperial College London

MINING FOR WIMPS

DIRECT SEARCHES FOR DARK MATTER UNDERGROUND

Henrique Araújo

Imperial College London

YETI 2015, 7-9 Jan 2015, IPPP – Durham

Outline

1. The dark matter problem

- A dark universe
- Galactic dark matter
- Weakly Interacting Massive Particles

2. How to catch a WIMP

- The experimental challenge
- Direct detection technologies
- World Status

3. Signal estimation

- "Counts in boxes"
- Maximum Likelihood analysis

Motivation \rightarrow

A DARK UNIVERSE

- Λ -CDM cosmology is a remarkably successful model
- Initial conditions photographed at last scatters (CMB)
- Left to evolve for 13.7 Gyr under two dark 'fluids' DE and DM
- To what we see today

OUR DARK MILKY WAY

- Spiral galaxies 'spin' too quickly for observed 'luminous' mass
- Our Milky Way is no exception: we are immersed in DM halo
- Direct search experiments probe our galactic dark matter
- Density near Sun ~0.3 GeV/cm³

DARK MATTER CANDIDATES

• WIMPs

Solve DM problem Electroweak stabilisation

Axions

Solve DM problem Strong CP problem

- Focus on WIMPs: stable, neutral, cold, heavy particles, interacting via gravity – and (by definition) the weak force
- Can solve the DM problem in all its glory: astrophysical, cosmological and particle physics
- Λ-CDM was made for WIMPs; but there are puzzles too:
 e.g. why is their present density similar to that of baryons?

1. <u>Direct detection</u> (scattering XS)

- Nuclear (atomic) recoils from elastic scattering
- A- & J-dependence, annual modulation, directionality
- Galactic DM at the Sun's position our DM!
- Mass measurement (if not too heavy)

2. <u>Indirect detection</u> (decay, annihilation XS)

- High-energy cosmic-rays, γ-rays, neutrinos, etc.
- Over-dense regions, annihilation signal $\propto n^2$
- Very challenging backgrounds

3. <u>Accelerator searches</u> (production XS)

- MET, mono-X, dark photons, etc.
- Mass measurement may be poor at least initially
- May not establish that new particle is <u>the</u> DM

WEAKLY INTERACTING MASSIVE PARTICLES

WIMP-NUCLEUS ELASTIC SCATTERING RATES

 E_{th}

~ few keV

dR

 dE_{i}

The 'spherical cow' galactic model

- DM halo is 3-dimensional, stationary, with no lumps
- Isothermal sphere with density profile ho \propto r ⁻²
- Local density $\rho_0 \sim 0.3 \text{ GeV/cm}^3$ (~1/pint for 100 GeV WIMPs)

Maxwellian (truncated) velocity distribution, f(v)

- Characteristic velocity v₀=220 km/s
- Escape velocity v_{esc}=544 km/s
- Earth velocity v_e=230 km/s

Nuclear recoil energy spectrum [events/kg/day/keV]

$$\frac{dR}{dE_R} = \frac{\rho_0 \sigma_A}{2m_{\chi} {\mu_A}^2} F^2(q) \int_{\nu_{\min}}^{\nu_{\max}} \frac{f(\vec{v})}{\nu} d^3 \nu$$
$$\frac{dR}{dE_R} \approx \frac{R_0}{E_0 r} e^{-E_R / E_0 r}, \ r = \frac{4m_W m_T}{(m_W + m_T)^2} \le 1$$

WIMP-NUCLEON ELASTIC SCATTERING XS

- Coupling to p and n more useful than coupling to nucleus
 - Compare different targets materials, accelerator & indirect searches
- Spin-independent (scalar) interaction

$$\sigma_A^{SI}(q \to 0) = \frac{4\mu_A^2}{\pi} [Zf_p + (A - Z)f_n]^2 \approx \frac{\mu_A^2}{\mu_p^2} \sigma_p A^2$$

