Combining Resummed Higgs Predictions Across Jet Bins

Xiaohui Liu

work with R. Boughezal, F. Petriello, F. Tackmann and J. Walsh

Higgs + Jets @ IPPP Durham, 2014

Outline

- Motivation
- H + 0-jets and H + 1-jet Cross Sections
- Conclusions

Motivation for Jet Bins

- Extensively used in LHC analyses
 - HWW
 - anti-kT jet algorithm, R~ 0.4

 $ho_{ij} = \min(p_{T,i}^{-1}, p_{T,j}^{-1}) \Delta R_{ij}/R,$

 $ho_i = p_{T,i}^{-1}.$

- low pT cut ~ 25 30GeV
 - efficient in suppressing the backgrounds

[ATLAS-CONF-2012-158]

pT cut

Motivation for Jet Bins

- Extensively used in LHC analyses
 - HWW
 - anti-kT jet algorithm, R~ 0.4
 - low pT cut ~ 25 30GeV
 - large theory uncertainties
 - ST prescription used by ATLAS and CMS

$$\Delta_N^2 = \Delta_{\geq N}^2 + \Delta_{\geq N+1}^2$$

 $\sigma_N = \sigma_{\geq N} - \sigma_{\geq N+1}$ [Stewart and Tackmann]

Source (0-jet)	Signal (%)	Bkg. (%)
Inclusive ggF signal ren./fact. scale	13	-
1-jet incl. ggF signal ren./fact. scale	10	
PDF model (signal only)	8	-
QCD scale (acceptance)	4	-
Jet energy scale and resolution	4	2
W+jets fake factor	-	5
WW theoretical model	-	5
Source (1-jet)	Signal (%)	Bkg. (%)
1-jet incl. ggF signal ren./fact. scale	26	-
2-jet incl. ggF signal ren./fact. scale	15	
Parton shower/ U.E. model (signal only)	10	-
b-tagging efficiency	-	11
PDF model (signal only)	7	-
QCD scale (acceptance)	4	2
Jet energy scale and resolution	1	3
W+jets fake factor	-	5
WW theoretical model	-	3

[ATLAS-CONF-2012-158]

Theoretical Issues with Jet Veto

Low pT jet veto restricts emissions to be soft and collinear

Theoretical Issues with Jet Veto

- Low pT jet veto restricts emissions to be soft and collinear
 - Large Sudakov logs
 - need to be resummed
 - reliable perturbative predictions
 - reduce theoretical errors

$$\sim 1 \\ + \alpha_{s}L^{2} + \alpha_{s}L + \alpha_{s} \text{ NLO} \\ + \alpha_{s}^{2}L^{4} + \alpha_{s}^{2}L^{3} + \alpha_{s}^{2}L^{2} + \alpha_{s}^{2}L + \alpha_{s}^{2} \text{ NNLO} \\ + \alpha_{s}^{3}L^{6} + \alpha_{s}^{3}L^{5} + \alpha_{s}^{3}L^{4} + \alpha_{s}^{3}L^{3} + \alpha_{s}^{3}I^{2} + \cdots \\ \text{ I. NIL NNL }$$

• H + 0-jets

- Banfi, Monni, Salam, Zanderighi NNLL + NNLO
- Becher, Neubert, Rothen NNLL' + NNLO + π^2
- Stewart, Tackmann, Walsh, Zuberi NNLL' + NNLO + π^2
- H + 1-jet
 - XL, Petriello NLL' + NLO
 - Boughezal, XL, Petriello, Tackmann, Walsh (beyond NLL') + NLO, (H+0+1j)
- VH + 0-jets
 - Li, Li, Shao NNLL + NLO + π^2
 - Li, XL (beyond NNLL) + NNLO + π^2

 $\sigma_0(p_T^{\text{cut}}) = \boldsymbol{H}(\boldsymbol{Q}, \boldsymbol{\mu}) \boldsymbol{B}^{\text{jet}}(\boldsymbol{R}, p_T^{\text{cut}}, \boldsymbol{\mu}, \boldsymbol{\nu}) \boldsymbol{B}^{\text{jet}}(\boldsymbol{R}, p_T^{\text{cut}}, \boldsymbol{\mu}, \boldsymbol{\nu}) \boldsymbol{S}^{\text{jet}}(\boldsymbol{R}, p_T^{\text{cut}}, \boldsymbol{\mu}, \boldsymbol{\nu}) J(\boldsymbol{R}, p_T^J \boldsymbol{R}, \boldsymbol{\mu})$

