Higgs production at NLO in SHERPA

Marek Schönherr

Universität Zürich

Durham, 09/12/2014

FONDS NATIONAL SUISSE SCHWEIZERISCHER NATIONALFONDS FONDO NAZIONALE SVIZZERO SWISS NATIONAL SCIENCE FOUNDATION

Marek Schönherr Higgs production at NLO in SHERPA Universität Zürich

The SHERPA event generator framework

- Two multi-purpose Matrix Element (ME) generators AMEGIC++ JHEP02(2002)044, EPJC53(2008)501 COMIX JHEP12(2008)039, PRL109(2012)042001
- A Parton Shower (PS) generator CSSHOWER++ JHEP03(2008)038
- A multiple interaction simulation à la Pythia AMISIC++ hep-ph/0601012
- A cluster fragmentation module AHADIC++ EPJC36(2004)381
- A hadron and τ decay package HADRONS++
- A higher order QED generator using YFS-resummation PHOTONS++ JHEP12(2008)018
- A minimum bias simulation SHRiMPS to appear

Sherpa's traditional strength is the perturbative part of the event MEPs (CKKW), S-Mc@NLO, MENLOPS, MEPS@NLO

MEPs

Parton showers

resummation of (soft-)collinear limit \rightarrow intrajet evolution

- matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space
- MEPS combines multiple LOPS keeping either accuracy
- NLOPS elevate LOPS to NLO accuracy
- MENLOPS supplements core NLOPS with higher multiplicities LOPS

MePs

Matrix elements

fixed-order in α_s \rightarrow hard wide-angle emissions \rightarrow interference terms

• matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space

- MEPS combines multiple LOPS keeping either accuracy
- NLOPS elevate LOPS to NLO accuracy
- MENLOPS supplements core NLOPS with higher multiplicities LOPS

MePs

- matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space
- MEPs combines multiple LOPs keeping either accuracy
- NLOPS elevate LOPS to NLO accuracy
- MENLOPS supplements core NLOPS with higher multiplicities LOPS

MePs

NLOPS (MC@NLO, POWHEG)

Frixione, Webber JHEP06(2002)029 Nason JHEP11(2004)040, Frixione et.al. JHEP11(2007)070 Höche, Krauss, MS, Siegert JHEP09(2012)049

- matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space
- MEPs combines multiple LOPs keeping either accuracy
- NLOPS elevate LOPS to NLO accuracy
- MENLOPS supplements core NLOPS with higher multiplicities LOPS

- matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space
- MEPs combines multiple LOPs keeping either accuracy
- NLOPS elevate LOPS to NLO accuracy
- MENLOPS supplements core NLOPS with higher multiplicities LOPS

- matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space
- MEPs combines multiple LOPs keeping either accuracy
- NLOPS elevate LOPS to NLO accuracy
- MENLOPS supplements core NLOPS with higher multiplicities LOPS
- MEPS@NLO combines multiple NLOPS keeping either accuracy

- matrix elements (ME) and parton showers (PS) are approximations in different regions of phase space
- MEPs combines multiple LOPs keeping either accuracy
- NLOPS elevate LOPS to NLO accuracy
- MENLOPS supplements core NLOPS with higher multiplicities LOPS
- MEPS@NLO combines multiple NLOPS keeping either accuracy

- first emission by NLOPS , restrict to Qn+1 < Qnt
- NLOPS $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + jet$ to $Q_{n+2} < Q_{cut}$
- NLOPS $pp \rightarrow h + 2 \text{jets for} \\ Q_{n+2} > Q_{\text{cut}}$

• iterate

- sum all contributions
- eg. p⊥(h)>200 GeV has contributions fr. multiple topologies

- first emission by NLOPS , restrict to $Q_{n+1} < Q_{\rm cut}$
- NLOPS $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to}$ $Q_{n+2} < Q_{\text{cut}}$
- NLOPS $pp \rightarrow h + 2 \text{jets for} \\ Q_{n+2} > Q_{\text{cut}}$

• iterate

- sum all contributions
- eg. p⊥(h)>200 GeV has contributions fr. multiple topologies

- first emission by NLOPS , restrict to $Q_{n+1} < Q_{\rm cut}$
- NLOPS $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + \text{jet to} \\ Q_{n+2} < Q_{\text{cut}}$
- NLOPS $pp \rightarrow h + 2 \text{jets for} \\ Q_{n+2} > Q_{\text{cut}}$

• iterate

- sum all contributions
- eg. p⊥(h)>200 GeV has contributions fr. multiple topologies

- first emission by NLOPS , restrict to $Q_{n+1} < Q_{\rm cut}$
- NLOPS $pp \rightarrow h + \text{jet}$ for $Q_{n+1} > Q_{\text{cut}}$
- restrict emission off $pp \rightarrow h + {\rm jet} \ {\rm to} \\ Q_{n+2} < Q_{\rm cut}$
 - NLOPS $pp \rightarrow h + 2$ jets for $Q_{n+2} > Q_{cut}$

• iterate

- sum all contributions
- eg. p⊥(h)>200 GeV has contributions fr. multiple topologies

- first emission by NLOPS , restrict to $Q_{n+1} < Q_{\rm cut}$
- $\label{eq:logs} \mbox{NLOPS} \ pp \rightarrow h + \mbox{jet} \\ \mbox{for} \ Q_{n+1} > Q_{\rm cut} \\ \end{tabular}$
- restrict emission off $pp \rightarrow h + {\rm jet} \ {\rm to} \\ Q_{n+2} < Q_{\rm cut}$
- NLOPS $pp \rightarrow h+2 {\rm jets} \mbox{ for } Q_{n+2} > Q_{\rm cut}$

• iterate

- sum all contributions
- eg. p⊥(h)>200 GeV has contributions fr. multiple topologies

- first emission by NLOPS , restrict to $Q_{n+1} < Q_{\rm cut}$
- $\label{eq:logs} \mbox{NLOPS} \ pp \rightarrow h + \mbox{jet} \\ \mbox{for} \ Q_{n+1} > Q_{\rm cut} \\ \end{tabular}$
- restrict emission off $pp \rightarrow h + {\rm jet} \ {\rm to} \\ Q_{n+2} < Q_{\rm cut}$
- NLOPS $pp \rightarrow h+2 {\rm jets} \mbox{ for } Q_{n+2} > Q_{\rm cut}$
- iterate
- sum all contributions
- eg. p⊥(h)>200 GeV has contributions fr. multiple topologies

- first emission by NLOPS , restrict to $Q_{n+1} < Q_{\rm cut}$
- restrict emission off $pp \rightarrow h + {\rm jet} \ {\rm to} \\ Q_{n+2} < Q_{\rm cut}$
- NLOPS $pp \rightarrow h+2 {\rm jets} \mbox{ for } Q_{n+2} > Q_{\rm cut}$
- iterate
- sum all contributions
- eg. p⊥(h)>200 GeV has contributions fr. multiple topologies

- first emission by NLOPS , restrict to $Q_{n+1} < Q_{\rm cut}$
- restrict emission off $pp \rightarrow h + {\rm jet} \ {\rm to} \\ Q_{n+2} < Q_{\rm cut}$
- NLOPS $pp \rightarrow h+2 {\rm jets} \mbox{ for } Q_{n+2} > Q_{\rm cut}$
- iterate
- sum all contributions
- eg. p⊥(h)>200 GeV has contributions fr. multiple topologies

- first emission by NLOPS , restrict to $Q_{n+1} < Q_{\rm cut}$
- restrict emission off $pp \rightarrow h + {\rm jet} \ {\rm to} \\ Q_{n+2} < Q_{\rm cut}$
- NLOPS $pp \rightarrow h+2 {\rm jets} \mbox{ for } Q_{n+2} > Q_{\rm cut}$
- iterate
- sum all contributions
- eg. $p_{\perp}(h) > 200 \text{ GeV}$ has contributions fr. multiple topologies

Parameter / Scale choices – $\mu_{R/F}$, μ_Q

$$\alpha_s^{n+k}(\mu_R^2) = \alpha_s^k(\mu_{\rm core}^2)\,\alpha_s(t_1)\cdots\alpha_s(t_n) \qquad \mu_{F,a/b}^2 = t_{{\rm ext},a/b} \qquad \mu_Q^2 = \mu_{{\rm core}}^2$$

