Higgs fiducial and differential cross section measurements at ATLAS

O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 cm 2010 0 1 2 3 4 5 6 7 8 9 0 10 11 12 13 14 15 16 17 cm

3

Outline

- 1. Why measure cross sections?
- 2. Definition of fiducial volume: its acceptances and NP corrections
- 3. Overview of the measurement
- 4. Signal extraction
- 5. Correction for detector effects
- 6. Uncertainties
- 7. Physics results:
 - 1. Fiducial cross sections
 - 2. Differential cross sections

michaela.queitsch-maitland@cern.ch

02/12/2014

Why cross sections?

- Cross sections offer a direct measurement of Higgs production rates in the data with minimal assumptions on the underlying model ('model independent').
 - Test of the compatibility of the SM with the data.

 σ_{ggF} [pb]

50

- Can compare data to a range of different theory models now and in the future.
- The inclusive Higgs production cross section is a hot topic in the theory community
 - Lot of activity to calculate the ggF Higgs production cross section to N³LO.

- Differential cross sections offer a model independent way of probing the properties of the Higgs boson.
 - 'State-of-the-art' MC generator predictions are now at NLO accuracy in QCD, with some steps towards NNLO.

Higgs differential cross section measurements

MANCHESTER

ggF inclusive cross section, $\sqrt{s} = 13$ TeV, $\mu_0 = m_H/2$, $\mu_0 = m_H$ Uncertainty from largest scale-var deviation from nominal

Benchmark summary from ggF XS WG

A few initial remarks

• Presenting ATLAS Higgs cross section measurements

Dag Gillberg (CERN)

- Measurements performed by extracting signal in the reference peak: all Higgs production modes included in this peak (not only ggF)
- $m_H = 125.4 \text{ GeV}$ (ATLAS measured Higgs mass), **8 TeV data** only (20 fb⁻¹)
- Only presenting the measurements in the $\gamma\gamma$ and ZZ channels (with focus on $\gamma\gamma$)
- Measurements are designed to be as *model independent* as possible
- I'm not including the recently published *WW*^(*) fiducial cross section measurement as part of the *WW* paper: <u>https://cds.cern.ch/record/1954714</u>

$$\sigma_{\text{fid},0j}^{\text{ggF}} = 27.5 \begin{array}{c} +5.4 \\ -5.3 \end{array} \begin{array}{c} +4.3 \\ -3.7 \end{array} = 27.5 \begin{array}{c} +6.9 \\ -6.5 \end{array} \text{ fb} \\ \sigma_{\text{fid},1j}^{\text{ggF}} = 8.4 \begin{array}{c} +3.1 \\ -3.0 \end{array} \pm 1.9 = 8.4 \pm 3.6 \text{ fb}. \\ (\text{stat.})(\text{syst.}) \end{array}$$

• See paper for details. The approach is a bit different from the γγ and ZZ results I will show. For example, the expected VBF contribution is subtracted.

Cross section measured

For $\gamma\gamma$ and ZZ Higgs kinematics: p_{TH} , $|y_H|$ Jet activity: N_{jets} , p_{jet1} Spin & CP: $\cos \theta^*$

Jet definition

jets: anti- $k_t R$ =0.4, |y|<4.4 p_T > 30 GeV

ZZ only: m_{34} = dilepton-mass of offshell Z

γγ **only**

Higgs kinematics: p_{Tt} Njets 50 GeV threshold Jet activity: $|y_{jet1}|$, p_{Tjet2} , $|y_{jet2}|$, $H_{T,jets}$ VBF: m_{jj} , p_{Tyyjj} , Δy_{jj} , $\Delta \phi(\gamma\gamma, jj)$ beam thrust: τ_{jet} , $\Sigma \tau_{jet}$ 2D: p_{TH} vs N_{jets} bins: {0,1,>2} jets, $\cos \theta^*$ vs p_{TH} Spin & CP: $\Delta \phi_{jj}$

• Binning determined by available statistics

Dag Gillberg (CERN)

Higgs cross section measurements

Fiducial regions: yy only

VBF-enhanced: $m_{jj} > 400, \Delta y_{jj} > 2.8, \Delta \varphi(\gamma \gamma, jj) > 2.6$

Higgs + 1 lepton: at least one *e* or μ with $p_{\rm T} > 15$ GeV, $|\eta| < 2.47$

Higgs + E_T^{miss} > 80 GeV

Definition of fiducial volume $c_i \mathcal{L}$

Fiducial acceptance

- Fiducial acceptance as a function of Higgs p_T for ggF only
 - Split into kinematic acceptance and photon isolation

Photon isolation requirement: $\sum E_T < 14 \text{ GeV}$ of particles within DR<0.4, mimics ATLAS photon isolation analysis selection

