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Problem

Find an efhicient algorithm to solve

strongly coupled QFTs



Lattice field theory?

e Benchmark problem: Light hadron spectrum at % level

M[MeV]

2000
1500
1000

500

0

==I"¢

—— experiment
== width

o input

¢ QCD

Ny=2+1

Durr et al, Science 322(2008) 1224

3 /27



Lattice field theory?

e Benchmark problem: Light hadron spectrum at % level

2000 -
- L0 N f = 2+ 1
1500 o =
_ L .
% ] T 2 $ A
1000 .
% | ==K N Durr et al, Science 322(2008) 1224
500__ — K — experiment
i == width
il o input
ek s QCD

0

e Cost: = 1 supercomputer-year = 100,000 single core-years
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Today: Conformal theories
aka fixed points of RG flow

e Paradigmatic example in d=3+1: conformal window of QCD

i.e. take SU(N.) gauge theory with N¢ massless quark flavors
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Today: Conformal theories
aka fixed points of RG flow

e Paradigmatic example in d=3+1: conformal window of QCD

i.e. take SU(N.) gauge theory with N¢ massless quark flavors

e N¢small = the theory confines (like QCD)

® Nrlarge = loses asymptotic freedom

e Nrintermediate = flows to IR fixed point (CFT)

Studying these fixed points is proving more difficult on
the lattice than the ordinary QCD
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CFTs in d=2+1

E.g. U(1) Maxwell + N¢ massless fermions

(g?] = mass in d = 3
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CFTs in d=2+1

E.g. U(1) Maxwell + N¢ massless fermions

(g?] = mass in d = 3

e N;small =@ confinement

e Nrlarge = IR fixed point

“quantum spin liquid” state in condensed matter

E.g. Nr= 4 for Herbertsmithite. ZnCuz(OH)sCl
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CFTs in Euclidean d=3

L = (0¢)* + m?¢* + \g*

For a critical value of g=A/m flows to IR fixed point
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CFTs in Euclidean d=3

L = (0¢)* + m?¢* + \o*

For a critical value of g=A/m flows to IR fixed point

Same CFT as critical point (T=T.) of 3d Ising model

describes - Curie point of uniaxial magnets in 3d

- liquid-vapor phase transitions
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Plan

1. CFT generalities

2. Conformal Bootstrap
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CFT kinematics

i.e. everything you get for free

e Observables in CFT are correlation functions (no S-matrix)

(A1(z1) ... Ap(zn))
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CFT kinematics

i.e. everything you get for free

e Observables in CFT are correlation functions (no S-matrix)

<A1($1) .. An(.’L'n)}

e Each operator A; is characterized by

- scaling dimension A;> 0

- SO(d) Ie€P. (scalarvector,...)

Example: each CFT contains a stress tensor operator
T,v, conserved and traceless, of dimension A=d
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Operators transform covariantly under

Conformal transformations z — 2’ = f(x)

E.g. for scalars:

A(.’L") — /\(x)_AA(iB) A\ = |6$’/ax‘1/d local

scale factor
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Operators transform covariantly under

Conformal transformations z — 2’ = f(x)

E.g. for scalars:

A(.’L") — /\(x)_AA(iB) A\ = |6$’/ax‘1/d local

scale factor

Poincaré + dilatations + special conformal transformations

2

0Ty, = 2(a.x)z" — z*a
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Correlators must be invariant =

Two and three point functions fixed = Polyakov 1970
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Correlators must be invariant =

Two and three point functions fixed = Polyakov 1970

(Ai(z1)Aj(x2)) = 6i5|T10| 22 diagonal!

(Al($1)A2(.’E2)A3(.’L'3)> p— f123|$12‘ 3—A1—A2|x13|...|$23‘...

CFT data

to find these = to solve the CFT
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C, (J/mole K)

Example: CFT data from experiment

120 Lipa et al, Phys.Rev.Lett. 76,944(1996)

A-point of He-4

100 space shuttle measurement

Reached T-T,~nK = &[a~10°

T-T, (1K)

Specific heat exponent o =-0.0127(3)

v

A(g?) = 1.5094(2) in the 3d O(2) model
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Other ways to extract CFT data

® Renormalization Group
hard in strongly coupled theories
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Other ways to extract CFT data

® Renormalization Group
hard in strongly coupled theories

e Monte Carlo
expensive

Common disadvantages:

- conformal symmetry left unused

- 3pt function coefhcients f;;; much harder
to get than A; (never done in practice)
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Conformal Bootstrap

Original idea
Ferrara, Gatto, Grillo 1973; Polyakov 1974

Concrete realization in 2d
Belavin, Polyakov, Zamolodchikov 1983

First results in 4d (motivated by BSM)
Rattazzi, S.R., Tonni, Vichi 2008
(Using 4d conformal blocks by Dolan,Osborn 2000)

First results in 3d (applications to Ising-3)
El-Showk, Paulos, Poland, S.R.,Simmons-Dufhin,Vichi 2012