Free choices

- ${\rm 0}~\mu_{\rm core}$ scale of core process identified through clustering with inverse parton shower
- **2** $\mu_{R/F}$ beyond 1-loop running
 - calculate with chosen $\mu_{R/F}$
 - include renormalisation and factorisation terms to shift the 1-loop running to above

$$\mathsf{B}_n \, rac{lpha_s(\mu_R)}{\pi} \, eta_0 \, \left(\log rac{\mu_R}{\mu_{\mathsf{CKKW}}}
ight)^{2+1}$$

and

$$B_n \frac{\alpha_s}{2\pi} \log \frac{\mu_F}{t_{\text{ext}}} \sum_{c=q,g} \int_{x_a}^1 \frac{\mathrm{d}z}{z} P_{ac}(z) f_c(x_a/z, \mu_F^2)$$

ightarrow same as in UNLOPS

Lönnblad, Prestel JHEP03(2013)166, Plätzer JHEP08(2013)114

Parameter / Scale choices – $\mu_{R/F}$, μ_Q

$$\alpha_s^{n+k}(\mu_R^2) = \alpha_s^k(\mu_{\rm core}^2)\,\alpha_s(t_1)\cdots\alpha_s(t_n) \qquad \mu_{F,a/b}^2 = t_{{\rm ext},a/b} \qquad \mu_Q^2 = \mu_{{\rm core}}^2$$

Free choices

- $\blacksquare\ \mu_{\rm core}$ scale of core process identified through clustering with inverse parton shower
- **2** $\mu_{R/F}$ beyond 1-loop running
 - calculate with chosen $\mu_{R/F}$
 - include renormalisation and factorisation terms to shift the 1-loop running to above $(2+n)^{2+n}$

$$\mathbf{B}_n \, \frac{\alpha_s(\mu_R)}{\pi} \, \beta_0 \, \left(\log \frac{\mu_R}{\mu_{\mathsf{CKKW}}} \right)^{2+i}$$

and

$$B_n \frac{\alpha_s}{2\pi} \log \frac{\mu_F}{t_{\text{ext}}} \sum_{c=q,g} \int_{x_a}^1 \frac{\mathrm{d}z}{z} P_{ac}(z) f_c(x_a/z, \mu_F^2)$$

 \rightarrow same as in UNLOPS

Lönnblad, Prestel JHEP03(2013)166, Plätzer JHEP08(2013)114

Parameter / Scale choices – Q_{cut}

Merging cut Q_{cut} dependence $(pp \rightarrow Z + \text{jets MEPS}, \text{ up to 2 in ME})$:

- parton shower is trusted to corectly describe emissions $\lesssim Q_{\rm cut}$
- changes the region where higher accuracy is used for calculation \rightarrow part of the uncertainty is due to degraded accuracy for large $Q_{\rm cut}$
- all samples are identical for $Q < Q_{cut}^{smallest}$ and $Q > Q_{cut}^{largest}$ by construction
- for $Q\geq 45~{\rm GeV}$ shower approximation breaks down (earlier in other obs.)

• $Q_{\rm cut}$ dependence usually small

Parameter / Scale choices – Q_{cut}

Merging cut Q_{cut} dependence $(pp \rightarrow Z + \text{jets MEPS}, \text{ up to 2 in ME})$:

- parton shower is trusted to corectly describe emissions $\lesssim Q_{\rm cut}$
- changes the region where higher accuracy is used for calculation \rightarrow part of the uncertainty is due to degraded accuracy for large $Q_{\rm cut}$
- all samples are identical for $Q < Q_{cut}^{smallest}$ and $Q > Q_{cut}^{largest}$ by construction
- for $Q \ge 45$ GeV shower approximation breaks down (earlier in other obs.)

• $Q_{\rm cut}$ dependence usually small

Parameter / Scale choices – Q_{cut}

Merging cut Q_{cut} dependence $(pp \rightarrow Z + \text{jets MEPS}, \text{ up to 2 in ME})$:

- parton shower is trusted to corectly describe emissions $\lesssim Q_{\rm cut}$
- changes the region where higher accuracy is used for calculation \rightarrow part of the uncertainty is due to degraded accuracy for large $Q_{\rm cut}$
- all samples are identical for $Q < Q_{\rm cut}^{\rm smallest}$ and $Q > Q_{\rm cut}^{\rm largest}$ by construction
- for $Q\geq 45~{\rm GeV}$ shower approximation breaks down (earlier in other obs.)
- Q_{cut} dependence usually small

Recent results

Multijet merging at NLO accuracy (MEPS@NLO)

- $pp \rightarrow W + \text{jets} \text{SHERPA} + \text{BLACKHAT}$ Höche, Krauss, MS, Siegert JHEP04(2013)027
- $e^+e^- \rightarrow jets Sherpa+BlackHat$

Gehrmann, Höche, Krauss, MS, Siegert JHEP01(2013)144

• $pp \rightarrow h + \text{jets} - \text{SHERPA} + \text{GoSAM}/\text{MCFM}$

Höche, Krauss, MS, Siegert, contribution to YR3 arXiv:1307.1347

Höche, Krauss, MS Phys.Rev.D90(2014)014012

MS, Zapp, contribution to LH'13 arXiv:1405.1067

• $p\bar{p} \rightarrow t\bar{t} + jets - SHERPA + GOSAM / OPENLOOPS$

Höche, Huang, Luisoni, MS, Winter Phys.Rev.D88(2013)014040 Höche, Krauss, Maierhöfer, Pozzorini, MS, Siegert arXiv:1402.6293

• $pp \rightarrow 4\ell + jets - SHERPA + OPENLOOPS$

Cascioli, Höche, Krauss, Maierhöfer, Pozzorini, Siegert JHEP01(2014)046

•
$$pp \rightarrow VH$$
+ jets, $pp \rightarrow VV$ + jets, $pp \rightarrow VVV$ + jets
- Sherpa+OpenLoops

Höche, Krauss, Pozzorini, MS, Thompson, Zapp Phys.Rev.D89(2014)093015

- $pp \rightarrow W+{\rm jets}$ (0,1,2 @ NLO; 3,4 @ LO)
 - $\mu_{R/F} \in [\frac{1}{2},2]\,\mu_{\mathrm{def}}$ scale uncertainty much reduced
 - NLO dependence for $pp \rightarrow W+0,1,2$ jets LO dependence for $pp \rightarrow W+3,4$ jets
 - virtual MEs from BLACKHAT
 - $Q_{\text{cut}} = 30 \text{ GeV}$
 - good data description

ATLAS data Phys.Rev.D85(2012)092002

Höche, Krauss, MS, Phys.Rev.D90(2014)014012

 $pp \rightarrow h{+}{\rm jets}$ (0,1,2 @ NLO; 3 @ LO)

- $\mu_{R/F} \in [\frac{1}{2},2]\, \mu_{R/F}^{\mathrm{def}}$
- $\mu_Q \in [\frac{1}{\sqrt{2}}, \sqrt{2}]\, \mu_Q^{\mathrm{def}}$
- $Q_{\text{cut}} \in \{15, 20, 30\} \text{ GeV}$
- virtual MEs from MCFM (hjj)

use $m_t \to \infty$ limit (EFT) \to finite m_t effects see Silvan's talk

\Rightarrow difference beyond accuracy

scale choices: $\mu_F = \mu_Q = m_h$ **1** $\mu_R = \mu_{\mathsf{CKKW}}$ $\alpha_s^{2+n}(\mu_{\mathsf{CKKW}}) = \alpha_s^2(m_h) \alpha_s(t_1) \cdots \alpha_s(t_n)$ **2** $\mu_R = m_h$ **3** $\mu_R = \hat{H}'_T$

need to include ren. term

$$\mathbf{B}_n \, \frac{\alpha_s(\mu_R)}{\pi} \, \beta_0 \, \left(\log \frac{\mu_R}{\mu_{\mathsf{CKKW}}} \right)^{2+n}$$

to restore 1-loop running to $\mu_{\rm CKKW}$ \rightarrow otherwise PS-accuracy violated

 \rightarrow same as in $\rm UNLOPs$ approach Lönnblad, Prestel JHEP03(2013)166 Plätzer JHEP08(2013)114

- all predictions identical to MEPS@NLO accuracy
- vastly differing size of uncertainties