• Note: efficiency depend on amount of hadronic activity

Kinematic acceptance: both photons central: $|\eta| < 2.37$ $p_{\text{Tyy}}/m_{\text{yy}} > 0.35$ and 0.25

- Quite stable (~61%) vs most variables
- Depends on the Higgs boost along z-axis (rapidty)
 Fwd Higgs → fwd decay products

Dag Gillberg (CERN)

Fiducial acceptance

Comparing analytical ggF predictions with data

Comparing analytical ggF predictions with data

$$\sigma_{\rm fid} = \sigma_{\rm ggF} \ \mathcal{B} \left[\alpha_{
m kinem} \ \alpha_{
m iso} \ f_{
m NP} + \sigma_{
m fid, XH}
ight]$$
Our estimates of the above factors are in HEP data

... and the measurements of course

http://hepdata.cedar.ac.uk/view/ins1306615

< 2.37
< 2.37
> 0.35
> 0.25
P P> HIGGS < GAMMA GAMMA > X
8000.0 GeV
D(SIG)/DPT(2GAMMA) IN FB*GEV**-1
0.073 ± 0.307 (stat) ± 0.061 (sys,bkg_model_uncorr) ± 0.007 (sys,fit) ± 0.002 (sys,lumi) ± 0.001 (sys,PID) ± 0.001 (sys,iso) ± 0.000 (sys,trig) ± 0.000 (sys,pileup) +0.002,-0.001 (sys,gen_model)
1.315 ± 0.394 (stat) ± 0.072 (sys,bkg_model_uncorr) ± 0.072 (sys,fit) ± 0.037 (sys,lumi) ± 0.013 (sys,PID) ± 0.013 (sys,iso) ± 0.007 (sys,trig) ± 0.000 (sys,pileup) +0.037,-0.019 (sys,gen_model)
0.682 ± 0.317 (stat) ± 0.064 (sys,bkg_model_uncorr) ± 0.038 (sys,fit) ± 0.019 (sys,lumi) ± 0.007 (sys,PID) ± 0.007 (sys,iso) ± 0.003 (sys,trig) ± 0.000 (sys,pileup) +0.021,-0.004 (sys,gen_model)
0.788 ± 0.269 (stat) ± 0.042 (sys,bkg_model_uncorr) ± 0.044 (sys,fit) ± 0.022 (sys,lumi) ± 0.008 (sys,PID) ± 0.008 (sys,iso) ± 0.004 (sys,trig) ± 0.000 (sys,pileup) +0.027,-0.009 (sys,gen_model)
0.379 ± 0.225 (stat) ± 0.031 (sys,bkg_model_uncorr) ± 0.023 (sys,fit) ± 0.011 (sys,lumi) ± 0.004 (sys,PID) ± 0.004 (sys,iso) ± 0.002 (sys,trig) ± 0.000 (sys,pileup) +0.014,-0.002 (sys,gen_model)
0.253 ± 0.122 (stat) ± 0.017 (sys,bkg_model_uncorr) ± 0.016 (sys,fit) ± 0.007 (sys,lumi) ± 0.003 (sys,PID) ± 0.003 (sys,iso) ± 0.001 (sys,trig) ± 0.000 (sys,pileup) +0.009,-0.001 (sys,gen_model)
0.1797 ± 0.0855 (stat) ± 0.0059 (sys,bkg_model_uncorr) ± 0.0111 (sys,fit) ± 0.0050 (sys,lumi) ± 0.0018 (sys,PID) ± 0.0018 (sys,iso) ± 0.0009 (sys,trig) ± 0.0000 (sys,pileup) +0.0062,-0.0008 (sys,gen_model)
0.0193 ± 0.0155 (stat) ± 0.0014 (sys,bkg_model_uncorr) ± 0.0012 (sys,fit) ± 0.0005 (sys,lumi) ± 0.0002 (sys,PID) ± 0.0002 (sys,iso) ± 0.0001 (sys,trig) ± 0.0000 (sys,pileup) +0.0006,-0.0001 (sys,gen_model)
Plot SelectPlot

0.95

0

0.5

1.5

2

 $\mathbf{y}_{\gamma\gamma}$

Non-

0.9

Differential cross section measurement overview

- a) Spit dataset into bins of variable of interest (here 4 N_{jets} bins)
- b) For each bin, extract *s* from a *s*+*b* fit to the $m_{\gamma\gamma}$ spectra
- c) Large statistical uncertainty due to small s/b

2. Unfold to particle level and divide by integrated luminosity and bin-width

$$\sigma_{\rm fid} = \frac{n_{{\rm sig},i}}{c_i \ \mathcal{L}_{\rm int}}$$

for detector effects

- a) correction for detector effects with bin-by-bin unfolding
- b) convert to ("differential") cross section by dividing by int. lumi (and bin-width)