• Factorization

 $\boldsymbol{\sigma_0(p_T^{\text{cut}})} = \boldsymbol{H(Q,\mu)} B^{\text{jet}}(\boldsymbol{R}, p_T^{\text{cut}}, \mu, \nu) B^{\text{jet}}(\boldsymbol{R}, p_T^{\text{cut}}, \mu, \nu) \boldsymbol{S}^{\text{jet}}(\boldsymbol{R}, p_T^{\text{cut}}, \mu, \nu) J(\boldsymbol{R}, p_T^J \boldsymbol{R}, \mu)$

 $\sigma_0(p_T^{\text{cut}}) = \boldsymbol{H}(\boldsymbol{Q}, \boldsymbol{\mu}) \boldsymbol{B}^{\text{jet}}(\boldsymbol{R}, p_T^{\text{cut}}, \boldsymbol{\mu}, \boldsymbol{\nu}) \boldsymbol{B}^{\text{jet}}(\boldsymbol{R}, p_T^{\text{cut}}, \boldsymbol{\mu}, \boldsymbol{\nu}) \boldsymbol{S}^{\text{jet}}(\boldsymbol{R}, p_T^{\text{cut}}, \boldsymbol{\mu}, \boldsymbol{\nu}) J(\boldsymbol{R}, p_T^J \boldsymbol{R}, \boldsymbol{\mu})$

Factorization
 * soft jets with energy ~ pT cut

 $\boldsymbol{\sigma_0(p_T^{\text{cut}})} = \boldsymbol{H(Q,\mu)} B^{\text{jet}}(\boldsymbol{R}, p_T^{\text{cut}}, \mu, \nu) B^{\text{jet}}(\boldsymbol{R}, p_T^{\text{cut}}, \mu, \nu) S^{\text{jet}}(\boldsymbol{R}, p_T^{\text{cut}}, \mu, \nu) J(\boldsymbol{R}, p_T^J \boldsymbol{R}, \mu)$

Factorization

 $\sigma_0(p_T^{\text{cut}}) = \boldsymbol{H}(\boldsymbol{Q}, \boldsymbol{\mu}) \boldsymbol{B}^{\text{jet}}(\boldsymbol{R}, p_T^{\text{cut}}, \boldsymbol{\mu}, \boldsymbol{\nu}) \boldsymbol{B}^{\text{jet}}(\boldsymbol{R}, p_T^{\text{cut}}, \boldsymbol{\mu}, \boldsymbol{\nu}) \boldsymbol{S}^{\text{jet}}(\boldsymbol{R}, p_T^{\text{cut}}, \boldsymbol{\mu}, \boldsymbol{\nu}) \boldsymbol{J}(\boldsymbol{R}, p_T^J \boldsymbol{R}, \boldsymbol{\mu})$

- * Final state energetic jets
- * Required energetic jets (pTJ ~ mH) experimentally pTJ ~ pT cut will come back to this point later

- Factorization
 - kT type jet algorithm tends to group soft and energetic radiations near the beam into different jets, large rapidity separation

 $\sigma_0(p_T^{\text{cut}}) = \boldsymbol{H}(\boldsymbol{Q}, \boldsymbol{\mu}) \boldsymbol{B}^{\text{jet}}(\boldsymbol{R}, p_T^{\text{cut}}, \boldsymbol{\mu}, \boldsymbol{\nu}) \boldsymbol{B}^{\text{jet}}(\boldsymbol{R}, p_T^{\text{cut}}, \boldsymbol{\mu}, \boldsymbol{\nu}) \boldsymbol{S}^{\text{jet}}(\boldsymbol{R}, p_T^{\text{cut}}, \boldsymbol{\mu}, \boldsymbol{\nu}) \boldsymbol{J}(\boldsymbol{R}, p_T^J \boldsymbol{R}, \boldsymbol{\mu})$

$$egin{array}{rcl}
ho_{ij} &=& \min(p_{T,i}^{-1},p_{T,j}^{-1})\Delta R_{ij}/R, \
ho_i &=& p_{T,i}^{-1}. \end{array}$$