- all predictions identical to MEPS@NLO accuracy
- vastly differing size of uncertainties

- all predictions identical to MEPs@NLO accuracy
- vastly differing size of uncertainties

Parton shower uncertainties

evolution scale

recoil scheme

- 0 initial state as if final state + ⊥-boost Höche, Schumann, Siegert Phys.Rev.D81(2010)034026
- 1 original CS

Catani, Seymour Nucl.Phys.B485(1997)291-419 Schumann, Krauss JHEP03(2008)038

 \rightarrow similar ideas in Gieseke, Plätzer JHEP01(2011)024

Parton shower uncertainties

evolution scale

recoil scheme

- 0 initial state as if final state + ⊥-boost Höche, Schumann, Siegert Phys.Rev.D81(2010)034026
- 1 original CS

Catani, Seymour Nucl.Phys.B485(1997)291-419 Schumann, Krauss JHEP03(2008)038

- Schumann, Krauss Sher 05(2006)030
- \rightarrow similar ideas in Gieseke, Plätzer JHEP01(2011)024

Parton shower uncertainties

evolution scale

recoil scheme

- 0 initial state as if final state + ⊥-boost Höche, Schumann, Siegert Phys.Rev.D81(2010)034026
- 1 | original CS

Catani, Seymour Nucl.Phys.B485(1997)291-419

- Schumann, Krauss JHEP03(2008)038
- \rightarrow similar ideas in Gieseke, Plätzer JHEP01(2011)024
$\textbf{Results} \textbf{-} \mathbf{p} \mathbf{p} \rightarrow \mathbf{h} \textbf{+} \textbf{jets}$

Parton shower uncertainties

evolution scale

recoil scheme

- 0 initial state as if final state + ⊥-boost Höche, Schumann, Siegert Phys.Rev.D81(2010)034026
- 1 original CS

Catani, Seymour Nucl.Phys.B485(1997)291-419

- Schumann, Krauss JHEP03(2008)038
- \rightarrow similar ideas in Gieseke, Plätzer JHEP01(2011)024

Les Houches comparative study – $\mathbf{p}\mathbf{p}\to\mathbf{h}+\text{jets}$

LH'13 (h+dijets study) arXiv:1405.1067

 $pp \to h{\rm +dijets \ study}$

- HEJ (BFKL w/ ME-corr.)
- aMc@NLO (FxFx combination)
- POWHEG-BOX (HJJ-MiNLO)
- PYTHIA8 (UNLOPS merging)
- SHERPA (MEPS@NLO merging)
- \Rightarrow focus on ggF background to VBF
 - two dijet-event selections
 Leading jet / Forward-backward
 - two levels of cuts
 Dijet cuts / VBF cuts

Les Houches comparative study – $\mathbf{p}\mathbf{p}\to\mathbf{h}+\text{jets}$

LH'13 (h+dijets study) arXiv:1405.1067

 $pp \to h{\rm +dijets \ study}$

- HEJ (BFKL w/ ME-corr.)
- aMC@NLO (FxFx combination) NLO
- POWHEG-BOX (HJJ-MiNLO) NLO
- PYTHIA8 (UNLOPS merging) NLO
- SHERPA (MEPS@NLO merging) NLO
- \Rightarrow focus on ggF background to VBF
 - two dijet-event selections Leading jet / Forward-backward
 - two levels of cuts
 Dijet cuts / VBF cuts
- HJJ-MiNLO has no formal accuracy for inclusive observables

18/31

Results – $pp \rightarrow h+jets$

- good agreement in shape between generators, different normalisations
- similar uncertainties

Marek Schönherr

Higgs production at NLO in SHERPA

$\textbf{Results} \textbf{-} \mathbf{p} \mathbf{p} \rightarrow \mathbf{h} \textbf{+} \textbf{jets}$

- good agreement between generators, slighlty different shapes
- HEJ has less additional jet activity

$\textbf{Results} \textbf{-} \mathbf{p} \mathbf{p} \rightarrow \mathbf{h} \textbf{+} \textbf{jets}$

- PYTHIA8 and SHERPA have more high- p_{\perp} activity
- HEJ has less additional jet activity

Results – $pp \rightarrow h+jets$

- good agreement in shape between generators, different normalisations
- similar uncertainties

$\textbf{Results} \textbf{-} \mathbf{p} \mathbf{p} \rightarrow \mathbf{h} \textbf{+} \textbf{jets}$

- good agreement between generators, slighlty different shapes
- HEJ has less additional jet activity

$\textbf{Results} \textbf{-} \mathbf{p} \mathbf{p} \rightarrow \mathbf{h} \textbf{+} \textbf{jets}$

- PYTHIA8 and SHERPA have more high- p_{\perp} activity
- HEJ has less additional jet activity

Höche, Krauss, Pozzorini, MS, Thompson, Zapp Phys.Rev.D89(2014)093015

- trilepton (e, μ) production analysis in VH search regions \rightarrow focus on theoretical uncertainties
- model all signal and background processes with consistent setup at largest available accuracy at particle level
 - \rightarrow need to describe lepton isolation and jet veto efficiency simultaneously
- produce bosons on shell, model off-shell effects through Breit-Wigner smearing
 - \rightarrow QCD/QED corrections to intermediate states and decay products
- most important event selection criteria

	CMS-inspired analysis	ATLAS-inspired analysis
${\cal Z}$ veto	$ m_Z - m_{SFOS} > 25 \mathrm{GeV}$	no SFOS
jet veto	$p_{\perp}^{\rm jet} < 40~{ m GeV}$	$p_{\perp}^{\rm jet} < 20~{ m GeV}$

- include $V \to \tau \to e, \mu$ decay chains and possibilities to "loose" leptons
- separate VVVj(j) from tVV and $t\bar{t}W$ by disallowing final state *b*-quarks

Höche, Krauss, Pozzorini, MS, Thompson, Zapp Phys.Rev.D89(2014)093015

Process	Accuracy	Decays ($\ell=e,\mu, au$)
WH+jets	0,1j@NLO, 2j@LO	$H \to WW, W \to \ell\nu, Z \to \ell\ell, \tau \to \ell\nu\nu$
		$H o au au$, $W o \ell u$, $Z o \ell \ell$, $ au o \ell u u$
		H ightarrow ZZ, $W ightarrow$ all, $Z ightarrow$ all, $ au ightarrow$ all
ZH+jets	0,1j@NLO, 2j@LO	$H ightarrow WW$, $W ightarrow$ all, $Z ightarrow \ell\ell$, $ au ightarrow$ all
		$H o au au$, $Z o \ell \ell$, $ au o all$
		H ightarrow ZZ, $Z ightarrow$ all, $ au ightarrow$ all
WZ+jets	0,1j@NLO, 2j@LO	$W \to \ell \nu, \ Z \to \ell \ell, \ \tau \to \ell \nu \nu$
WWW+jets	0,1j@NLO, 2j@LO	$W \to \ell \nu, \ \tau \to \ell \nu \nu$
WWZ+jets	0j@NLO, 1,2j@LO	$W ightarrow {\sf all}, Z ightarrow \ell \ell, au ightarrow {\sf all}$
ZZ+jets	0j@NLO, 1,2j@LO	$Z ightarrow \ell \ell$, $ au ightarrow$ all
WZZ+jets	0j@NLO, 1,2j@LO	$W ightarrow {\sf all}, \ Z ightarrow {\sf all}, \ au ightarrow {\sf all}$
ZZZ+jets	0j@NLO, 1,2j@LO	W ightarrow all, $Z ightarrow$ all, $ au ightarrow$ all

Marek Schönherr Higgs production at NLO in SHERPA

Marek Schönherr Higgs production at NLO in SHERPA

Conclusions

- multijet merging at NLO proceeds schematically as at LO
 → introduce MC-counterterm to retain NLO accuracy
- preserves NLO accuracy of the ME and accuracy of the PS in resumming hierarchies of emission scales
 - \rightarrow scale setting essential for recovering PS resummation
 - \rightarrow core scale can be chosen freely
 - \rightarrow beyond 1-loop running the scales can of course be freely chosen
- perurbative uncertainties due to $\mu_{R/F}\text{, }\mu_Q$ and $Q_{\rm cut}$ can be assessed in the fixed-order part
- intrinsic parton shower uncertainties can be partially assessed

current release SHERPA-2.1.1

http://sherpa.hepforge.org

Thank you for your attention!

