CMS V+jets

Higgs+jets 2014 8-10 Dec 2014 IPPP, Durham (UK)

Kostas Theofilatos

(on behalf of CMS collaboration)

Instead of an outline

- W+jets (7 TeV): <u>http://arxiv.org/abs/1406.7533</u> (accepted in PLB)
- Z+jets (7 TeV): <u>http://arxiv.org/abs/1408.3104</u> (submitted to PRD)
- Z+jets (8 TeV)
 - SMP-13-007: <u>http://cds.cern.ch/record/1728322</u>
 - SMP-14-009: <u>http://cds.cern.ch/record/1728345</u>
- R(Z+jets/γ+jets)
 - SMP-14-005: <u>http://cds.cern.ch/record/1740969?ln=en</u>
- All CMS V+jets results: <u>link</u>

Conventions during this talk

Two types of Data

- 7 TeV implies always 5 fb-1 pp collisions
- 8 TeV implies always 20 fb-1 pp collisions

Data shown here always corrected for detector efficiency & smearing; response matrix was obtained from LO+PS

Three types of Theory (for the V+jets signal)

- LO+PS: always normalized to NNLO inclusive (FEWZ)
 - \blacksquare exception $\gamma+jets$ analysis, where LO x-section was used
- NLO: always normalized to its native cross section
- NLO+PS: always normalized to its native cross section

V+Heavy Flavor

Will not cover it here, what we learn from those is:

- 4F vs 5F -- PDFs (to **b** or not to **b**)
- strange quark fraction
- collinear bbar
- aMC@NLO, MCFM, MG5+Pythia6

CMS-SMP-12-026 Phys. Lett. B 735 (2014) 204

	NLO ME	LO ME	PS	Channel	Data
BlackHat +Sherpa	≤ 4 jets			W+jets	7 TeV
Madgraph5		≤ 4 jets	Pythia6	W+jets	7 TeV
Sherpa1.4		≤ 4 jets	Sherpa	W+jets	7 TeV
Sherpa2β2 +BlackHat	≤ 1	≤ 4 jets	Sherpa	Z+jets	7 TeV
Madgraph5		≤ 4 jets	Pythia6	Z+jets	7 TeV
Powheg	1 jet		Pythia6	Z+jets	7 TeV
Sherpa2 +BlackHat	≤ 2 jets	≤ 4 jets	Sherpa	Z+jets	8 TeV
Madgraph5		≤ 4 jets	Pythia6	Z+jets	8 TeV
BlackHat +Sherpa	≤ 4 jets			Z+jets	8 TeV
Sherpa1.4		≤ 4 jets	Sherpa	Z+jets	8 TeV
Madgraph5		≤ 4 jets	Pythia6	γ+jets	8 TeV

	NLO ME	LO ME	PS	Channel	Data
BlackHat +Sherpa	≤ 4 jets			W+jets	7 TeV
Madgraph5		≤ 4 jets	Pythia6	W+jets	7 TeV
Sherpa1.4		≤ 4 jets	Sherpa	W+jets	7 TeV
Sherpa2β2 +BlackHat	≤ 1	≤ 4 jets	Sherpa	Z+jets	7 TeV
Madgraph5		≤ 4 jets	Pythia6	Z+jets	7 TeV
Powheg	1 jet		Pythia6	Z+jets	7 TeV
Sherpa2 +BlackHat		start	Wath	thes	e 8 TeV
Madgraph5		≤ 4 jets	Pythia6	Z+jets	8 TeV
BlackHat +Sherpa	≤ 4 jets			Z+jets	8 TeV
Sherpa1.4		≤ 4 jets	Sherpa	Z+jets	8 TeV
Madgraph5		≤ 4 jets	Pythia6	γ+jets	8 TeV

Phase space

- muon $p_T > 25$ GeV, $|\eta| < 2.1$
- jets: anti- $k_T \Delta R = 0.5$
 - p_T > 30 GeV, |η| < 2.4,
 ΔR(jet,μ) > 0.5

inclusive jet multiplicity spectrum has reasonable Data/Theory agreement

A 5th-jet Blackhat+Sherpa prediction will be added to the paper

Highly boosted W

- there are more predicted than observed
- LO+PS are accompanied with stat uncert., no theory systematic uncert., making the disagreement looking spectacular