Note A² enhancement factor (coherence) – c/pMSSM within reach

• Spin-dependent (axial-vector) interaction

$$\sigma_A^{SD}(q \to 0) = \frac{\mu_A^2}{\mu_p^2} \sigma_{p,n}^{SD} \left[\frac{4}{3} \frac{J+1}{J} \left(a_p \left\langle S_p \right\rangle + a_n \left\langle S_n \right\rangle \right)^2 \right]$$

- Note J (nuclear spin) replaces A² enhancement less sensitive than SI
- Some targets more sensitive to proton, others to neutron scattering
- Non-Relativistic Effective Theory: WIMP-nucleon XS has 6 components (cf. Fitzpatrick, Haxton, Anand, et al: 1203.3542, 1405.6690)

Neutron elastic scattering

$$E_{R} = \frac{2A}{(A+1)^{2}} \left(1 - \cos \Theta\right) E_{n} \qquad E_{R} = \frac{4A}{(A+1)^{2}} \left(\cos^{2} \theta\right) E_{n} \qquad E_{R,\max} = \frac{4A}{(A+1)^{2}} E_{n}$$

In general, for a projectile with mass m_W and kinetic energy E_W

$$E_{R} = \frac{2Am_{W}}{(A+m_{W})^{2}} \left(1 - \cos\Theta\right) E_{W}; \text{ defining } r = \frac{4Am_{W}}{(A+m_{W})^{2}} \rightarrow E_{R,\max} = rE_{W}$$

Nuclear Recoils in WIMP Detectors

- Kinematic factor peaks (*r*=1) for equal masses
 - In this case, the projectile transfers all its energy for head-on collisions
 - Heavier nuclei for heavier WIMPs, lighter nuclei for lighter WIMPs
 - And hydrogenated materials are best to moderate neutrons
- Calibration of WIMP targets
 - For 100 GeV WIMPs, a Xe target is well calibrated by MeV neutrons
 - Sources: AmBe and YBe (α ,n), Cf-252 fission, D-D generators
 - Signal and calibration <u>maximum</u> energies:

$$E_{R,\max} = r E_W = \sim E_W$$
 (m_W = 100 GeV) $E_{R,\max} = \frac{4A}{(A+1)^2} E_n = 0.03 E_n$ (n \rightarrow Xe)

220 km/s WIMP $\rightarrow E_{R,max} = 30 \text{ keV}$

1 MeV neutron $\rightarrow E_{R,max} = 30 \text{ keV}$

Nuclear Form Factor, F²(q)

12

SI scattering rates

Annual Modulation

• Any seasonal effects will have opposite polarity in Southern hemisphere

• Difficulty: many things modulate seasonally....

Directional Detection

$$\frac{dR}{dE_{\rm R}d\cos\gamma} \propto \exp\left[\frac{-(v_\odot\cos\gamma - v_{\rm min})^2}{v_{\rm halo}^2}\right]$$

• Signal has fixed distribution in sky (Sygnus): effective background discrimination

• Difficulty: to implement large targets with a gas (required to detect directionality)

THE EXPERIMENTAL CHALLENGE

Key requirements

- Large mass x time
 - Low E_R threshold
 - Low background
 - ER/NR discrimination

- Low-energy detection is easy ;)
 Several technologies allow sub-keV NR detection
- Rare event searches are also easy ;)
 Not a problem at >100 MeV, think neutrinos
- But doing both is hard!
 - Large is better for shielding against external backgrounds
 - But harder to collect quantum-level signal 'carriers' from deep inside detector volume

• Also: there is no trigger...