Marek Schönherr Higgs production at NLO in SHERPA Universität Zürich 31/31

Parton showers (operate in $N_c \rightarrow \infty$ limit):

$$\mathsf{PS}_n(t_c, t_{\max}) = \Delta_n(t_c, t_{\max}) + \int_{t_c}^{t_{\max}} \mathrm{d}t' \mathcal{K}_n(t') \,\Delta_n(t', t_{\max})$$

Multijet merging at leading order:

 $d\sigma^{\mathsf{MEPS}} = d\sigma_n^{\mathsf{LO}} \otimes \mathsf{PS}_n \otimes (\mathcal{Q}_{\mathsf{MEPS}} \otimes \mathcal{Q}_{\mathsf{MEPS}})$ $= d\sigma_n^{\mathsf{LO}} \otimes \mathsf{PS}_n \otimes (\mathcal{Q}_{\mathsf{MEPS}} \otimes \mathcal{Q}_{\mathsf{MEPS}}) \otimes (\mathcal{Q}_{\mathsf{MEPS}} \otimes \mathcal{Q}_{\mathsf{MEPS}})$ $= d\sigma_n^{\mathsf{LO}} \otimes \mathsf{PS}_n \otimes (\mathcal{Q}_{\mathsf{MEPS}} \otimes \mathcal{Q}_{\mathsf{MEPS}}) \otimes \mathcal{Q}_{\mathsf{MEPS}} \otimes (\mathcal{Q}_{\mathsf{MEPS}} \otimes \mathcal{Q}_{\mathsf{MEPS}}) \otimes (\mathcal{Q}_{\mathsf{MEPS}} \otimes \mathcal{Q}_{\mathsf$

- restrict the parton shower on 2
 ightarrow n to emit only below Q_{cut}
- arbitrary jet measure $Q_n=Q_n(\Phi_n)$
- add the n + 1 ME and its parton shower
- multiply by Sudakov wrt. $2 \rightarrow n$ process to restore resummation
- iterate
- if $t_n(\Phi_n)
 e Q_n(\Phi_n)$ truncated shower needed to fill gaps

Marek Schönherr

Higgs production at NLO in SHERPA

MEPS

Parton showers (operate in $N_c \rightarrow \infty$ limit):

$$\mathsf{PS}_n(t_c, t_{\max}) = \Delta_n(t_c, t_{\max}) + \int_{t_c}^{t_{\max}} \mathrm{d}t' \mathcal{K}_n(t') \,\Delta_n(t', t_{\max})$$

Multijet merging at leading order:

$$\begin{split} \mathrm{d}\sigma^{\mathsf{MEPs}} &= \mathrm{d}\sigma^{\mathsf{LO}}_{n} \otimes \mathsf{PS}_{n} \Theta(Q_{\mathsf{cut}} - Q_{n+1}) \\ &+ \mathrm{d}\sigma^{\mathsf{LO}}_{n+1} \Theta(Q_{n+1} - Q_{\mathsf{cut}}) \Delta_{n}(t_{n+1}, t_{n}) \otimes \mathsf{PS}_{n+1} \Theta(Q_{\mathsf{cut}} - Q_{n+2}) \\ &+ \mathrm{d}\sigma^{\mathsf{LO}}_{n+2} \Theta(Q_{n+2} - Q_{\mathsf{cut}}) \Delta_{n}(t_{n+1}, t_{n}) \Delta_{n+1}(t_{n+2}, t_{n+1}) \otimes \mathsf{PS}_{n+2} \end{split}$$

- restrict the parton shower on 2
 ightarrow n to emit only below Q_{cut}
- arbitrary jet measure $Q_n=Q_n(\Phi_n)$
- add the n + 1 ME and its parton shower
- multiply by Sudakov wrt. 2
 ightarrow n process to restore resummation
- iterate
- if $t_n(\Phi_n)
 e Q_n(\Phi_n)$ truncated shower needed to fill gaps

Parton showers (operate in $N_c \rightarrow \infty$ limit):

$$\mathsf{PS}_n(t_c, t_{\max}) = \Delta_n(t_c, t_{\max}) + \int_{t_c}^{t_{\max}} \mathrm{d}t' \mathcal{K}_n(t') \,\Delta_n(t', t_{\max})$$

Multijet merging at leading order:

 $d\sigma^{\mathsf{MEPs}} = d\sigma_n^{\mathsf{LO}} \otimes \mathsf{PS}_n \,\Theta(Q_{\mathsf{cut}} - Q_{n+1})$ $+ d\sigma_{n+1}^{\mathsf{LO}} \,\Theta(Q_{n+1} - Q_{\mathsf{cut}}) \,\Delta_n(t_{n+1}, t_n) \otimes \mathsf{PS}_{n+1} \,\Theta(Q_{\mathsf{cut}} - Q_{n+2})$ $+ d\sigma_{n+2}^{\mathsf{LO}} \,\Theta(Q_{n+2} - Q_{\mathsf{cut}}) \,\Delta_n(t_{n+1}, t_n) \,\Delta_{n+1}(t_{n+2}, t_{n+1}) \otimes \mathsf{PS}_{n+2}$

- restrict the parton shower on $2 \rightarrow n$ to emit only below Q_{cut}
- arbitrary jet measure $Q_n = Q_n(\Phi_n)$
- add the n + 1 ME and its parton shower
- multiply by Sudakov wrt. $2 \rightarrow n$ process to restore resummation
- iterate
- if $t_n(\Phi_n)
 e Q_n(\Phi_n)$ truncated shower needed to fill gaps

Parton showers (operate in $N_c \rightarrow \infty$ limit):

$$\mathsf{PS}_n(t_c, t_{\max}) = \Delta_n(t_c, t_{\max}) + \int_{t_c}^{t_{\max}} \mathrm{d}t' \mathcal{K}_n(t') \,\Delta_n(t', t_{\max})$$

Multijet merging at leading order:

$$d\sigma^{\mathsf{MEPS}} = d\sigma_n^{\mathsf{LO}} \otimes \mathsf{PS}_n \Theta(Q_{\mathsf{cut}} - Q_{n+1}) + d\sigma_{n+1}^{\mathsf{LO}} \Theta(Q_{n+1} - Q_{\mathsf{cut}}) \Delta_n(t_{n+1}, t_n) \otimes \mathsf{PS}_{n+1} \Theta(Q_{\mathsf{cut}} - Q_{n+2}) + d\sigma_{n+2}^{\mathsf{LO}} \Theta(Q_{n+2} - Q_{\mathsf{cut}}) \Delta_n(t_{n+1}, t_n) \Delta_{n+1}(t_{n+2}, t_{n+1}) \otimes \mathsf{PS}_{n+2}$$

- restrict the parton shower on $2 \rightarrow n$ to emit only below Q_{cut}
- arbitrary jet measure $Q_n = Q_n(\Phi_n)$
- add the $n+1\ {\rm ME}$ and its parton shower
- multiply by Sudakov wrt. $2 \rightarrow n$ process to restore resummation • iterate
- if $t_n(\Phi_n) \neq Q_n(\Phi_n)$ truncated shower needed to fill gaps

Parton showers (operate in $N_c \rightarrow \infty$ limit):

$$\mathsf{PS}_n(t_c, t_{\max}) = \Delta_n(t_c, t_{\max}) + \int_{t_c}^{t_{\max}} \mathrm{d}t' \mathcal{K}_n(t') \,\Delta_n(t', t_{\max})$$

Multijet merging at leading order:

$$d\sigma^{\mathsf{MEPS}} = d\sigma_n^{\mathsf{LO}} \otimes \mathsf{PS}_n \Theta(Q_{\mathsf{cut}} - Q_{n+1}) + d\sigma_{n+1}^{\mathsf{LO}} \Theta(Q_{n+1} - Q_{\mathsf{cut}}) \Delta_n(t_{n+1}, t_n) \otimes \mathsf{PS}_{n+1} \Theta(Q_{\mathsf{cut}} - Q_{n+2}) + d\sigma_{n+2}^{\mathsf{LO}} \Theta(Q_{n+2} - Q_{\mathsf{cut}}) \Delta_n(t_{n+1}, t_n) \Delta_{n+1}(t_{n+2}, t_{n+1}) \otimes \mathsf{PS}_{n+2}$$

