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Problem

Find an efficient algorithm to solve
strongly coupled QFTs
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Lattice field theory?

mud, corresponding toMp ≅ 135MeV, are difficult.
They need computationally intensive calculations,
withMp reaching down to 200 MeVor less.

5) Controlled extrapolations to the contin-
uum limit, requiring that the calculations be
performed at no less than three values of the
lattice spacing, in order to guarantee that the
scaling region is reached.

Our analysis includes all five ingredients
listed above, thus providing a calculation of the
light hadron spectrum with fully controlled sys-
tematics as follows.

1) Owing to the key statement from renor-
malization group theory that higher-dimension,
local operators in the action are irrelevant in the
continuum limit, there is, in principle, an un-
limited freedom in choosing a lattice action.
There is no consensus regarding which action
would offer the most cost-effective approach to
the continuum limit and to physical mud. We use
an action that improves both the gauge and
fermionic sectors and heavily suppresses non-
physical, ultraviolet modes (19). We perform a
series of 2 + 1 flavor calculations; that is, we
include degenerate u and d sea quarks and an
additional s sea quark. We fix ms to its approxi-
mate physical value. To interpolate to the phys-
ical value, four of our simulations were repeated
with a slightly different ms. We vary mud in a
range that extends down to Mp ≈ 190 MeV.

2) QCD does not predict hadron masses in
physical units: Only dimensionless combinations
(such as mass ratios) can be calculated. To set the
overall physical scale, any dimensionful observ-
able can be used. However, practical issues in-
fluence this choice. First of all, it should be a
quantity that can be calculated precisely and
whose experimental value is well known. Sec-
ond, it should have a weak dependence on mud,
so that its chiral behavior does not interfere with
that of other observables. Because we are con-
sidering spectral quantities here, these two con-
ditions should guide our choice of the particle
whose mass will set the scale. Furthermore, the
particle should not decay under the strong in-
teraction. On the one hand, the larger the strange
content of the particle, the more precise the mass
determination and the weaker the dependence on
mud. These facts support the use of theW baryon,
the particle with the highest strange content. On
the other hand, the determination of baryon dec-
uplet masses is usually less precise than those of
the octet. This observation would suggest that
the X baryon is appropriate. Because both the
W and X baryon are reasonable choices, we
carry out two analyses, one withMW (theW set)
and one withMX (the X set). We find that for all
three gauge couplings, 6/g2 = 3.3, 3.57, and 3.7,
both quantities give consistent results, namely
a ≈ 0.125, 0.085, and 0.065 fm, respectively. To
fix the bare quark masses, we use the mass ratio
pairs Mp/MW,MK/MW or Mp/MX,MK/MX. We
determine the masses of the baryon octet (N, S,
L, X) and decuplet (D, S*, X*, W) and those
members of the light pseudoscalar (p, K) and

vector meson (r, K*) octets that do not require
the calculation of disconnected propagators.
Typical effective masses are shown in Fig. 1.

3) Shifts in hadron masses due to the finite
size of the lattice are systematic effects. There
are two different effects, and we took both of
them into account. The first type of volume de-
pendence is related to virtual pion exchange be-
tween the different copies of our periodic system,
and it decreases exponentially with Mp L. Using
MpL >

e
4 results in masses which coincide, for

all practical purposes, with the infinite volume
results [see results, for example, for pions (22)
and for baryons (23, 24)]. Nevertheless, for one
of our simulation points, we used several vol-
umes and determined the volume dependence,
which was included as a (negligible) correction at
all points (19). The second type of volume de-
pendence exists only for resonances. The cou-
pling between the resonance state and its decay
products leads to a nontrivial-level structure in
finite volume. Based on (20, 21), we calculated
the corrections necessary to reconstruct the reso-
nance masses from the finite volume ground-
state energy and included them in the analysis
(19).

4) Though important algorithmic develop-
ments have taken place recently [for example

(25, 26) and for our setup (27)], simulating di-
rectly at physical mud in large enough volumes,
which would be an obvious choice, is still ex-
tremely challenging numerically. Thus, the stan-
dard strategy consists of performing calculations
at a number of larger mud and extrapolating the
results to the physical point. To that end, we use
chiral perturbation theory and/or a Taylor expan-
sion around any of our mass points (19).

5) Our three-flavor scaling study (27) showed
that hadron masses deviate from their continuum
values by less than approximately 1% for lattice
spacings up to a ≈ 0.125 fm. Because the sta-
tistical errors of the hadron masses calculated in
the present paper are similar in size, we do not
expect significant scaling violations here. This is
confirmed by Fig. 2. Nevertheless, we quantified
and removed possible discretization errors by a
combined analysis using results obtained at three
lattice spacings (19).

We performed two separate analyses, setting
the scale with MX and MW. The results of these
two sets are summarized in Table 1. The X set is
shown in Fig. 3. With both scale-setting proce-
dures, we find that the masses agree with the
hadron spectrum observed in nature (28).