Building a WIMP detector

- Consider 1 kg target
 Sensitive to E_{dep}>1 keV
- Expected WIMP rates
 0.01–0.000001 evt/day
- However...
- Cosmic rays, α , β , γ -rays - >1,000,000 evt/day
- Neutrons are dangerous!
 - Several evt/day
- Neutrinos will be ultimate background

Building a WIMP detector

- Move underground
- Use radio-pure materials
- Shield external γ-rays
- Shield external neutrons
- Actively veto neutrons
- Discriminate <u>*e-recoils*</u> (γ , β , ν) from <u>*n-recoils*</u> (WIMPs, n, ν)
- Coherent v-A scattering: (probably) irreducible background

Backgrounds

- Nuclear recoils same signature, possibly irreducible
 - Neutrons from (α ,n) and SFission from U/Th trace contamination
 - Local environment, shields, vessels, components, target material itself
 - Nuclear recoils from alpha decay (e.g. radon daughter plate-out)
 - Contaminating detector surfaces
 - High energy neutrons from atmospheric muon spallation
 - Difficult to shield completely even underground
 - Eventually, coherent neutrino-nucleus scattering (new!)
- Electron recoils discrimination power is finite
 - Gamma-ray background external to target
 - U/Th, K-40, Cs-137, from environment, shields, vessels, components
 - Contamination in target bulk and detector surfaces
 - U/Th betas and gammas (Pb-214, Bi-214, Pb-210,...)
 - Cosmogenic (Ar-39, Ge-68, Ge-71,...), anthropogenic (Kr-85, Cs-137,...)
 - Eventually, elastic scattering of solar pp neutrinos off electrons (new!)

Anticoincidence detector around WIMP target

WIMP SEARCH TECHNOLOGY ZOO

Ionisation Detectors

Light & Heat Bolometers

Targets: CaWO₄, BGO, Al₂O₃ CRESST, ROSEBUD cryogenic (<50 mK)

Bubbles & Droplets

CF₃Br, CF₃I, C₃F₈, C₄F₁₀ COUPP, PICASSO, PICO, SIMPLE

PRESENT STATUS

PRESENT STATUS

CRYOGENIC DETECTORS

$$\Delta T_{\rm max} = \frac{E}{C}$$

Thermal signal lost with increasing mass: ideally, collect phonons *before* they thermalise

EDELWEISS DETECTORS

CRESST DETECTORS

Phonon channel: ~keV threshold, no quenching Can collect a second signature for discrimination:

- Phonons + ionisation (e.g. CDMS, EDELWEISS)
- Phonons + scintillation (e.g. CRESST)

Superconducting Transition-Edge Sensor (CDMS)

1309.3259 CDMSLite/SuperCDMS SOUDAN^{402.7137}

iZIPs, interleaved ionisation & phonon readout

- Improved fiducialisation wrt CDMS-II
- Same location & infrastructure
- CDMSLite: low ionisation threshold via Luke-Neganov phonon amplification 1 iZIP, 6 kg*days Ge
- SuperCDMS: LE analysis on selected detectors
 7 iZIPs (15 installed), 577 kg*days Ge
- Key parameters
 - CDMSLite: 0.8 keVr (no discrimination)
 - S-CDMS LE: 1.6-10 keVr (some discriminatior
- Sensitivity

SOUDAN

- 3.4x10⁻⁴¹ cm² at 8 GeV (Lite)
- 1.2x10⁻⁴² cm2 at 8 GeV
- Onwards: SuperCDMS at SNOLab (~100 kg)

SuperCDMS AT SNOLab

iZIP detectors

- 98 kg Ge (70 x 1.4 kg)
- 12 kg Si (20 x 0.6 kg)
- 10 cm diam, 3.3 cm thick
- 12 phonon, 4 charge chans
- Adding LAB active veto
- Det fabrication from late 2014
- Commissioning 2016
- Common phase w/ EURECA?