- restrict the parton shower on $2 \rightarrow n$ to emit only below Q_{cut}
- arbitrary jet measure $Q_n = Q_n(\Phi_n)$
- add the $n+1\ {\rm ME}$ and its parton shower
- multiply by Sudakov wrt. $2 \rightarrow n$ process to restore resummation

iterate

• if $t_n(\Phi_n) \neq Q_n(\Phi_n)$ truncated shower needed to fill gaps

Marek Schönherr

Higgs production at NLO in SHERPA

Parton showers (operate in $N_c \rightarrow \infty$ limit):

$$\mathsf{PS}_n(t_c, t_{\max}) = \Delta_n(t_c, t_{\max}) + \int_{t_c}^{t_{\max}} \mathrm{d}t' \mathcal{K}_n(t') \,\Delta_n(t', t_{\max})$$

Multijet merging at leading order:

$$\begin{split} \mathrm{d}\sigma^{\mathsf{MEPS}} &= \mathrm{d}\sigma_n^{\mathsf{LO}} \otimes \mathsf{PS}_n \,\Theta(Q_{\mathsf{cut}} - Q_{n+1}) \\ &+ \mathrm{d}\sigma_{n+1}^{\mathsf{LO}} \,\Theta(Q_{n+1} - Q_{\mathsf{cut}}) \,\Delta_n(t_{n+1}, t_n) \,\otimes \mathsf{PS}_{n+1} \,\Theta(Q_{\mathsf{cut}} - Q_{n+2}) \\ &+ \mathrm{d}\sigma_{n+2}^{\mathsf{LO}} \,\Theta(Q_{n+2} - Q_{\mathsf{cut}}) \,\Delta_n(t_{n+1}, t_n) \,\Delta_{n+1}(t_{n+2}, t_{n+1}) \,\otimes \mathsf{PS}_{n+2} \end{split}$$

- restrict the parton shower on $2 \rightarrow n$ to emit only below Q_{cut}
- arbitrary jet measure $Q_n = Q_n(\Phi_n)$
- add the $n+1\ {\rm ME}$ and its parton shower
- multiply by Sudakov wrt. $2 \rightarrow n$ process to restore resummation
- iterate
- if $t_n(\Phi_n) \neq Q_n(\Phi_n)$ truncated shower needed to fill gaps

Marek Schönherr Higgs production at NLO in SHERPA

Scales:

000 000

MEPS

Parton showers (operate in $N_c \rightarrow \infty$ limit):

$$\mathsf{PS}_n(t_c, t_{\max}) = \Delta_n(t_c, t_{\max}) + \int_{t_c}^{t_{\max}} \mathrm{d}t' \mathcal{K}_n(t') \,\Delta_n(t', t_{\max}) \,dt' \,\Delta_n(t', t_{\max}) + \int_{t_c}^{t_{\max}} \mathrm{d}t' \mathcal{K}_n(t') \,\Delta_n(t', t_{\max}) \,dt' \,\Delta_n(t', t_{\max}) \,dt' \,\Delta_n(t', t_{\max}) + \int_{t_c}^{t_{\max}} \mathrm{d}t' \,\mathcal{K}_n(t') \,\Delta_n(t', t_{\max}) \,dt' \,\Delta_n(t', t'_{\max}) \,dt' \,\Delta_n(t'$$

Multijet merging at leading order:

$$d\sigma^{\mathsf{MEPS}} = d\sigma_n^{\mathsf{LO}} \otimes \mathsf{PS}_n \Theta(Q_{\mathsf{cut}} - Q_{n+1}) + d\sigma_{n+1}^{\mathsf{LO}} \Theta(Q_{n+1} - Q_{\mathsf{cut}}) \Delta_n(t_{n+1}, t_n) \otimes \mathsf{PS}_{n+1} \Theta(\mathbf{q}) + d\sigma_{n+2}^{\mathsf{LO}} \Theta(Q_{n+2} - Q_{\mathsf{cut}}) \Delta_n(t_{n+1}, t_n) \Delta_{n+1}(t_{n+2}, t_{n+1})$$

- restrict the parton shower on $2 \rightarrow n$ to emit only below Q_{cu}
- arbitrary jet measure $Q_n = Q_n(\Phi_n)$
- add the n+1 ME and its parton shower
- multiply by Sudakov wrt. $2 \rightarrow n$ process to restore resumma
- iterate

• if $t_n(\Phi_n) \neq Q_n(\Phi_n)$ truncated shower seed $(\mu_{\mathsf{R}}) = \alpha_s^k(\mu_{\mathsf{core}}) \, \alpha_s(t_1) \cdots \alpha_s(t_n)$

Parton showers (operate in $N_c \rightarrow \infty$ limit):

$$\mathsf{PS}_n(t_c, t_{\max}) = \Delta_n(t_c, t_{\max}) + \int_{t_c}^{t_{\max}} \mathrm{d}t' \mathcal{K}_n(t') \,\Delta_n(t', t_{\max})$$

Multijet merging at leading order:

$$\begin{split} \mathrm{d}\sigma^{\mathsf{MEPS}} &= \mathrm{d}\sigma^{\mathsf{LO}}_{n} \otimes \mathsf{PS}_{n} \,\Theta(Q_{\mathsf{cut}} - Q_{n+1}) \\ &+ \mathrm{d}\sigma^{\mathsf{LO}}_{n+1} \,\Theta(Q_{n+1} - Q_{\mathsf{cut}}) \,\Delta_{n}(t_{n+1}, t_{n}) \,\otimes \mathsf{PS}_{n+1} \,\Theta(Q_{\mathsf{cut}} - Q_{n+2}) \\ &+ \mathrm{d}\sigma^{\mathsf{LO}}_{n+2} \,\Theta(Q_{n+2} - Q_{\mathsf{cut}}) \,\Delta_{n}(t_{n+1}, t_{n}) \,\Delta_{n+1}(t_{n+2}, t_{n+1}) \,\otimes \mathsf{PS}_{n+2} \end{split}$$

- restrict the parton shower on $2 \rightarrow n$ to emit only below Q_{cut}
- arbitrary jet measure $Q_n = Q_n(\Phi_n)$
- add the $n+1\ {\rm ME}$ and its parton shower
- multiply by Sudakov wrt. $2 \rightarrow n$ process to restore resummation
- iterate
- if $t_n(\Phi_n) \neq Q_n(\Phi_n)$ truncated shower needed to fill gaps Nason JHEP11(2004)040

Parton showers for NLOPS (need to reproduce $N_c = 3$ singular limits for 1st em.): $\widetilde{\mathsf{PS}}_n(t_c, t_{\max}) = \tilde{\Delta}_n(t_c, t_{\max}) + \int_{t_c}^{t_{\max}} \mathrm{d}t' \tilde{\mathcal{K}}_n(t') \tilde{\Delta}_n(t', t_{\max})$

 $\begin{aligned} & \mathsf{Multijet merging at next-to-leading order:} \\ & \mathrm{d}\sigma^{\mathsf{MePs@NLO}} = \mathrm{d}\sigma^{\mathsf{NLO}}_n \otimes \widetilde{\mathsf{PS}}_n \otimes (\mathcal{Q}_{\mathrm{cons}}, \mathcal{Q}_{\mathrm{cons}}) \\ & = \mathrm{d}\sigma^{\mathsf{NLO}}_n \otimes \widetilde{\mathsf{PS}}_n \otimes (\mathcal{Q}_{\mathrm{cons}}, \mathcal{Q}_{\mathrm{cons}}) & = \mathcal{Q}_n^{\mathsf{NLO}} \otimes (\mathcal{Q}_n^{\mathsf{NLO}} \otimes (\mathcal{Q}_{\mathrm{cons}}, \mathcal{Q}_{\mathrm{cons}})) & = \mathcal{Q}_n^{\mathsf{NLO}} \otimes (\mathcal{Q}_n^{\mathsf{NLO}} \otimes (\mathcal{Q}_{\mathrm{cons}}, \mathcal{Q}_{\mathrm{cons}})) & = \mathcal{Q}_n^{\mathsf{NLO}} \otimes (\mathcal{Q}_n^{\mathsf{NLO}} \otimes$