Analogy: Modular invariance

Put a Lorentz-inv theory on S§! x S1

14/27



Analogy: Modular invariance

Put a Lorentz-inv theory on S§! x S1

View L, as space and L, as [

e
7 — rI\re—Lz'H(Iq) — Ze—LzEn(Ll)

n

14/27



Analogy: Modular invariance

Put a Lorentz-inv theory on S x §1

View L, as space and L, as [3:

/

14/27



Analogy: Modular invariance

Put a Lorentz-inv theory on S! x S1

View L, as space and L, as [

/

7 — rIwre—Lz'H(Ll) 3 Ze—LzEn(Ll) _ (Ll N L2)

2d CFT: En(L) = %(An —¢/12) = constraint on A’s
Cardy 1986
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Now real bootstrap

Consider 4-pt function: 1.41 A,

A2 .AS
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Now real bootstrap

Al A4

Az .AS

Consider 4-pt function:

sphere S

(A1A2A3A4) =) (A1Az|n)(n|AsA,)

e
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Now real bootstrap

Consider 4-pt function:

sphere S
° A3

— states on S

o States:  E, < A, In) <> A, (0)

e Matrix elements:
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conformal partial waves

Get /

(A1A2A3A4) = Z f12n f3anGn(T1, T2, T3, T4)
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conformal partial waves

Get

(A142A344) = Z fion f34nGn(T1, T2, T3, T4)

= (2 < 4)
conformal bootstrap eqn
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Get

(A142A344) = Z fion f34nGn(T1, T2, T3, T4)

= (2 ¢ 4)
conformal bootstrap eqn

1. functional constraint on CFT data - must be satisfied for every
X1y . X4

2. one equation for every 4-point function
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Concrete application: 3d Ising model CFT

Many other applications exist:
- Wilson-Fisher fixed point in 2<d<4
- O(N) models in d=3

- SUSY conformal theories in d=2,3,4,6 dimensions

| 7/27



Local operators
3d Ising model CFT can be det’d as IR fixed point of

L = (09)* +m*¢* + Ao
- has Z2 symmetry ¢ — -¢
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Local operators

3d Ising model CFT can be det’d as IR fixed point of

L = (09)* +m*¢* + Ao
- has Z2 symmetry ¢ — -¢

Can think of operators in terms of powers of ¢ and derivatives:

b, b ...

These are just ‘names’, because the operators are strongly
renormalized.

E.g. {¢2}=1 in the UV (free theory) becomes
[®»2] = 1.41 in the IR (CFT)

18/27



In bootstrap, ¢p-content of operators is irrelevant
(only their dimension, spin, and Z> count)
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In bootstrap, ¢p-content of operators is irrelevant
(only their dimension, spin, and Z> count)

Very important experimental fact:
3d Ising CFT contains 2 and only 2 relevant (i.e. A<3)
scalar operators:

- one Z2-odd, call it ¢ (it’s coming from ¢ in the UV)
- one Z2-even, call it € (coming from ¢?)

Coupling <0 0 €> allowed by Z2 symmetry = fooe # 0

19/27



More generally, consider OPE 0 x 0

It contains all operators A such that foea# O
(infinitely many per each spin)

ocxo=1+e+e+... (£=0)

+Tw + T, +... (£=2)
+ (£ =4,6,...)
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It contains all operators A such that foea# O
(infinitely many per each spin)

ocxo=1+e+e+... (£=0)

+Tw +T,,+... (£=2)

/+(£:4,6,...)

stress tensor, A=3

foor = Ag/v/c  (Ward identity)
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More generally, consider OPE 0 x 0

It contains all operators A such that foea# O
(infinitely many per each spin)

ocxo=1+e+e+... (£=0)

+Tw +T,,+... (£=2)

/—I—(£=4,6,...)

stress tensor, A=3
foor = Ag/v/c  (Ward identity)

To solve the theory we must find dimensions and f’s

for all these operators
20/27



Bootstrap Oracle
The algorithm explores the space of CFT data

and rigorously rules out the impossible sets

subset of CFT data '
e.g. Ao, Ag ‘
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(Ao, Ag)-oracle using <0000>
El-Showk, Paulos, Poland, S.R.,Simmons-Dufhin,Vichi 2012

NO
1.6:-

1.4L
121

| A R S S SR R A(T
S0 052 054 056 058 060 062 0.64

free scalar
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(Ao, Ag)-oracle using <0000>
El-Showk, Paulos, Poland, S.R.,Simmons-Dufhin,Vichi 2012

Ae

1.8,

| NO
1.6:-
1.4:-

| [sing-3 (from RG & MC)
12}

| MAYBE

| A R S S SR R Aa
S0 052 054 056 058 060 062 0.64

free scalar
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(Ao, ¢)-oracle using <6000>
El-Showk, Paulos, Poland, S.R.,Simmons-Dufhin,Vichi 2014

C/Cfree
1.25¢

1.20F
115}
1.10f
1.05F
1.00f
0.95

0.90¢
050 052 054 056 058  0.60

MAYBE
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(Ao, ¢)-oracle using <6000>
El-Showk, Paulos, Poland, S.R.,Simmons-Dufhin,Vichi 2014

C/Cfree
1.25¢

1.20F
115}
1.10f
1.05F
1.00f
0.95

0.90¢
050 052 054 056 058  0.60

MAYBE

0.9472¢

0.9470

Z.oom: .

