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DIRECT SEARCHES 
FOR DARK MATTER 

UNDERGROUND 



Outline 

1. The dark matter problem 
– A dark universe 
– Galactic dark matter 
– Weakly Interacting Massive Particles 

2. How to catch a WIMP 
– The experimental challenge 
– Direct detection technologies 
– World Status 
 

3. Signal estimation 
– “Counts in boxes” 
– Maximum Likelihood analysis 

 

2 

Motivation →  
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A DARK UNIVERSE 
• Λ-CDM cosmology is a remarkably successful model 
• Initial conditions photographed at last scatters (CMB) 
• Left to evolve for 13.7 Gyr under two dark ‘fluids’ – DE and DM 
• To what we see today 



• Spiral galaxies ‘spin’ too quickly for observed ‘luminous’ mass 
• Our Milky Way is no exception: we are immersed in DM halo 
• Direct search experiments probe our galactic dark matter 

• Density near Sun ∼0.3 GeV/cm3 
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OUR DARK MILKY WAY 

ρ0 = 0.35±0.08 GeV/cm3 

Kafle et al. 2014 ApJ 794 59 Rubin, et al, 1978, ApJ. Lett. 225, L107 



DARK MATTER CANDIDATES 
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G. Bertone 

•WIMPs 
 Solve DM problem 
 Electroweak stabilisation 

•Axions 
 Solve DM problem   

 Strong CP problem 

• Focus on WIMPs: stable, neutral, cold, heavy particles,  
 interacting via gravity – and (by definition) the weak force 
• Can solve the DM problem in all its glory: 
 astrophysical, cosmological and particle physics 
• Λ-CDM was made for WIMPs; but there are puzzles too: 
 e.g. why is their present density similar to that of baryons? 

http://en.wikipedia.org/wiki/File:Mr._Wimpy_Coverart.png�


HOW TO CATCH A WIMP 
1. Direct detection (scattering XS) 
• Nuclear (atomic) recoils from elastic scattering 
• A- & J-dependence, annual modulation, directionality 
• Galactic DM at the Sun’s position – our DM! 
• Mass measurement (if not too heavy) 

 

2. Indirect detection (decay, annihilation XS) 
• High-energy cosmic-rays, γ-rays, neutrinos, etc. 
• Over-dense regions, annihilation signal ∝ n2 
• Very challenging backgrounds 

 

3. Accelerator searches (production XS) 
• MET, mono-X, dark photons, etc. 
• Mass measurement may be poor at least initially 
• May not establish that new particle is the DM 
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WEAKLY INTERACTING MASSIVE PARTICLES 

Main observable: 
Very low-energy nuclear recoils (NR)  
From elastic WIMP-nucleus scattering 
Spin-independent XS ∼ A2 

Spin-dependent XS ∼ J 
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WIMP-NUCLEUS ELASTIC SCATTERING RATES 

The ‘spherical cow’ galactic model 
• DM halo is 3-dimensional, stationary, with no lumps 
• Isothermal sphere with density profile ρ ∝ r −2 
• Local density ρ0 ~ 0.3 GeV/cm3 (~1/pint for 100 GeV WIMPs) 

Maxwellian (truncated) velocity distribution, f(v) 
• Characteristic velocity v0=220 km/s 
• Escape velocity vesc=544 km/s 
• Earth velocity vE=230 km/s 
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~ few keV 

Nuclear recoil energy spectrum [events/kg/day/keV] 



• Coupling to p and n more useful than coupling to nucleus 
• Compare different targets materials, accelerator & indirect searches 

• Spin-independent (scalar) interaction 

 

– Note A2 enhancement factor (coherence) – c/pMSSM within reach 

• Spin-dependent (axial-vector) interaction 

 

– Note J (nuclear spin) replaces A2 enhancement – less sensitive than SI 
– Some targets more sensitive to proton, others to neutron scattering 

– Non-Relativistic Effective Theory: WIMP-nucleon XS has 6 components 
 (cf. Fitzpatrick, Haxton, Anand, et al: 1203.3542, 1405.6690 ) 
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WIMP-NUCLEON ELASTIC SCATTERING XS 