Thus, our study strongly suggests that QCD
is the theory of the strong interaction, at low

Fig. 3. The light hadron
spectrum of QCD. Hori-
zontal lines and bands are
the experimental values
with their decay widths.
Our results are shown by
solid circles. Vertical error
bars represent our com-
bined statistical (SEM) and
systematic error estimates.
p, K, and X have no error
bars, because they are
used to set the light quark
mass, the strange quark
mass and the overall
scale, respectively.

Table 1. Spectrum results in giga–electron volts. The statistical (SEM) and systematic uncertainties
on the last digits are given in the first and second set of parentheses, respectively. Experimental
masses are isospin-averaged (19). For each of the isospin multiplets considered, this average is
within at most 3.5 MeV of the masses of all of its members. As expected, the octet masses are more
accurate than the decuplet masses, and the larger the strange content, the more precise is the
result. As a consequence, the D mass determination is the least precise.

X Experimental (28) MX (X set) MX (W set)
r 0.775 0.775 (29) (13) 0.778 (30) (33)
K* 0.894 0.906 (14) (4) 0.907 (15) (8)
N 0.939 0.936 (25) (22) 0.953 (29) (19)
L 1.116 1.114 (15) (5) 1.103 (23) (10)
S 1.191 1.169 (18) (15) 1.157 (25) (15)
X 1.318 1.318 1.317 (16) (13)
D 1.232 1.248 (97) (61) 1.234 (82) (81)
S* 1.385 1.427 (46) (35) 1.404 (38) (27)
X* 1.533 1.565 (26) (15) 1.561 (15) (15)
W 1.672 1.676 (20) (15) 1.672

21 NOVEMBER 2008 VOL 322 SCIENCE www.sciencemag.org1226

REPORTS

● Benchmark problem: Light hadron spectrum at % level

Durr et al, Science 322(2008) 1224
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(25, 26) and for our setup (27)], simulating di-
rectly at physical mud in large enough volumes,
which would be an obvious choice, is still ex-
tremely challenging numerically. Thus, the stan-
dard strategy consists of performing calculations
at a number of larger mud and extrapolating the
results to the physical point. To that end, we use
chiral perturbation theory and/or a Taylor expan-
sion around any of our mass points (19).

5) Our three-flavor scaling study (27) showed
that hadron masses deviate from their continuum
values by less than approximately 1% for lattice
spacings up to a ≈ 0.125 fm. Because the sta-
tistical errors of the hadron masses calculated in
the present paper are similar in size, we do not
expect significant scaling violations here. This is
confirmed by Fig. 2. Nevertheless, we quantified
and removed possible discretization errors by a
combined analysis using results obtained at three
lattice spacings (19).

We performed two separate analyses, setting
the scale with MX and MW. The results of these
two sets are summarized in Table 1. The X set is
shown in Fig. 3. With both scale-setting proce-
dures, we find that the masses agree with the
hadron spectrum observed in nature (28).

Thus, our study strongly suggests that QCD
is the theory of the strong interaction, at low

Fig. 3. The light hadron
spectrum of QCD. Hori-
zontal lines and bands are
the experimental values
with their decay widths.
Our results are shown by
solid circles. Vertical error
bars represent our com-
bined statistical (SEM) and
systematic error estimates.
p, K, and X have no error
bars, because they are
used to set the light quark
mass, the strange quark
mass and the overall
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Table 1. Spectrum results in giga–electron volts. The statistical (SEM) and systematic uncertainties
on the last digits are given in the first and second set of parentheses, respectively. Experimental
masses are isospin-averaged (19). For each of the isospin multiplets considered, this average is
within at most 3.5 MeV of the masses of all of its members. As expected, the octet masses are more
accurate than the decuplet masses, and the larger the strange content, the more precise is the
result. As a consequence, the D mass determination is the least precise.

X Experimental (28) MX (X set) MX (W set)
r 0.775 0.775 (29) (13) 0.778 (30) (33)
K* 0.894 0.906 (14) (4) 0.907 (15) (8)
N 0.939 0.936 (25) (22) 0.953 (29) (19)
L 1.116 1.114 (15) (5) 1.103 (23) (10)
S 1.191 1.169 (18) (15) 1.157 (25) (15)
X 1.318 1.318 1.317 (16) (13)
D 1.232 1.248 (97) (61) 1.234 (82) (81)
S* 1.385 1.427 (46) (35) 1.404 (38) (27)
X* 1.533 1.565 (26) (15) 1.561 (15) (15)
W 1.672 1.676 (20) (15) 1.672

21 NOVEMBER 2008 VOL 322 SCIENCE www.sciencemag.org1226

REPORTS

● Benchmark problem: Light hadron spectrum at % level

● Cost:  ≈ 1 supercomputer-year ≈ 100,000 single core-years

Durr et al, Science 322(2008) 1224
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Today: Conformal theories

4

aka fixed points of RG flow

● Paradigmatic example in d=3+1:  conformal window of QCD

i.e. take SU(Nc) gauge theory with Nf massless quark flavors

● Nf small ⇒ the theory confines (like QCD)

● Nf large ⇒ loses asymptotic freedom

● Nf intermediate ⇒ flows to IR fixed point (CFT)

Studying these fixed points is proving more difficult on 
the lattice than the ordinary QCD
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CFTs in d=2+1

5

E.g. U(1) Maxwell + Nf massless fermions

● Nf small ⇒ confinement

● Nf large ⇒ IR fixed point
“quantum spin liquid” state in condensed matter

Figure 1. Simplified structure of ideal
Herbertsmithite where only Cu (kagome top
and bottom layers), Zn (intermediate triangular
layer) and O which bridge between two Cu in
the kagome planes, have been represented.