0.9468

NO

0.9466 |

05179 05180 05181 05182 05183  0.5184
Ao 23/27




Conjecture: 3d Ising minimizes central charge

known fact in d=2

From minimum localization:

A, = 0.518154(15)
Cc/Cree = 0.946534(11)
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Conjecture: 3d Ising minimizes central charge

known fact in d=2

From minimum localization:

A, = 0.518154(15)
Cc/Cree = 0.946534(11)

All other operators and their t’s become
fixed at the minimum:

Ae =1.41267(13)  f2 = 1.10636(9)
Ao =3.8303(18)  f2, =0.002810(6)

These are world’s most precise determinations
of 3d Ising model CFT data

24/27



(Ao, Ag)-oracle using <0000>, <€€€€>, <OOEE>

Kos,Poland,Simmons-Dufhin 2014

1.415

1.414

1.413

1.412

1.411

p— . ______}\
0.5179 0518 05181  0.5182 0.5183 0.5184 0.5185  0.5186
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1.415

1.414

1.413

1.412

1.411

(Ao, Ag)-oracle using <0000>, <€€€€>, <OOEE>

Kos,Poland,Simmons-Dufhin 2014

OrsS

A,

0.5179 0.518 0.5181 0.5182 0.5183 0.5184  0.5185 0.5186
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(Ao, Ag)-oracle using <0000>, <€€€€>, <OOEE>

Kos,Poland,Simmons-Dufhin 2014

A J

1.415

1.414

1.413

OrsS

1.412

1.411

p— . ______}\
0.5179 0518 05181  0.5182 0.5183 0.5184 0.5185  0.5186

Strongly coupled CFT computation with rigorous error bars
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Oracle inner workings

Recall bootstrap: Z fionfaan X (..) =2 < 4

Quadratic equation for t’s

But if identical operators : Z f2 o x(.)=2+4
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Oracle inner workings

Recall bootstrap:

Zf12nf34n X (...)=24

Quadratic equation for t’s

But if identical operators : Z fo x(.)=2+4

r

¢\

Pn

~N

Pn =0
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Oracle inner workings

Recall bootstrap: Z fionfaan X (...) =2 < 4

Quadratic equation for t’s

But if identical operators : Z f2 x(.)=2s4

-

A Pn =0

Linear constraint

on p’s:
Is intersection nonempty?

Linear programming Dantzig 1947

Crucial: p,, > 0 is a convex condition

Pn

J 26127




Several correlators <oooo>, <geee>, <coge>

Z‘fga‘n ' _2<_>4 Zeen _2<_>4
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Several correlators <oooo>, <geee>, <coge>

ngan : _294 Zfé?en . —2(—)4

Zfoanfeen X ( - ) — ngen X

non sign-definite

2
]P ( oon faa'rzzfeen ) t O

faanfeen EEMN,

positive semidefinite (A; = 0,y = f2__ + f2,)
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Several correlators <oooo>, <geee>, <coge>

Do x () =204 ) Manx () =20
Zfoanfeenx(---):ngenx

non sign-definite

2
]P ( oon faa'rzzfeen ) t O

faanfeen EEMN,

positive semidefinite (A; = 0,y = f2__ + f2,)

Also a convex condition!

Linear programming — Semidefinite programming

27127



Conclusions and future

® conformal bootstrap works in any d

e for some models (Ising-3, O(IN)) even better than expected
- lots of mileage out of a few constraints

Short-term: go through the list of known CFTs

Long-term: classify CFTs with a small number
of low dimension operators
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Backup
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RG vs Monte Carlo and experiment

Monte Carlo RG
Hasenbusch 2010 | Guida, Zinn-Justin 1998
Isin g-3 (20 CPU-years) (5-7 loops + Borel)
A(p) 0.51814(5) 0.51675(125)
A(p?) 1.41275(25) 1.41370(330)
agrees, with O(10) larger errors
Experiment MC+HT RG
O<2> d=3 Lipa et al 1996 | Campostrini et al | Guida, Zinn-Justin
20006 1998
A(p?) 1.5094(2) 1.5112(2) 1.5081(33)
« —> RG inconclusive

80 discrepancy
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QCD conformal window

SU(3) massless gauge theory in d=3+1 with Nf fermions

Flows to a conformal IR fixed point for

Nn < Np <16
confinement IR fixed point no as. freedom

\ precise value (10-12) debated

Del Debbio, 1102.4046
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