Neutron elastic scattering 
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En = neutron energy (lab) 
ER = recoil energy (lab) 
A = mass of target 
Θ = scattering angle (CM) 
θ = recoil angle (lab) 
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Nuclear Recoils in WIMP Detectors 

• Kinematic factor peaks (r=1) for equal masses 
– In this case, the projectile transfers all its energy for head-on collisions 
– Heavier nuclei for heavier WIMPs, lighter nuclei for lighter WIMPs 
– And hydrogenated materials are best to moderate neutrons 

• Calibration of WIMP targets 
– For 100 GeV WIMPs, a Xe target is well calibrated by MeV neutrons 
– Sources: AmBe and YBe (α,n), Cf-252 fission, D-D generators 
– Signal and calibration maximum energies: 

 Xe)(n03.0
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1 MeV neutron → ER,max = 30 keV 220 km/s WIMP → ER,max = 30 keV 
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Nuclear Form Factor, F2(q) 
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SI scattering rates 
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Annual Modulation 
Galactic rotation through stationary halo: 
“The Earth bathes in a WIMP wind” 

DAMA/NaI + DAMA/LIBRA 

• Any seasonal effects will have opposite polarity in Southern hemisphere 
• Difficulty: many things modulate seasonally…. 

14 

9σ effect 



Directional Detection 

DRIFT Experiment 

• Signal has fixed distribution in sky (Sygnus): effective background discrimination 
• Difficulty: to implement large targets with a gas (required to detect directionality) 

15 



THE EXPERIMENTAL CHALLENGE 

16 

• Low-energy detection is easy ;) 
o Several technologies allow sub-keV NR detection 

• Rare event searches are also easy ;) 
o Not a problem at >100 MeV, think neutrinos 

 

• But doing both is hard! 
• Large is better for shielding 
 against external backgrounds 
• But harder to collect  
 quantum-level signal ‘carriers’  
 from deep inside detector  volume  

 

 
• Also: there is no trigger… 

Key requirements 
•  Large mass x time 

•  Low ER threshold 
•  Low background 

•  ER/NR discrimination 

http://free-extras.com/images/homer_and_beer-1089.htm�


Building a WIMP detector 
• Consider 1 kg target 
 Sensitive to Edep>1 keV 

 
• Expected WIMP rates  

– 0.01−0.000001 evt/day 
 

• However… 
 

• Cosmic rays, α, β, γ-rays 
– >1,000,000 evt/day 

 
• Neutrons are dangerous! 

– Several evt/day 
 

• Neutrinos will be ultimate background 

1 kg 

β 
γ 

α n 

µ WIMP 
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Building a WIMP detector 
• Move underground 

• Use radio-pure materials 

• Shield external γ-rays 

• Shield external neutrons 

• Actively veto neutrons 

• Discriminate e-recoils (γ, β, ν)  from 
n-recoils (WIMPs, n, ν) 

• Coherent ν-A scattering:     
(probably) irreducible background  

WIMP 
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Backgrounds 
• Nuclear recoils – same signature, possibly irreducible 

– Neutrons from (α,n) and SFission from U/Th trace contamination 
• Local environment, shields, vessels, components, target material itself 

– Nuclear recoils from alpha decay (e.g. radon daughter plate-out) 
• Contaminating detector surfaces 

– High energy neutrons from atmospheric muon spallation 
• Difficult to shield completely even underground 

– Eventually, coherent neutrino-nucleus scattering (new!) 

• Electron recoils – discrimination power is finite 
– Gamma-ray background external to target 

• U/Th, K-40, Cs-137, from environment, shields, vessels, components 
– Contamination in target bulk and detector surfaces 

• U/Th betas and gammas (Pb-214, Bi-214, Pb-210,…) 
• Cosmogenic (Ar-39, Ge-68, Ge-71,…), anthropogenic (Kr-85, Cs-137,…) 

– Eventually, elastic scattering of solar pp neutrinos off electrons (new!) 