- NLOPS for $2
 ightarrow n_{
 m c}$ restricted to emit only below $Q_{
 m ent}$
- add the NLOPS for $2 \rightarrow n+1$
- multiply by Sudakov wrt. $2 \rightarrow n$ process to restore resummation
- ullet remove overlap of Δ_n and $\mathrm{d}\sigma_{n+1}^{\mathsf{NLO}}$ iterat

Parton showers for NLOPS (need to reproduce $N_c = 3$ singular limits for 1st em.):

$$\widetilde{\mathsf{PS}}_n(t_c, t_{\max}) = \tilde{\Delta}_n(t_c, t_{\max}) + \int_{t_c}^{t_{\max}} \mathrm{d}t' \tilde{\mathcal{K}}_n(t') \, \tilde{\Delta}_n(t', t_{\max})$$

$$\begin{split} \text{Multijet merging at next-to-leading order:} \\ \mathrm{d}\sigma^{\text{MEPs@NLO}} &= \mathrm{d}\sigma_n^{\text{NLO}} \otimes \widetilde{\text{PS}}_n \Theta(Q_{\text{cut}} - Q_{n+1}) \\ &+ \mathrm{d}\sigma_{n+1}^{\text{NLO}} \Theta(Q_{n+1} - Q_{\text{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\ &\otimes \widetilde{\text{PS}}_{n+1} \Theta(Q_{\text{cut}} - Q_{n+2}) \\ &+ \mathrm{d}\sigma_{n+2}^{\text{NLO}} \Theta(Q_{n+2} - Q_{\text{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\ &\times \left(\Delta_{n+1}(t_{n+2}, t_{n+1}) - \Delta_{n+1}^{(1)}(t_{n+2}, t_{n+1}) \right) \otimes \widetilde{\text{PS}}_n \end{split}$$

• NLOPS for $2 \rightarrow n_{\rm c}$ restricted to emit only below $Q_{\rm cut}$

• add the NLOPS for 2
ightarrow n+1

- multiply by Sudakov wrt. 2
 ightarrow n process to restore resummation
- ullet remove overlap of Δ_n and $\mathrm{d}\sigma_{n+1}^{\mathsf{NLO}}$ iterat

Parton showers for NLOPS (need to reproduce $N_c = 3$ singular limits for 1st em.):

$$\widetilde{\mathsf{PS}}_n(t_c, t_{\max}) = \tilde{\Delta}_n(t_c, t_{\max}) + \int_{t_c}^{t_{\max}} \mathrm{d}t' \tilde{\mathcal{K}}_n(t') \,\tilde{\Delta}_n(t', t_{\max})$$

$$\begin{split} \text{Multijet merging at next-to-leading order:} \\ \mathrm{d}\sigma^{\text{MEPS@NLO}} &= \mathrm{d}\sigma_n^{\text{NLO}} \otimes \widetilde{\text{PS}}_n \, \Theta(Q_{\text{cut}} - Q_{n+1}) \\ &\quad + \mathrm{d}\sigma_{n+1}^{\text{NLO}} \, \Theta(Q_{n+1} - Q_{\text{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\ &\quad \otimes \widetilde{\text{PS}}_{n+1} \, \Theta(Q_{\text{cut}} - Q_{n+2}) \\ &\quad + \mathrm{d}\sigma_{n+2}^{\text{NLO}} \, \Theta(Q_{n+2} - Q_{\text{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \end{split}$$

 $\Delta_{n+1}(t_{n+2}, t_{n+1}) - \Delta_{n+1}^{(1)}(t_{n+2}, t_{n+1}) \otimes \mathsf{PS}_{n+2}$

- NLOPS for $2 \rightarrow n$, restricted to emit only below Q_{cut}
- add the NLOPS for $2 \rightarrow n + 1$
- multiply by Sudakov wrt. 2
 ightarrow n process to restore resummation
- ullet remove overlap of Δ_n and $\mathrm{d}\sigma_{n+1}^{ extsf{nLO}}$, its

Parton showers for NLOPS (need to reproduce $N_c = 3$ singular limits for 1st em.):

$$\widetilde{\mathsf{PS}}_n(t_c, t_{\max}) = \tilde{\Delta}_n(t_c, t_{\max}) + \int_{t_c}^{t_{\max}} \mathrm{d}t' \tilde{\mathcal{K}}_n(t') \, \tilde{\Delta}_n(t', t_{\max})$$

Multijet merging at next-to-leading order: $d\sigma^{\text{MEPS@NLO}} = d\sigma_n^{\text{NLO}} \otimes \widetilde{\text{PS}}_n \Theta(Q_{\text{cut}} - Q_{n+1}) \\
+ d\sigma_{n+1}^{\text{NLO}} \Theta(Q_{n+1} - Q_{\text{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\otimes \widetilde{\text{PS}}_{n+1} \Theta(Q_{\text{cut}} - Q_{n+2}) \\
+ d\sigma_{n+2}^{\text{NLO}} \Theta(Q_{n+2} - Q_{\text{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\times \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\$

- NLOPS for $2 \rightarrow n$, restricted to emit only below Q_{cut}
- add the NLOPS for $2 \rightarrow n+1$
- multiply by Sudakov wrt. $2 \rightarrow n$ process to restore resummation
- ullet remove overlap of Δ_n and $\mathrm{d}\sigma_{n+1}^{ extsf{nLO}}$ its

Parton showers for NLOPS (need to reproduce $N_c = 3$ singular limits for 1st em.):

$$\widetilde{\mathsf{PS}}_n(t_c, t_{\max}) = \tilde{\Delta}_n(t_c, t_{\max}) + \int_{t_c}^{t_{\max}} \mathrm{d}t' \tilde{\mathcal{K}}_n(t') \, \tilde{\Delta}_n(t', t_{\max})$$

Multijet merging at next-to-leading order: $d\sigma^{\text{MEPS@NLO}} = d\sigma_n^{\text{NLO}} \otimes \widetilde{\text{PS}}_n \Theta(Q_{\text{cut}} - Q_{n+1}) \\
+ d\sigma_{n+1}^{\text{NLO}} \Theta(Q_{n+1} - Q_{\text{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\otimes \widetilde{\text{PS}}_{n+1} \Theta(Q_{\text{cut}} - Q_{n+2}) \\
+ d\sigma_{n+2}^{\text{NLO}} \Theta(Q_{n+2} - Q_{\text{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\approx \widetilde{\text{PS}}_{n+1} \Theta(Q_{n+2} - Q_{\text{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\approx \widetilde{\text{PS}}_{n+2} \Theta(Q_{n+2} - Q_{\text{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\approx \widetilde{\text{PS}}_{n+2} \Theta(Q_{n+2} - Q_{\text{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\approx \widetilde{\text{PS}}_{n+2} \Theta(Q_{n+2} - Q_{\text{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\approx \widetilde{\text{PS}}_{n+2} \Theta(Q_{n+2} - Q_{\text{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\approx \widetilde{\text{PS}}_{n+2} \Theta(Q_{n+2} - Q_{\text{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\approx \widetilde{\text{PS}}_{n+2} \Theta(Q_{n+2} - Q_{\text{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\approx \widetilde{\text{PS}}_{n+2} \Theta(Q_{n+2} - Q_{\text{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\approx \widetilde{\text{PS}}_{n+2} \Theta(Q_{n+2} - Q_{\text{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\approx \widetilde{\text{PS}}_{n+2} \Theta(Q_{n+2} - Q_{\text{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\approx \widetilde{\text{PS}}_{n+2} \Theta(Q_{n+2} - Q_{\text{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right)$

- NLOPs for $2 \rightarrow n$, restricted to emit only below $Q_{\rm cut}$
- add the NLOPS for $2 \rightarrow n+1$
- multiply by Sudakov wrt. $2 \rightarrow n$ process to restore resummation
- remove overlap of Δ_n and $\mathrm{d}\sigma_{n+1}^{\mathsf{NLO}}$

Parton showers for NLOPS (need to reproduce $N_c = 3$ singular limits for 1st em.):

$$\widetilde{\mathsf{PS}}_n(t_c, t_{\max}) = \tilde{\Delta}_n(t_c, t_{\max}) + \int_{t_c}^{t_{\max}} \mathrm{d}t' \tilde{\mathcal{K}}_n(t') \, \tilde{\Delta}_n(t', t_{\max})$$