- Factorization
 - anti-kT tends to group central energetic radiations in to jets first. The soft radiations will only see the overall predetermined jet directions

 $\sigma_0(p_T^{\text{cut}}) = H(Q,\mu)B^{\text{jet}}(R,p_T^{\text{cut}},\mu,\nu)B^{\text{jet}}(R,p_T^{\text{cut}},\mu,\nu)S^{\text{jet}}(R,p_T^{\text{cut}},\mu,\nu)J(R,p_T^JR,\mu)$

$$egin{array}{rcl}
ho_{ij} &=& \min(p_{T,i}^{-1}, p_{T,j}^{-1}) \Delta R_{ij}/R, \
ho_i &=& p_{T,i}^{-1}. \end{array}$$

- Factorization
- Resummation
 - logs resummed via RG equations similar to DGLAP for pdfs

 $\sigma_0(p_T^{\text{cut}}) = \boldsymbol{H}(\boldsymbol{Q}, \boldsymbol{\mu}) \boldsymbol{B}^{\text{jet}}(\boldsymbol{R}, p_T^{\text{cut}}, \boldsymbol{\mu}, \boldsymbol{\nu}) \boldsymbol{B}^{\text{jet}}(\boldsymbol{R}, p_T^{\text{cut}}, \boldsymbol{\mu}, \boldsymbol{\nu}) \boldsymbol{S}^{\text{jet}}(\boldsymbol{R}, p_T^{\text{cut}}, \boldsymbol{\mu}, \boldsymbol{\nu}) \boldsymbol{J}(\boldsymbol{R}, p_T^J \boldsymbol{R}, \boldsymbol{\mu})$

[J. Chiu, A. Jain, D. Neill, I. Rothstein]

Warm up: Z+1j

- Validation of the EFT
 - reproduce the log structures.

NLO pp→Z/ $\gamma^*(\rightarrow ll)$ +j @ 7TeV,anti- k_T , R=0.4, p_T^{veto} =30, $|\eta_j|$ <4.4, 66< m_{ll} <116, p_{Tlep} >20, $|\eta_{lep}|$ <2.5, R_{jl} >0.5, R_{ll} >0.2 1000 mcfm_HT mcfm_HTon2 scetFO_HT scetFO_HTon2 100 Abs[dơ/dpTj1] [fb/GeV] 10 0.1 PRELIMINARY 1.3 mcfm_HT/mcfm_HTon2 1.2 scetFO_HT/scetFO_HTon2 ratio 1.1 [Boughezal, Focke, XL] 1. 37.5 75 45 55 65 90 110 130 150 170 190 210 235 265 295 325 370 ptJ1 [GeV]

Warm up: Z+1j

- Validation of the EFT
 - resummation v.s. FO
 - favors a low scale choice HT/2 for FO

- H + 0-jets
 - keep events with no jet pT > pT cut
 - NNLL' + NNLO + π^2

[Stewart, Tackmann, Walsh, Zuberi]

- H + 0-jets
 - keep events with no jet pT > pT cut

π² resummaiton also enhanced the inclusive cross section

[Stewart, Tackmann, Walsh, Zuberi]

- H + 0-jets
 - keep events with no jet pT > pT cut

- H + 1-jet
 - keep events with no 2nd jet pT > pT cut
 - factorization hold exact for pTJ1 ~ mH

- H + 1-jet
 - keep events with no 2nd jet pT > pT cut
- poff • experimentally, pTJ > pT cut 7000 $p_T^J > (p_T^J)_{min}$ 6000 NLL'+NLO NLO 5000 pTJ1 $\sigma(\mathbf{fb})$ 4000 pT cut 3000 pTJ2 2000 pTJ3 1000 50 70 30 100 $(p_T^J)_{rin}(\text{GeV})$ [XL, Petriello]

- H + 1-jet
 - keep events with no 2nd jet pT > pT cut
 - experimentally, pTJ > pT cut

poff

- H + 1-jet
 - resummation improved H + 1-jet (full spectrum)

[Boughezal, XL, Petriello, Tackmann, Walsh]

- H + 1-jet
 - resummation improved H + 1-jet (full spectrum)

[Boughezal, XL, Petriello, Tackmann, Walsh]

- H + 1-jet
 - resummation improved H + 1-jet (full spectrum)