19 



Self-shielding  
in noble liquids 
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Liquid 
xenon 
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Anticoincidence detector 
around WIMP target 

21 

Water cherenkov, passive LXe, 
bare or loaded scintillator,… 

veto 

make 
 thin! 

Liquid 
Xenon 

 
 
 
 



Heat & Ionisation 
Bolometers 
Targets: Ge,Si 

CDMS, EDELWEISS 
SuperCDMS, EURECA 

cryogenic (<50 mK) 

Light & Heat Bolometers 
Targets: CaWO4, BGO, Al2O3 

CRESST, ROSEBUD 
cryogenic (<50 mK) 

Light & Ionisation 
Detectors 

Targets: Xe, Ar 
ArDM, LUX, WARP, DarkSide 

Panda-X, XENON, ZEPLIN, LZ 
cold (LN2) 

ionisation 
Q 

WIMP SEARCH TECHNOLOGY ZOO 
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Scintillators 
Targets: NaI, Xe, Ar 

ANAIS, CLEAN, DAMA,  
DEAP3600, KIMS, LIBRA,  
NAIAD, XMASS, ZEPLIN-I 

Ionisation Detectors 
Targets: Ge, Si, CS2, CdTe 

CoGeNT, CDEX, DAMIC, DRIFT, 
DM-TPC, GENIUS, IGEX, NEWAGE  

Bolometers 
Targets: Ge, Si, Al2O3, TeO2 

CRESST-I, CUORE, CUORICINO 
 

Bubbles & Droplets 
CF3Br, CF3I, C3F8, C4F10 

COUPP, PICASSO, PICO, SIMPLE 



PRESENT STATUS 
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∼3 decades of effort 
 

∼5 decades in sensitivity 1987 
Ahlen et al 



PRESENT STATUS 
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SIZE (x TIME) 
HEAVY NUCLEI 

THRESHOLD 
LIGHT NUCLEI 



PRESENT STATUS 
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NOBLE  
LIQUIDS 

CRYOGENIC 
SEMICOND 



CRYOGENIC DETECTORS 
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C
ET =∆ max

Thermal signal lost with 
increasing mass: ideally, collect 
phonons before they thermalise 

T0~10-50 mK 

Superconducting Transition-Edge Sensor (CDMS) 

Phonon channel: ∼keV threshold, no quenching 
Can collect a second signature for discrimination: 
• Phonons + ionisation (e.g. CDMS, EDELWEISS) 
• Phonons + scintillation (e.g. CRESST) 

EDELWEISS DETECTORS 

CRESST DETECTORS 

S-CDMS DETECTORS 



CDMSLite/SuperCDMS SOUDAN 
iZIPs, interleaved ionisation & phonon readout 
• Improved fiducialisation wrt CDMS-II 
• Same location & infrastructure 
• CDMSLite: low ionisation threshold 
 via Luke-Neganov phonon amplification 
 1 iZIP, 6 kg*days Ge 
• SuperCDMS: LE analysis on selected detectors 
 7 iZIPs (15 installed), 577 kg*days Ge 
• Key parameters 

– CDMSLite: 0.8 keVr (no discrimination) 
– S-CDMS LE: 1.6-10 keVr (some discrimination) 

• Sensitivity 
– 3.4x10-41 cm2 at 8 GeV (Lite) 
– 1.2x10-42 cm2 at 8 GeV 

• Onwards: SuperCDMS at SNOLab (∼100 kg) 
27 
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SuperCDMS AT SNOLab 
SNOLab 

E. Figueroa-Feliciano/APP14 

B. Loer, DM2014 
iZIP detectors 
• 98 kg Ge (70 x 1.4 kg) 
• 12 kg Si (20 x 0.6 kg) 
• 10 cm diam, 3.3 cm thick 
• 12 phonon, 4 charge chans 
• Adding LAB active veto 
• Det fabrication from late 2014 
• Commissioning 2016 
• Common phase w/ EURECA? 
• Key parameters 

– NR threshold: 0.8 keV, 8 keV 
– Background: <0.2 evts (5 yrs) 