Multijet merging at next-to-leading order: $d\sigma^{\text{MEPS@NLO}} = d\sigma_n^{\text{NLO}} \otimes \widetilde{\text{PS}}_n \Theta(Q_{\text{cut}} - Q_{n+1}) \\
+ d\sigma_{n+1}^{\text{NLO}} \Theta(Q_{n+1} - Q_{\text{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\
\otimes \widetilde{\text{PS}}_{n+1} \Theta(Q_{\text{cut}} - Q_{n+2}) \\
+ d\sigma_{n+2}^{\text{NLO}} \Theta(Q_{n+2} - Q_{\text{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right)$

- NLOPS for $2 \rightarrow n$, restricted to emit only below Q_{cut}
- add the NLOPS for $2 \rightarrow n+1$
- multiply by Sudakov wrt. $2 \rightarrow n$ process to restore resummation
- remove overlap of Δ_n and $\mathrm{d}\sigma_{n+1}^{\mathsf{NLO}}$, iterate

Parton showers for NLOPS (need to reproduce $N_c = 3$ singular limits for 1st em.):

$$\widetilde{\mathsf{PS}}_n(t_c, t_{\max}) = \tilde{\Delta}_n(t_c, t_{\max}) + \int_{t_c}^{t_{\max}} \mathrm{d}t' \tilde{\mathcal{K}}_n(t') \, \tilde{\Delta}_n(t', t_{\max})$$

- NLOPs for $2 \rightarrow n$, restricted to emit only below $Q_{\rm cut}$
- add the NLOPS for $2 \rightarrow n+1$
- multiply by Sudakov wrt. $2 \rightarrow n$ process to restore resummation
- remove overlap of Δ_n and $\mathrm{d}\sigma_{n+1}^{\mathsf{NLO}}$, iterate

Parton showers for NLOPS (need to reproduce $N_c = 3$ singular limits for 1st em.):

$$\widetilde{\mathsf{PS}}_n(t_c, t_{\max}) = \tilde{\Delta}_n(t_c, t_{\max}) + \int_{t_c}^{t_{\max}} \mathrm{d}t' \tilde{\mathcal{K}}_n(t') \, \tilde{\Delta}_n(t', t_{\max})$$

$$\begin{split} \text{Multijet merging at next-to-leading order:} \\ \mathrm{d}\sigma^{\text{MEPS@NLO}} &= \mathrm{d}\sigma_n^{\text{NLO}} \otimes \widetilde{\text{PS}}_n \, \Theta(Q_{\text{cut}} - Q_{n+1}) \\ &+ \mathrm{d}\sigma_{n+1}^{\text{NLO}} \, \Theta(Q_{n+1} - Q_{\text{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\ & \otimes \widetilde{\text{PS}}_{n+1} \, \Theta(Q_{\text{cut}} - Q_{n+2}) \\ &+ \mathrm{d}\sigma_{n+2}^{\text{NLO}} \, \Theta(Q_{n+2} - Q_{\text{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) \\ & \qquad \times \left(\Delta_{n+1}(t_{n+2}, t_{n+1}) - \Delta_{n+1}^{(1)}(t_{n+2}, t_{n+1}) \right) \otimes \widetilde{\text{PS}}_{n+2} \end{split}$$

- NLOPS for $2 \rightarrow n$, restricted to emit only below Q_{cut}
- add the NLOPS for $2 \rightarrow n+1$
- multiply by Sudakov wrt. $2 \rightarrow n$ process to restore resummation
- remove overlap of Δ_n and $\mathrm{d}\sigma_{n+1}^{\mathsf{NLO}}$, iterate

MEPs@NLO Scales: Parton showers for NLOPS (need to reproduce $N_c = 3$ singular lin 000 $\widetilde{\mathsf{PS}}_n(t_c, t_{\max}) = \tilde{\Delta}_n(t_c, t_{\max}) + \int_{t}^{t_{\max}} \mathrm{d}t' \tilde{\mathcal{K}}_n(t') \, \tilde{\Delta}_n(t',$ Multijet merging at next-to-leading order: $\mathrm{d}\sigma^{\mathsf{MEPS}(\mathsf{ONLO})} = \mathrm{d}\sigma_n^{\mathsf{NLO}} \otimes \widetilde{\mathsf{PS}}_n \Theta(Q_{\mathsf{cut}} - Q_{n+1})$ $+ \mathrm{d}\sigma_{n+1}^{\mathsf{NLO}} \Theta(Q_{n+1} - Q_{\mathsf{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)} \right)$ $\otimes \widetilde{\mathsf{PS}}_{n+1} \Theta(Q_{\mathsf{cut}} - Q_{n+2})$ $+ \mathrm{d}\sigma_{n+2}^{\mathsf{NLO}} \Theta(Q_{n+2} - Q_{\mathsf{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) = 0$ $\times \left(\Delta_{n+1}(t_{n+2}, t_{n+1}) - \Delta_{n+1}^{(1)}(t_{n+2}, t_n) \right)$ • NLOPS for $2 \rightarrow n$, restricted to emit only below Q_{cut} • add the NLOPS for $2 \rightarrow n+1$

- multiply by Sudakov wrt. $2 \rightarrow n$ process to restore resumma
- remove overlap of Δ_n and $d\sigma_{n+1}^{\text{NLO}}$, iter $\alpha_s^{k+n}(\mu_R) = \alpha_s^k(\mu_{\text{core}}) \alpha_s(t_1) \cdots \alpha_s(t_n)$

MEPs@NLO Scales: Parton showers for NLOPS (need to reproduce $N_c = 3$ singular lin 000 $\widetilde{\mathsf{PS}}_n(t_c, t_{\max}) = \tilde{\Delta}_n(t_c, t_{\max}) + \int_{t}^{t_{\max}} \mathrm{d}t' \tilde{\mathcal{K}}_n(t') \, \tilde{\Delta}_n(t',$ Multijet merging at next-to-leading order: $\mathrm{d}\sigma^{\mathsf{MEPS}(\mathsf{ONLO})} = \mathrm{d}\sigma_n^{\mathsf{NLO}} \otimes \widetilde{\mathsf{PS}}_n \Theta(Q_{\mathsf{cut}} - Q_{n+1})$ $+ \mathrm{d}\sigma_{n+1}^{\mathsf{NLO}} \Theta(Q_{n+1} - Q_{\mathsf{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)} \right)$ $\otimes \widetilde{\mathsf{PS}}_{n+1} \Theta(Q_{\mathsf{cut}} - Q_{n+2})$ $+ \mathrm{d}\sigma_{n+2}^{\mathsf{NLO}} \Theta(Q_{n+2} - Q_{\mathsf{cut}}) \left(\Delta_n(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) - \Delta_n^{(1)}(t_{n+1}, t_n) \right) = 0$ $\times \left(\Delta_{n+1}(t_{n+2}, t_{n+1}) - \Delta_{n+1}^{(1)}(t_{n+2}, t_n) \right)$ • NLOPS for $2 \rightarrow n$, restricted to emit only below Q_{cut}

- add the NLOPS for $2 \rightarrow n+1$
- multiply by Sudakov wrt. $2 \rightarrow n$ process to restore resumma
- if $t_n(\Phi_n) \neq Q_n(\Phi_n)$ truncated shower needed to fill gaps

MeNloPs

$$\begin{split} \mathrm{d}\sigma^{\mathrm{MENLOPS}} &= \mathrm{d}\sigma^{\mathrm{NLO}}_{n} \otimes \widetilde{\mathrm{PS}}_{n} \otimes (Q_{\mathrm{cut}} - Q_{n+1}) \\ &+ k_{n}(\Phi_{n+1}) \, \mathrm{d}\sigma^{\mathrm{LO}}_{n+1} \otimes (Q_{n+1} - Q_{\mathrm{cut}}) \, \Delta_{n}(t_{n+1}, t_{n}) \\ &\otimes \mathrm{PS}_{n+1} \otimes (Q_{\mathrm{cut}} - Q_{n+2}) \\ &+ k_{n}(\Phi_{n+1}(\Phi_{n+2})) \, \mathrm{d}\sigma^{\mathrm{LO}}_{n+2} \otimes (Q_{n+2} - Q_{\mathrm{cut}}) \\ &\times \Delta_{n}(t_{n+1}, t_{n}) \, \Delta_{n+1}(t_{n+2}, t_{n+1}) \otimes \mathrm{PS}_{n+2} \end{split}$$