3. Plot and compare with theory

- a) compare to **particle level** prediction - i.e. no need for detector simulation
- b) Can also compare with analytical calculations (parton level) but then need small parton→particle level (NP) correction

Dag Gillberg (CERN)

Higgs boson mass

- Improved material description of the calorimeters: inactive material constrained to 2-10%X₀
- Precise MVA-based EM cluster calibration \rightarrow **10% improved** $H \rightarrow \gamma \gamma$ $m_{\gamma\gamma}$ resolution
- Data-MC agreement within (small!) uncertainty after calibration (C)

Signal extraction $\gamma\gamma$

The ATLAS calorimeters are finely segmented and can effectively distinguish between isolated photons and backgrounds like $\pi^{o} \rightarrow \gamma \gamma$

All diphoton events with 3-or-more jets

Nice Higgs resonance peak seen! Background estimated by smooth fit.

Main **systematics** from photon energy resolution, i.e. **uncertainty on width** of the **resonance peak**

Dag Gillberg (CERN)

Signal extraction ZZ

Significantly better s/b compared to $\gamma\gamma$

Irreducible ZZ from MC Normalization from NLO calculation.

Reducible background (jets fake one or more leptons) estimated from data in control regions

In 8 TeV data

34 data events in signal window: 118-129 GeV
After subtracting background → 25.1 signal events

aka unfolding

Defined as N_{reconstructed} / N_{particle-level} in each bin

Driven by photon reconstruction efficiency: $\sim 80\%$ per photon $\rightarrow 64\%$ probability that both photons get reconstructed

Also account for bin-migration.

- → Very small effect for photon/lepton defined variables
- → Sizeable for jet-based observables due to JES/JER and pileup (see larger to the right)

Dag Gillberg (CERN)

Dag Gillberg (CEPN)

Hinne arrose contian moneuromente ATLAC Simulation

Reconstructed level N_{jets}

Dag Gillberg (CERN)

Similar for ZZ: higher reconstruction efficiency per lepton but there are 4 of them, hence slightly larger overall correction for dector effects

Dag Gillberg (CERN)

Uncertainties

Completely dominated by the statistical uncertainty. This picture will change in Run II...

Now. Let's jump to the results!

Dag Gillberg (CERN)

$H \rightarrow \gamma \gamma$ fiducial cross sections

Fiducial region	Measured cross section (fb)
Baseline	$43.2 \pm 9.4 (\text{stat.}) {}^{+3.2}_{-2.9} (\text{syst.}) \pm 1.2 (\text{lumi})$
$N_{ m jets} \ge 1$	$21.5 \pm 5.3 (\text{stat.}) {}^{+2.4}_{-2.2} (\text{syst.}) \pm 0.6 (\text{lumi})$
$N_{\rm jets} \ge 2$	$9.2 \pm 2.8 (\text{stat.})^{+1.3}_{-1.2} (\text{syst.}) \pm 0.3 (\text{lumi})$
$N_{\rm jets} \ge 3$	$4.0 \pm 1.3 ({\rm stat.}) \pm 0.7 ({\rm syst.}) \pm 0.1 ({\rm lumi})$
VBF-enhanced	$1.68 \pm 0.58 (\text{stat.})^{+0.24}_{-0.25} (\text{syst.}) \pm 0.05 (\text{lumi})$
$N_{ m leptons} \ge 1$	< 0.80
$E_{\rm T}^{\rm miss} > 80 { m ~GeV}$	< 0.74

Fiducial region	Theoretical prediction (fb)	Source
Baseline	30.5 ± 3.3	LHC-XS $[56] + XH$
	$34.1^{+3.6}_{-3.5}$	STWZ $[98] + XH$
	$27.2^{+3.6}_{-3.2}$	Hres $[102] + XH$
$N_{ m jets} \ge 1$	13.8 ± 1.7	BLPTW $[105] + XH$
	$11.7^{+2.0}_{-2.4}$	JetVHeto $[106] + XH$
	$9.3^{+1.8}_{-1.2}$	Minlo $HJ + XH$
$N_{\rm jets} \ge 2$	5.65 ± 0.87	BLPTW + XH
	$3.99 \substack{+0.56 \\ -0.59}$	Minlo $HJJ + XH$
$N_{ m jets} \ge 3$	0.94 ± 0.15	Minlo $HJJ + XH$
VBF-enhanced	0.87 ± 0.08	Minlo $HJJ + XH$
$N_{\rm leptons} \ge 1$	0.27 ± 0.02	XH
$E_{\rm T}^{\rm miss} > 80 { m ~GeV}$	0.14 ± 0.01	XH

Dag Gillberg (CERN)

Transverse momentum

ρ_τ^{γγ}

• Differential cross sections as a function of transverse momentum of the Higgs-like resonance compared with theory for the $\gamma\gamma$ (left) and ZZ (right) fiducial regions