Key parameters

- NR threshold: 0.8 keV, 8 keV
- Background: <0.2 evts (5 yrs)

Sensitivity

 $-\sim 1 \times 10^{-46} \text{ cm}^2$ at 40 GeV by 2021

TWO-PHASE XENON TPC

S1: prompt scintillation signal

- Light yield: ~60 ph/keV (ER, 0 field)
- Scintillation light: 178 nm (VUV)
- Nuclear recoil threshold ~5 keV

S2: delayed ionisation signal

- Electroluminescence in vapour phase
- Sensitive to single ionisation electrons
- Nuclear recoil threshold <1 keV

S1+S2 event by event

- ER/NR discrimination (>99.5% rejection)
- mm vertex resolution + high density: self-shielding of radioactivity backgrounds

LXe is the leading WIMP target:

- Scalar WIMP-nucleon scattering rate dR/dE~A², broad mass coverage >5 GeV
- Odd-neutron isotopes (¹²⁹Xe, ¹³¹Xe) enable SD sensitivity; target exchange
- No damaging intrinsic nasties (127Xe short-lived, ⁸⁵Kr removable, ¹³⁶Xe 2uetaeta ok)

ZEPLIN-III: TWO-PHASE XENON UK-LED PROGRAMME AT BOULBY

- ZEPLIN developed 2-phase Xe detectors
- Boulby programme completed in 2012
- Z3 achieved best discrimination in LXe Lebedenko *et al*, PRD 80 (2009) 052010 Akimov et al, PLB 709 (2012) 14

1310.8214

LUX: TWO-PHASE XENON

Liquid xenon TPC

- 250 kg LXe (118 kg fiducial)
- PTFE field cage, 122 PMTs
- 3D imaging (<1 cm)
- Calibration: *in situ* D-D gen, Dispersed ^{83m}Kr and CH₃T

• Key parameters

- Light yield: >8 phe/keVee
- Drift field: 0.2 kV/cm
- NR threshold: 4.3 keV
- ER discrimination: 99.6%
- Background: 2 ER/day (ROI total!)

Sensitivity

- 7.6x10⁻⁴⁶ cm² at 33 GeV (Run 3)
- Onwards: LUX-ZEPLIN (7-tonne TPC)

LUX: CALIBRATION

Electron Recoils

- Dispersed β sources:
- ^{83m}Kr: S1 & S2 cal
- CH₃T: ER band

Nuclear Recoils

- D-D neutron generator
- S1 & S2 yields for recoils in LXe to O(keV)

Neutron pipe

1310.8214

recoil energy (loosely) >>>

0904.2930

DEAP-3600: SINGLE PHASE LAr

filler blocks

thermal

insulation

PMT

PSD in single phase LAr

- 3.6 t LAr (1 t kg fiducial)
- 255 PMTs (75% coverage) light-guide coupled
- Inside 8 m water shield
- Vessel resurfaced in situ assembly prior to WLS evaporation

• Key parameters

- Light yield: 8 phe/keVee
- NR threshold: 60 keVr (Ar-39)
- ER discrimination: 10⁻¹⁰ at 20 keVee
- Background: <0.3 events (3 t·yr)

Sensitivity goal

- $-1x10^{-46}$ cm² at 100 GeV by 2017
- **Onwards: DEAP-50 tonnes**

XENON-1T: TWO-PHASE XENON

Liquid xenon TPC

- 3.3 t LXe (1 t fiducial)
- 1 m long TPC, 248 PMTs
- 10 m water Cherenkov
- Construction now
- Operation from 2015
- (Oversized OV for nT phase)

• Key parameters

- Drift field: 1 kV/cm
- Background: ~1.5 evt (2.7 t·yr)

• Sensitivity

- 2x10⁻⁴⁷ cm² by 2017
- Onwards: XENON-nT, DARWIN

LZ: TWO-PHASE XENON

Liquid xenon TPC

- 7.0 t LXe active (5.6 t fiducial)
- LXe Skin detector (~2 t)
- Gd-loaded Scintillator Veto
- 8-m water tank (post-LUX)
- Construction from 2015

• Key parameters

- Light yield: >6 phe/keVee
- NR threshold: ~6 keV
- ER discrimination: >99.5%
- Background: ~1.9 evt (8 t·yr)