Highly boosted W

- there are more predicted than observed
- same picture in Z+jets
- similar picture in γ+jets
 Effect not related to PDFs

$H_T = \text{scalar } \Sigma p_T(\text{jet})$

be aware: H_T is a tricky observable

NLO fixed order without PS can't model regions where the energy is distributed in many soft jets

	NLO ME	LO ME	PS	Channel	Data
BlackHat +Sherpa	≤ 4 jets			W+jets	7 TeV
Madgraph5		≤ 4 jets	Pythia6	W+jets	7 TeV
Sherpa1.4		≤ 4 jets	Sherpa	W+jets	7 TeV
Sherpa2β2 +BlackHat	≤ 1	≤ 4 jets	Sherpa	Z+jets	7 TeV
Madgraph5		≤ 4 jets	Pythia6	Z+jets	7 TeV
Powheg	1 jet		Pythia6	Z+jets	7 TeV
Sherpa2 +BlackHat	≤ 2 jets	≤ 4 jets	Sherpa	Z+jets	8 TeV
Madgraph5		≤ 4 jets	Pythia6	Z+jets	8 TeV
BlackHat +Sherpa	≤ 4 jets	/ina t	7 .	Z+jets	8 TeV
Madgraph5		\leq 4 jets	Pythia6	γ+jets	8 TeV

Z+jets

Phase space

- lep p_T > 20 GeV, |η| < 2.4
- ■71 < Mll< 111 GeV
- jets: anti- $k_T \Delta R = 0.5$
 - pT > 30 GeV, |η| < 2.4,
 ΔR(jet,μ) > 0.5

LO+PS overpredicts data, similarly to what was observed in W+jets

Z+jets

NLO+PS mixed picture

	NLO ME	LO ME	PS	Channel	Data
BlackHat +Sherpa	≤ 4 jets			W+jets	7 TeV
Madgraph5		≤ 4 jets	Pythia6	W+jets	7 TeV
Sherpa1.4		≤ 4 jets	Sherpa	W+jets	7 TeV
Sherpa2β2 +BlackHat	≤ 1	≤ 4 jets	Sherpa	Z+jets	7 TeV
Madgraph5	7_1	\leq 4 jets	Pythia6	Z+jets	7 TeV
Powheg	1 jet	JELS /	Fythia6	Z+jets	7 TeV
Sherpa2 +BlackHat	≤ 2 jets	≤ 4 jets	Sherpa	Z+jets	8 TeV
Madgraph5		≤ 4 jets	Pythia6	Z+jets	8 TeV
BlackHat +Sherpa	≤ 4 jets			Z+jets	8 TeV
Sherpa1.4		≤ 4 jets	Sherpa	Z+jets	8 TeV
Madgraph5		≤ 4 jets	Pythia6	γ+jets	8 TeV

 $p_T(Z)$ is a key observable that we don't get right with LO +PS -- think of $p_T(Z)$ as MET, when $Z \rightarrow vv$

y+jets (8 TeV)

Preliminary results, only LO+PS comparison -- NLO will be put in place prior to the paper submission

- MC normalized to LO cross-section; not comparable to what was done for the Z+jets, which is LO+PS with NNLO norm
- however trend (slope) seems to be of similar strength

Ratio of $\sigma(Z+jets)/\sigma(\gamma+jet)$

Important observable for new physics searches

- LO predicts a plateau at high p_T(V)
- The $p_T(\gamma)$ is used as proxy to estimate $p_T(Z \rightarrow vv)$ i.e. MET

R(Z+jets/y+jets) (8 TeV)

R(Z+jets/γ+jets)[data] / R(Z+jets/γ+jets)[MC]

- double ratio ~1.2, is flat across all probed p_T [100,800] GeV
- observed bias as function of p_T(V) seems to be universal across the different vector boson species
- no evidence for a deviation from flatness within uncertainties

Few words about LO+PS

They are still the main workhorses in LHC analyses

Searches for new phenomena use LO+PS:

- need detector level predictions -- i.e., particle level
- need a fail-safe setup to perform closure tests of background estimation methods, e.g. we don't want "holes" in H_T or completely back-to-back events that fixed order may give to us
- normalization ? either NLO, or NNLO or if needed data sidebands

Measurements (SM precision tests)

- background is subtracted from data using LO+PS predictions
- In unfolding of detector effects, response matrix is build from digitized full-sim, i.e. needs again particle level MC

NLO+PS is a promising replacement of LO+PS for Run2

	NLO ME	LO ME	PS	Channel	Data
BlackHat +Sherpa	≤ 4 jets			W+jets	7 TeV
Madgraph5		≤ 4 jets	Pythia6	W+jets	7 TeV
Sherpa1.4		≤ 4 jets	Sherpa	W+jets	7 TeV
Sherpa2β2 +BlackHat	<pre></pre>	≤ 4 jets	Sherpa	Z+jets	7 TeV
Madgraph5		\leq 4 jets	Pythia6	O ^{Z+iets}	7 TeV
Powheg	1 jet	ELT	Pythia6	Z+jets	7 TeV
Sherpa2 +BlackHat	≤ 2 jets	≤ 4 jets	Sherpa	Z+jets	8 TeV
Madgraph5		≤ 4 jets	Pythia6	Z+jets	8 TeV
BlackHat +Sherpa	≤ 4 jets			Z+jets	8 TeV
Sherpa1.4		≤ 4 jets	Sherpa	Z+jets	8 TeV
Madgraph5		≤ 4 jets	Pythia6	γ+jets	8 TeV

Z+jets (8 TeV)

Phase space

- lep p_T > 20 GeV, |η| < 2.4
- ■71 < Mll< 111 GeV
- jets: anti- $k_T \Delta R = 0.5$
 - pT > 30 GeV, |η| < 2.4,
 ΔR(jet,μ) > 0.5

Z+jets (8 TeV)

LO+PS glitches seen also at 7 TeV, effect is correlated with $p_T(Z)$

Z+jets (8 TeV)

higher jet multiplicities in LO+PS suffer less, cancellation of competing effects ?

Z+jets (8 TeV) Sherpa2 describes all jet related observables, even the H_T; notice that 8 TeV has NLO up to 2 jets while 7 TeV was limited to 0,1 NLO

Z+jets (8 TeV) -- 2D

Summary

LO+PS

- Inclusively jet multiplicity in V+jets comes out nice
- Nice picture ameliorates, when focusing in highly boosted topologies; effect seems to be universal for V=W, Z or γ
- LO+PS if of fundamental importance for searches and precision SM measurements

NLO

Leading edge calculations, performs better, as expected, but with known limitations due to the lack of PS

NLO+PS

■ NLO ≤2 jets merged with LO 3,4 jets and PS satisfactory describe most V+jets observables studied at 8 TeV

Having ≥2 independent (N)LO+PS MC generators is important

References

- All CMS V+jets results: <u>link</u>
- W+jets (7 TeV): <u>http://arxiv.org/abs/1406.7533</u> (accepted in PLB)
- Z+jets (7 TeV): <u>http://arxiv.org/abs/1408.3104</u> (submitted to PRD)
- Z+jets (8 TeV)
 - SMP-13-007: <u>http://cds.cern.ch/record/1728322</u>
 - SMP-14-009: <u>http://cds.cern.ch/record/1728345</u>
- R(Z+jets/γ+jets)
 - SMP-14-005: <u>http://cds.cern.ch/record/1740969?ln=en</u>

Backup Slides

Few words on detector unfolding

It's an ill-posed problem

- \blacksquare Minimizes theory dependency e.g., on the generated p_{T}
- \blacksquare But detector response depends on how collimated and busy are the events, some model dependency on σ_{MC} is inevitable
- We need a minimum of 2 independent ME+PS generators to feel comfortable and assess systematic uncertainties
- Never attempted so far to get response matrix from NLO+PS

from: Gerhard Bohm, Günter Zech Introduction to Statistics and Data Analysis for Physicists

Fig. 9.2. Effect of deconvolution with a resolution wrong by 10%.