• Sensitivity 
– ∼1x10-46 cm2 at 40 GeV by 2021 

28 



TWO-PHASE XENON TPC 
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S1: prompt scintillation signal 
– Light yield: ∼60 ph/keV (ER, 0 field) 
– Scintillation light: 178 nm (VUV) 
– Nuclear recoil threshold ∼5 keV 

S2: delayed ionisation signal 
– Electroluminescence in vapour phase 
– Sensitive to single ionisation electrons 
– Nuclear recoil threshold <1 keV 

S1+S2 event by event 
– ER/NR discrimination (>99.5% rejection) 
– mm vertex resolution + high density: self-shielding of radioactivity backgrounds 

LXe is the leading WIMP target: 
– Scalar WIMP-nucleon scattering rate dR/dE∼A2, broad mass coverage >5 GeV 
– Odd-neutron isotopes (129Xe, 131Xe) enable SD sensitivity; target exchange 
– No damaging intrinsic nasties (127Xe short-lived, 85Kr removable, 136Xe 2νββ ok) 



• ZEPLIN developed 2-phase Xe detectors 
• Boulby programme completed in 2012 
• Z3 achieved best discrimination in LXe 

Lebedenko et al, PRD 80 (2009) 052010 
Akimov et al, PLB 709 (2012) 14 
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Boulby 

ZEPLIN-III: TWO-PHASE XENON 
UK-LED PROGRAMME AT BOULBY 



LUX: TWO-PHASE XENON 
Liquid xenon TPC 
• 250 kg LXe (118 kg fiducial) 
• PTFE field cage, 122 PMTs 
• 3D imaging (<1 cm) 
• Calibration: in situ D-D gen, 
 Dispersed 83mKr and CH3T 
• Key parameters 

– Light yield: >8 phe/keVee 
– Drift field: 0.2 kV/cm 
– NR threshold: 4.3 keV 
– ER discrimination: 99.6% 
– Background: 2 ER/day (ROI total!) 

• Sensitivity 
– 7.6x10-46 cm2 at 33 GeV (Run 3) 

• Onwards: LUX-ZEPLIN (7-tonne TPC) 
31 

SURF 

1310.8214 



LUX: CALIBRATION 
Electron Recoils 
• Dispersed β sources: 
• 83mKr: S1 & S2 cal 
• CH3T: ER band 

 
 
 
 
 
 

 
Nuclear Recoils 
• D-D neutron generator 
• S1 & S2 yields for recoils  
 in LXe to Ο(keV) 

32 

SURF 

1310.8214 

Neutron pipe 



LUX: RESULTS 
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SURF 

1310.8214 

Background expected in blue band 
Signal expected in red band 

Observation consistent  
with background only 

(p-value 0.35) 
 

Events recorded in 85.3 live days of exposure 
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recoil energy (loosely) >>> 

The Economist 
“Absence of evidence,  
or evidence of absence?” 

New York Times 
“Dark Matter Experiment  
Has Detected Nothing,  
Researchers Say Proudly” 

1.5 keV  
electron 
recoil 

2 evts/day! 



DEAP-3600: SINGLE PHASE LAr 
PSD in single phase LAr 
• 3.6 t LAr (1 t kg fiducial) 
• 255 PMTs (75% coverage) 
 light-guide coupled 
• Inside 8 m water shield 
• Vessel resurfaced in situ  
 prior to WLS evaporation 

• Key parameters 
– Light yield: 8 phe/keVee 
– NR threshold: 60 keVr (Ar-39) 
– ER discrimination: 10-10 at 20 keVee 
– Background: <0.3 events (3 t·yr) 

• Sensitivity goal 
– 1x10-46 cm2 at 100 GeV by 2017 

• Onwards: DEAP-50 tonnes 
34 

SNOLab 0904.2930 

S. Peeters/APP14 



XENON-1T: TWO-PHASE XENON 
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LNGS 

LNGS 
Oberlack 

APP14 
Liquid xenon TPC 
• 3.3 t LXe (1 t fiducial) 
• 1 m long TPC, 248 PMTs 
• 10 m water Cherenkov 
• Construction now 
• Operation from 2015 
• (Oversized OV for nT phase) 