Sensitivity

– 2.5x10⁻⁴⁸ cm² circa 2020

PROSPECTS

WIMP Mass $[\text{GeV}/c^2]$

3 JISCOVERY – "COUNTS IN BOXES", IDEAL WORLD

- 1. Define nuclear-recoil acceptance band/box using calibration data only
- 2. Calculate the background expected within that region (hopefully <<1)
- 3. Blind data analysis (at least a fraction, in & around search region)
- 4. Apply statistical analysis defined *a priori*
 - Feldman-Cousins, Profile Likelihood Ratio, etc.

"Unblind" your search data with great aplomb:

- 0 events
 - Corresponds to 2.44 events at 90% CL publish XS limit
- Some (very few) events
 - lower bound consistent with 0 publish XS limit
 - lower bound just about excludes 0 be reasonable
- Quite a few events
 - Calculate significance (how many "sigma" effect?)
 - Spend a long time re-examining your systematics
 - If you'd bet your house, then book Stockholm!
 (but would you?)

DISCOVERY – "COUNTS IN BOXES", REAL WORLD

1. Define nuclear-recoil acceptance band/box using calibration data only

- Difficult to calibrate nuclear recoil band *in-situ* with low systematic error (self shielding...)
- Conversion between nuclear recoil energy and gamma-ray energy is not straightforward
- The detector blew up before enough calibration could be collected...

2. Calculate the background expected within that region (hopefully ~0)

- How large is ~0?
- Did you really find *all* background contributions, or just the *nice* ones that you could simulate?
- What is uncertainty in background and how to treat this in the statistical analysis?

3. Analyse your data blindly (at least a fraction, in & around search box)

- Sorry, not enough data to optimise cuts need to open more (or all?)
- Maybe a new type of background was revealed only after you looked at the search data?
- Bug in the analysis software, not apparent in 10% dataset...

4. Apply statistical analysis defined a priori

- Single-sided statistical analysis (upper limit only) background treated as signal, no discovery
- Maximal gap method, some Poisson analyses, etc
- Most experiments suffer from some of these when they first run...
 - Publish (probably over-conservative) upper limit
 - Work even harder to understand your systematics next time...

LUX PROFILE LIKELIHOOD RATIO SIGNAL ESTIMATION

$$\mathcal{L}_{WS} = \frac{e^{-N_s - N_{Compt} - N_{Xe-127} - N_{Rn222}}}{\mathcal{N}!} \prod_{i=1}^{\mathcal{N}} N_s P_s(x; \sigma, \theta_s) + N_{Compt} P_{ER}(x; \theta_{Compt}) + N_{Xe-127} P_{ER}(x; \theta_{Xe-127}) + N_{Rn} P_{ER}(x; \theta_{Rn})$$

$$\text{Observables:} \qquad \mathbf{x} = (S1, \log_{10}(S2/S1), r, z)$$

$$\text{Parameter of interest:} \qquad N_s$$

$$\text{Nuisance parameters:} \qquad N_{Compt}, N_{Xe-127}, N_{Rn,Kr-85}$$

SIGNAL MODEL: simulated 2D PDFs including resolution/efficiencies; uniform in (r²,z)

LUX PROFILE LIKELIHOOD RATIO SIGNAL ESTIMATION

BACKGROUND MODEL: simulated 2D PDFs including resolution/efficiencies

LUX Simulation log__(cts/kg/day) 2.4 2.2 50 0.5 2.0 0 40 1.8 -0.5 Height [cm] 1.6 1.4 1.2 20 -1.5 1.0 -2 0.8 10 Model from ³H -2.5 og10(S2/S1) 0.6 0 10 20 30 10 15 20 5 Radius [cm] S1 [estimated photons]

External radioactivity (Compton-scattered gammas)

Xe-127 atomic cascade with HE gamma escape

og10(S2/S1)

Dark Matter: big problem, must keep looking!