[Boughezal, XL, Petriello, Tackmann, Walsh]

testing matching

- H + 1-jet
 - resummation improved H + 1-jet (full spectrum)
 - [Boughezal, XL, Petriello, Tackmann, Walsh]
 - pTJ spectrum
 - NNLO H
 - NLO 2-jets

• Combining jet bins

- covariance matrices
 - a general uncertainty parameterization

• Combining jet bins

- covariance matrices
 - a general uncertainty parameterization

• Combining jet bins

- covariance matrices
 - a general uncertainty parameterization

Combining jet bins

- covariance matrices
 - a general uncertainty parameterization

$$C^{\text{ATLAS}} = \begin{pmatrix} 1.49 & -0.39 & 0.20 \\ -0.39 & 0.88 & -0.04 \\ 0.20 & -0.04 & 0.32 \end{pmatrix} \text{ pb}^2$$
$$C^{\text{CMS}} = \begin{pmatrix} 0.76 & 0.09 & 0.20 \\ 0.09 & 0.55 & 0.01 \\ 0.21 & 0.01 & 0.32 \end{pmatrix} \text{ pb}^2$$

Combining jet bins

- covariance matrices
 - any uncertainty can be calculated from the matrices
 - WW signal strength

$$\frac{\Delta^{\text{th, y}}\mu}{\mu} = \frac{\Delta^{\text{th, y}}\sigma_{\text{exp}}}{\sigma_{\text{exp}}} \quad \mu = \frac{\sigma_{\text{obs}}}{\sigma_{\text{exp}}}$$
$$\Delta\sigma_{\text{exp}} = \left[(\epsilon_0^{\text{exp}})^2 \Delta_0^2 + (\epsilon_1^{\text{exp}})^2 \Delta_1^2 + 2\epsilon_0^{\text{exp}} \epsilon_1^{\text{exp}} \cos(0, 1) \right]^{1/2}$$

• Combining jet bins

[Boughezal, XL, Petriello, Tackmann, Walsh]

- covariance matrices
 - any uncertainty can be calculated from the matrices
 - WW signal strength

$$egin{aligned} \Delta_{
m FO}^{
m th,\,y}\mu &= 0.12 \ & igcup \ & igcup \ & \Delta_{
m A}^{
m th,\,y}\mu &= 0.07 \end{aligned}$$

Category	Source	Uncertainty, up (%)	Uncertainty, down (%)
Statistical	Observed data	+21	-21
Theoretical	Signal yield $(\sigma \cdot \mathcal{B})$	+12	-9
Theoretical	WW normalisation	+12	-12
Experimental	Objects and DY estimation	+9	-8
Theoretical	Signal acceptance	+9	-7
Experimental	MC statistics	+7	-7
Experimental	W+ jets fake factor	+5	-5
Theoretical	Backgrounds, excluding WW	+5	-4
Luminosity	Integrated luminosity	+4	-4
Total		+32	-29

Table 13: Leading uncertainties on the signal strength μ for the combined 7 and 8 TeV analysis.

Reduced by nearly a factor of 2!

• Combining jet bins

- covariance matrices
 - any uncertainty can be calculated from the matrices
 - jet bin uncertainties $\begin{bmatrix} cross section in jet bins \\ E_{cm} = 8 \text{ TeV} \\ p_T^{cut} = 30 \text{ GeV} \\ R = 0.5 \\ \hline 1 \\ B \\ S \\ 0 \\ 0 \\ 1 \\ N_{jets} \end{bmatrix}$

• Combining jet bins

[Boughezal, XL, Petriello, Tackmann, Walsh]

- covariance matrices
 - any uncertainty can be calculated from the matrices
 - jet bin uncertainties

[Gillberg - talk @ Jet binning uncertainties in ggF, 2014]

• Combining jet bins

- covariance matrices
 - any uncertainty can be calculated from the matrices
 - jet bin uncertainties

• Combining jet bins

- covariance matrices
 - any uncertainty can be calculated from the matrices
 - jet bin uncertainties

Conclusions

- Systematic scheme for combining 0-jets and 1-jet bins have been set up
 - applied directly to Higgs analyses
 - gives the better description of current Higgs data
 - halves the theoretical uncertainties
 - can be applied to W/Z + jets as a testing ground

Thanks