• Key parameters 
– Drift field: 1 kV/cm 
– Background: ∼1.5 evt (2.7 t·yr) 

• Sensitivity 
– 2x10-47 cm2 by 2017 

• Onwards: XENON-nT, DARWIN 



LZ: TWO-PHASE XENON 
Liquid xenon TPC 
• 7.0 t LXe active (5.6 t fiducial) 
• LXe Skin detector (∼2 t) 
• Gd-loaded Scintillator Veto 
• 8-m water tank (post-LUX) 
• Construction from 2015 

• Key parameters 
– Light yield: >6 phe/keVee 
– NR threshold: ∼6 keV 
– ER discrimination: >99.5% 
– Background: ∼1.9 evt (8 t·yr) 

• Sensitivity 
– 2.5x10-48 cm2 circa 2020 

• UK-supported next-generation experiment 
36 

SURF 

LUX 
water 

tank

HV delivery
umbilical

low-bk
cryostat

LXe Skin
detector

LXe TPC

Gd-loaded 
liquid scintillator
Outer Detector

LXe HX

LZ DETECTOR(S) 
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Snowmass Community Summer Study 2013 
Cosmic Frontier Report CF1: WIMP Dark Matter Detection 

PROSPECTS 



CDMS (2004) 

DISCOVERY – “COUNTS IN BOXES”, IDEAL WORLD 

1. Define nuclear-recoil acceptance band/box using calibration data only 
2. Calculate the background expected within that region (hopefully <<1) 
3. Blind data analysis (at least a fraction, in & around search region) 
4. Apply statistical analysis defined a priori 

– Feldman-Cousins, Profile Likelihood Ratio, etc. 

“Unblind” your search data with great aplomb: 
• 0 events 

– Corresponds to 2.44 events at 90% CL – publish XS limit 

• Some (very few) events 
– lower bound consistent with 0 – publish XS limit 
– lower bound just about excludes 0 – be reasonable 

• Quite a few events 
– Calculate significance (how many “sigma” effect?) 
– Spend a long time re-examining your systematics 
– If you’d bet your house, then book Stockholm! 
 (but would you?) 



1. Define nuclear-recoil acceptance band/box using calibration data only  
– Difficult to calibrate nuclear recoil band in-situ with low systematic error (self shielding…) 
– Conversion between nuclear recoil energy  and gamma-ray energy  is not straightforward 
– The detector blew up before enough calibration could be collected… 

2. Calculate the background expected within that region (hopefully ∼0) 
– How large is ∼0? 
– Did you really find all background contributions, or just the nice ones that you could simulate? 
– What is uncertainty in background and how to treat this in the statistical analysis? 

3. Analyse your data blindly (at least a fraction, in & around search box) 
– Sorry, not enough data to optimise cuts – need to open more (or all?) 
– Maybe a new type of background was revealed only after you looked at the search data? 
– Bug in the analysis software, not apparent in 10% dataset… 

4. Apply statistical analysis defined a priori 
– Single-sided statistical analysis (upper limit only) – background treated as signal, no discovery 
– Maximal gap method, some Poisson analyses, etc 

• Most experiments suffer from some of these when they first run… 
– Publish (probably over-conservative) upper limit 
– Work even harder to understand your systematics next time… 

DISCOVERY – “COUNTS IN BOXES”, REAL WORLD 
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SIGNAL MODEL: simulated 2D PDFs including resolution/efficiencies; uniform in (r2,z)  

Observables: x = (S1, log10(S2/S1), r, z) 
Parameter of interest:  Ns 

Nuisance parameters: NCompt, NXe-127, NRn,Kr-85 

LUX PROFILE LIKELIHOOD RATIO SIGNAL ESTIMATION 
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BACKGROUND MODEL: simulated 2D PDFs including resolution/efficiencies 

External radioactivity (Compton-scattered gammas) 

Xe-127 atomic cascade with HE gamma escape 

Pb-214/Kr-85  
Uniform in Eee and space 

LUX PROFILE LIKELIHOOD RATIO SIGNAL ESTIMATION 



Dark Matter: big problem, 
must keep looking! 
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