- restrict MC@NLO expression to region $Q < Q_{\sf cut}$
- add in real radiation explicitly, as in MEPS
- restore logarithmic behaviour by explicit Sudakov
- local K-factor for continuity at Q_{cut}

$$k_n(\Phi_{n+1}) = \frac{\bar{B}_n(\Phi_n)}{B_n(\Phi_n)} \left(1 - \frac{H_n(\Phi_{n+1})}{R_n(\Phi_{n+1})}\right) + \frac{H_n(\Phi_{n+1})}{R_n(\Phi_{n+1})}$$

iterate
$\mathrm{d}\sigma^{\mathsf{MENLOPS}} = \mathrm{d}\sigma_n^{\mathsf{NLO}} \otimes \widetilde{\mathsf{PS}}_n \,\Theta(Q_{\mathsf{cut}} - Q_{n+1})$

 $+ k_n(\Phi_{n+1}) d\sigma_{n+1}^{\mathsf{LO}} \Theta(Q_{n+1} - Q_{\mathsf{cut}}) \Delta_n(t_{n+1}, t_n)$ $\otimes \mathsf{PS}_{n+1} \Theta(Q_{\mathsf{cut}} - Q_{n+2})$ $+ k_n(\Phi_{n+1}(\Phi_{n+2})) d\sigma_{n+2}^{\mathsf{LO}} \Theta(Q_{n+2} - Q_{\mathsf{cut}})$ $\times \Delta_n(t_{n+1}, t_n) \Delta_{n+1}(t_{n+2}, t_{n+1}) \otimes \mathsf{PS}_{n+2}$

- restrict MC@NLO expression to region $Q < Q_{\text{cut}}$
- add in real radiation explicitly, as in MEPS
- restore logarithmic behaviour by explicit Sudakov
- local K-factor for continuity at Q_{cut}

$$k_n(\Phi_{n+1}) = \frac{\bar{B}_n(\Phi_n)}{B_n(\Phi_n)} \left(1 - \frac{H_n(\Phi_{n+1})}{R_n(\Phi_{n+1})}\right) + \frac{H_n(\Phi_{n+1})}{R_n(\Phi_{n+1})}$$

$$d\sigma^{\text{MENLOPS}} = d\sigma_n^{\text{NLO}} \otimes \widetilde{\text{PS}}_n \Theta(Q_{\text{cut}} - Q_{n+1}) + k_n(\Phi_{n+1}) d\sigma_{n+1}^{\text{LO}} \Theta(Q_{n+1} - Q_{\text{cut}}) \Delta_n(t_{n+1}, t_n) \otimes \text{PS}_{n+1} \Theta(Q_{\text{cut}} - Q_{n+2}) + k_n(\Phi_{n+1}(\Phi_{n+2})) d\sigma_{n+2}^{\text{LO}} \Theta(Q_{n+2} - Q_{\text{cut}}) \times \Delta_n(t_{n+1}, t_n) \Delta_{n+1}(t_{n+2}, t_{n+1}) \otimes \text{PS}_{n+2}$$

- restrict MC@NLO expression to region $Q < Q_{\rm cut}$
- add in real radiation explicitly, as in MEPS
- restore logarithmic behaviour by explicit Sudakov
- local K-factor for continuity at Q_{cut}

$$k_n(\Phi_{n+1}) = \frac{\bar{B}_n(\Phi_n)}{B_n(\Phi_n)} \left(1 - \frac{H_n(\Phi_{n+1})}{R_n(\Phi_{n+1})}\right) + \frac{H_n(\Phi_{n+1})}{R_n(\Phi_{n+1})}$$

$$d\sigma^{\text{MENLOPS}} = d\sigma_n^{\text{NLO}} \otimes \widetilde{\text{PS}}_n \Theta(Q_{\text{cut}} - Q_{n+1}) + k_n(\Phi_{n+1}) d\sigma_{n+1}^{\text{LO}} \Theta(Q_{n+1} - Q_{\text{cut}}) \Delta_n(t_{n+1}, t_n) \otimes \text{PS}_{n+1} \Theta(Q_{\text{cut}} - Q_{n+2}) + k_n(\Phi_{n+1}(\Phi_{n+2})) d\sigma_{n+2}^{\text{LO}} \Theta(Q_{n+2} - Q_{\text{cut}}) \times \Delta_n(t_{n+1}, t_n) \Delta_{n+1}(t_{n+2}, t_{n+1}) \otimes \text{PS}_{n+2}$$

- restrict MC@NLO expression to region $Q < Q_{\rm cut}$
- add in real radiation explicitly, as in MEPS
- · restore logarithmic behaviour by explicit Sudakov
- local K-factor for continuity at Q_{cut}

 $k_n(\Phi_{n+1}) = \frac{\bar{B}_n(\Phi_n)}{B_n(\Phi_n)} \left(1 - \frac{H_n(\Phi_{n+1})}{R_n(\Phi_{n+1})}\right) + \frac{H_n(\Phi_{n+1})}{R_n(\Phi_{n+1})}$

$$d\sigma^{\text{MENLOPS}} = d\sigma_n^{\text{NLO}} \otimes \widetilde{\text{PS}}_n \Theta(Q_{\text{cut}} - Q_{n+1}) + k_n(\Phi_{n+1}) d\sigma_{n+1}^{\text{LO}} \Theta(Q_{n+1} - Q_{\text{cut}}) \Delta_n(t_{n+1}, t_n) \otimes \text{PS}_{n+1} \Theta(Q_{\text{cut}} - Q_{n+2}) + k_n(\Phi_{n+1}(\Phi_{n+2})) d\sigma_{n+2}^{\text{LO}} \Theta(Q_{n+2} - Q_{\text{cut}}) \times \Delta_n(t_{n+1}, t_n) \Delta_{n+1}(t_{n+2}, t_{n+1}) \otimes \text{PS}_{n+2}$$

- restrict MC@NLO expression to region $Q < Q_{\rm cut}$
- add in real radiation explicitly, as in MEPS
- restore logarithmic behaviour by explicit Sudakov
- local K-factor for continuity at $Q_{\rm cut}$

$$k_n(\Phi_{n+1}) = \frac{\bar{B}_n(\Phi_n)}{B_n(\Phi_n)} \left(1 - \frac{H_n(\Phi_{n+1})}{R_n(\Phi_{n+1})}\right) + \frac{H_n(\Phi_{n+1})}{R_n(\Phi_{n+1})}$$

$$\begin{split} \mathrm{d}\sigma^{\mathrm{MENLOPS}} &= \mathrm{d}\sigma^{\mathrm{NLO}}_{n} \otimes \widetilde{\mathrm{PS}}_{n} \,\Theta(Q_{\mathrm{cut}} - Q_{n+1}) \\ &+ k_{n}(\Phi_{n+1}) \,\mathrm{d}\sigma^{\mathrm{LO}}_{n+1} \,\Theta(Q_{n+1} - Q_{\mathrm{cut}}) \,\Delta_{n}(t_{n+1}, t_{n}) \\ &\otimes \mathrm{PS}_{n+1} \,\Theta(Q_{\mathrm{cut}} - Q_{n+2}) \\ &+ k_{n}(\Phi_{n+1}(\Phi_{n+2})) \,\mathrm{d}\sigma^{\mathrm{LO}}_{n+2} \,\Theta(Q_{n+2} - Q_{\mathrm{cut}}) \\ &\times \Delta_{n}(t_{n+1}, t_{n}) \,\Delta_{n+1}(t_{n+2}, t_{n+1}) \,\otimes \mathrm{PS}_{n+2} \end{split}$$

- restrict MC@NLO expression to region $Q < Q_{\rm cut}$
- add in real radiation explicitly, as in MEPS
- restore logarithmic behaviour by explicit Sudakov
- local K-factor for continuity at $Q_{\rm cut}$

$$k_n(\Phi_{n+1}) = \frac{\bar{B}_n(\Phi_n)}{B_n(\Phi_n)} \left(1 - \frac{H_n(\Phi_{n+1})}{R_n(\Phi_{n+1})}\right) + \frac{H_n(\Phi_{n+1})}{R_n(\Phi_{n+1})}$$

iterate

Marek Schönherr