Jet multiplicity

 N_{Jets}

- Number of jets (anti- $k_t R = 0.4$) with $p_T > 30$ GeV and |y| < 4.4 produced in association with the Higgs-like resonance
- \geq 3 jets bin for *ZZ* only contain 1 event

Higgs $p_{\rm T}$ in bins of $N_{\rm jets}$

2014-12-07 2

27

Leading jet $p_{\rm T}$

ρ_τ^{j1}

- Transverse momentum of the leading jet produced in association with the Higgs boson (anti- $k_t R = 0.4$, |y| < 4.4)
- The first bin contains the events with no jet with $p_T > 30$ GeV

Higgs rapidity

Dag Gillberg (CERN)

Higgs cross section measurements

2014-12-07

29

Spin-CP: $\cos \theta^*$

Dag Gillberg (CERN)

Higgs cross section measurements

Spin-CP: $\cos \theta^*$ and Dphi(j,j)

Dag Gillberg (CERN)

Higgs cross section measurements

VBF variables

Dag Gillberg (CERN)

Higgs cross section measurements

MC/data ratio of mean and mode of differential distributions

33

- Presented ATLAS 8 TeV $\gamma\gamma$ and ZZ differential measurements
- Can be directly compared with theory predictions: now and in the future
- (*yy*, *ZZ* soon) Available in **HEPdata** and + dedicated **Rivet** routine
- Statistical uncertainty dominant. Expect about equal statistical precision with full 2015 dataset (10 fb⁻¹ @ 13 TeV). By the end of Run II expect 100 fb⁻¹ and x3 smaller uncertainties
- *yy* and *ZZ* use the same bin edges, and can be combined if one adjust for the channel dependent a) branching ratio and b) the fiducial acceptance
- Can use measurements to constrain theory, see talk by ...
- Happy birthday Florian!

Dag Gillberg (CERN)

Higgs cross section measurements

Leading jet rapidity, N_{jets}(p_T>50)

Beam-thrust variables

$$\tau = \frac{m_{\rm T}}{2\cosh y^*}, \quad y^* = y - y_{\gamma\gamma}, \quad m_{\rm T} = \sqrt{p_{\rm T}^2 + m^2},$$

More jet variables

Higgs cross section measurements

2014-12-07 39

120

 $p_{ au}^{\gamma\gamma jj}$ [GeV]

140

Dag Gillberg (CERN)

Higgs cross section measurements

 $\sum_{i=1}^{n} 0.6$

Fiducial differential cross sections

 Measurement of *fiducial* and differential cross sections are *corrected for detector effects* and designed to be as *model independent* as possible

number of extracted

*for detector effects*Corrected measured distributions can be

correction factor

• direct comparison with theory (without the need of detector simulation)

 $\sigma_{\rm fid} = \frac{n_{\rm sig,i}}{c_i \, \mathcal{L}_{\rm int}} \underbrace{signal \, events}_{20.3 \, \rm fb^{-1} \, (\pm 2.8\%)}$

- used to probe a variety of physics: fiducial cross section; kinematic properties; QCD; associated jet activity; spin/CP; BSM Higgs scenarios ...
- Fiducial definitions chosen to closely replicate analysis selection to minimize model dependence:

H→*ZZ* 4*e*, 4*μ* or *eeµµ* • e: $p_T > 7$ GeV, |η| < 2.47• *μ*: $p_T > 6$ GeV, |η| < 2.7 $H \rightarrow \gamma \gamma$ two isolated photons:

• $p_{\rm Ty1} / m_{\rm YY} > 0.35$, $p_{\rm Ty2} / m_{\rm YY} > 0.25$

differential cross section of bin i

 $\mathrm{d}\sigma/\mathrm{d}X = rac{n_{\mathrm{sig},i}}{c_i \ \mathcal{L}_{\mathrm{int}} \ \Delta X_i}$

bin width'

- |η|<2.37
- isolation criteria: $E_{\rm T} < 14$ GeV of particles in $\Delta R < 0.4$
- $H \rightarrow \gamma \gamma$ inclusive cross section: $n_{sig} = 570 \pm 130$, $c_i = 0.65 \pm 0.02$:

 $\sigma_{\rm fid}(pp \to H \to \gamma \gamma) = 43.2 \pm 9.4 \,({\rm stat}) \,{}^{+3.2}_{-2.9} \,({\rm syst}) \pm 1.2 \,({
m lumi}) \,\,{
m fb}$

 $H \rightarrow ZZ$ inclusive cross section:

 $2.11^{+0.53}_{-0.47}(\mathrm{stat})^{+0.16}_{-0.10}(\mathrm{syst})$ fb

Example m_{YY} spectra for an N_{jets} bin

42

