# Scaling properties in multijet events

— towards high multiplicities —

#### **Peter Schichtel**

Durham University @ Higgs plus Jets 2014





## Content

Introduction

 $\rightarrow$  theoretical uncertainties in multi-jet observables

→ jet scaling patterns

Jet radiation in QCD (FSR)

- $\rightarrow$  a simple QED example
- → generating functionals
- → scaling limits & beyond

Hadron colliders

- → pdf effects
- → learning from data
- → understanding Higgs (vetoes, using BDTs)



uncertainties highly correlated

understand jets  $\rightarrow$  controll jet dependent observables



## Aside: exclusive cross section ratios

#### ratios: cancel systematics

#### exclusive: statistically independent

visualization

exclusive: challenge for uncertainty estimation

## Scaling patterns

#### staircase scaling

[Steve Ellis, Kleis, Stirling(1985); Berends(1989)]

$$\sigma_n^{\text{excl.}} = \sigma_0 e^{-bn}$$



same for exclusive and inclusive [Phys. Rev. D 83 095009 (2011)]

## Poisson scaling

[Peskin & Schroeder; Rainwater, Zeppenfeld(1997)]





## Can we understand these from basic principles?

## LHC: 7 TeV data



#### Can we understand these from basic principles?

## Bremsstrahlung in QED

schematic

soft real and virtual photons



arbitrary hard process

Peskin & Schröder

## Bremsstrahlung in QED

#### soft collinear limit:

#### factorization theorem



Peskin & Schröder

## Bremsstrahlung in QCD

#### more complicated: gluon self interaction

#### formal way to deal with

#### QCD:

# generating functional formalism

[Konishi te al. (1979); Ellis, Stirling, Webber (1996); Gerwick, Gripaios, Schumann, Webber (2012)]

$$\Phi(u) := \sum_{n} u^{n} P(n) \xrightarrow{\text{jet rate}} P(n) = \left. \frac{1}{n!} \frac{d^{n}}{du^{n}} \Phi(u) \right|_{u=0}$$

# Bremsstrahlung in QCD

**evolution equation**  $\Phi_i(t) = u \exp \left[ \int_{t_0}^t dt' \sum_{jl} \Gamma_{i \to jl} \left( \frac{\Phi_j(t') \Phi_l(t')}{\Phi_i(t')} - 1 \right) \right]$ large log limit:  $t \gg t_0$   $\Phi_i(t) = \frac{u\Delta_i(t)}{\Delta_i(t)^u}$ primary emissions dominate  $\rightarrow$  Poisson scaling democratic limit  $\underbrace{t \rightarrow t_0}_{1 + \frac{1-u}{u \wedge c(t)}} \Phi_g(t) = \frac{1}{1 + \frac{1-u}{u \wedge c(t)}}$ exact solution [JHEP 1210 (2012) 162] → staircase scaling

 $\Phi_g \sim \frac{1}{1 + \frac{1-u}{u\Delta_g} - \mathcal{R}(u)}$ 

 $\phi(n)$ 

#### additional effects:

- → breaking terms → phase space
- $\rightarrow$  finite jet radius (X)

[Gerwick, PS: 1412.1806]

## Bremsstrahlung in QCD



[Gerwick, PS: 1412.1806]

## PDF effects

#### threshold approximation



## Callibrate your jets from data



# Understanding Higgs veto efficiencies

[Gerwick, Schumann, Plehn: Phys.Rev.Lett. 108 (2012) 032003]



# Know you backgrounds: jets & BDT



#### WBF Higgs

[Bernaciak, Mellado, Plehn, Ruan, PS: Phys. Rev D89 2014]

| S/B                  | cuts  | veto  | more jets |
|----------------------|-------|-------|-----------|
| $p_T$ selection      | 0.014 | 0.047 | 0.083     |
| $\Delta y$ selection | 0.026 | 0.045 | 0.071     |

## Know you backgrounds: jets & BDT

#### invisible Higgs (WBF)

[Bernaciak, Plehn, PS, Tattersall: 1411.7699]



| $\Gamma_{\rm inv}/\Gamma_{\rm SM}$ | cuts | BDT  | more jets |
|------------------------------------|------|------|-----------|
| $10  f b^{-1}$                     | 47 % | 28 % | 16 %      |
| $3000  fb^{-1}$                    | 6.9% | 3.5% | 2.1%      |

# Conclusions

- $\rightarrow$  multi-jet observables are plagued by huge theoretical uncertainties (LO)
- $\rightarrow$  jet spectra follow simple scaling patterns
- → staircase scaling is a firm QCD prediction (& observed)
  - @ LHC: low multiplicities due to PDF effects
- $\rightarrow$  controll uncertainties & understand backgrounds from data
- → QCD high multiplicity predictions possible [difficult with NLO]
- → use in subsequent applications (Higgs studies, BSM, ...)

# thanks for listening