Figure 2. Local structure emphasizing
the coupling path within a kagome layer
and between one Cu kagome site and one
Cu substituted on the Zn site, named
interplane site in the text.

compound (x = 0), situated at the other end of the family. Starting from the latter, a Jahn-
Teller distorted S = 1/2 pyrochlore, the symmetry first relaxes from monoclinic (P21/n) to
rhombohedral (R3m) around x = 0.33, leading to a perfect kagome lattice in the a-b plane
with isotropic planar interactions; then, in the c- elongated x > 0.33 pyrochlore structure,
the magnetic bridge along the c-axis between a-b kagome planes is progressively suppressed by
replacing the apical Cu2+ by a diamagnetic Zn2+.

In Herbertsmithite, the 119◦ Cu-OH-Cu bond-angle yields a moderate planar super-exchange
interaction J ! 180(10) K in comparison with other cuprates such as High Tc’s where the Cu-
O-Cu bonding is linear (J ∼ 1000 − 2000 K). Note that the former value is consistent with
that observed in cubanes where a similar OH bridge links adjacent coppers [13]. Both neutron
low-T data on the x = 0 compound and a simple Curie-Weiss analysis of the variation of the
high-T susceptibility with x, suggest that the interaction between apical and planar Cu is weakly
ferromagnetic and estimated to be J

′ ∼ 0.1J . This is also in line with Goodenough-Kanamori
rules which predict a weak ferromagnetic exchange for a Cu-O-Cu angle of 96.7◦ and with the
presence of a weak ferromagnetic component in the frozen phase of Zn depleted (x < 0.66)
compounds.

3. Categorizing non-ideality and the related impact on physical properties

The dominant term in the Hamiltonian is certainly the Heisenberg exchange interaction between
neighboring spins within the kagome layer (see above). Yet, frustrated antiferromagnets are
known to yield non-spin liquid ground states under small perturbations. In the case of
Herbertsmithite where both disorder and Dzyaloshinkii-Moriya (DM) anisotropy are at play,
the absence of any kind of order or freezing seems to be quite surprisingly robust.

3.1. Dzyaloshinkii-Moriya interactions

In the absence of any macroscopic high-T susceptibility results published on single crystals,
ESR proves to be the most appropriate technique to investigate the local spin anisotropy. The
inclusion in the Hamiltonian of a Dzyaloshinkii-Moriya interaction

−→
D ij .

−→
S i ×

−→
S j is necessary

since there is no inversion symmetry between two adjacent Cu.
−→
D has two components, one

perpendicular to the planes, Dz, and one planar Dp which act differently on the susceptibility
and the specific heat. The effects are quite non linear and the large value of Dp invoked quite
early after the discovery of Herbertsmithite to explain the rapid increase of the susceptibility
at low T [14, 15] is far beyond the limit set by the ESR results. The small measured value of

2

E.g. Nf = 4 for Herbertsmithite ZnCu3(OH)6Cl2
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CFTs in Euclidean d=3

6

describes - Curie point of uniaxial magnets in 3d
    - liquid-vapor phase transitions

For a critical value of g=λ/m flows to IR fixed point 

Same CFT as critical point (T=Tc) of 3d Ising model
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Plan

1. CFT generalities

2. Conformal Bootstrap

7
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CFT kinematics

8

i.e. everything you get for free

● Observables in CFT are correlation functions (no S-matrix)

● Each operator Ai is characterized by 
- scaling dimension Δi > 0 
- SO(d) rep. (scalar,vector,…)

Example: each CFT contains a stress tensor operator 
Tμν, conserved and traceless, of dimension Δ=d   



/279

Conformal transformations

local
scale factor

Operators transform covariantly under 

E.g. for scalars:



/279

Conformal transformations

local
scale factor

Operators transform covariantly under 

Poincaré + dilatations + special conformal transformations

E.g. for scalars:
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Two and three point functions fixed Polyakov 1970

CFT data

to find these = to solve the CFT

diagonal!

Correlators must be invariant ⇒ 
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Example: CFT data from experiment

locally linear dependence on the temperature within the
sample. An example of a fit is shown by the solid line in Fig.
16. It can be seen that a reasonable representation of the
behavior is obtained over a significant portion of the decay.
The data above the transition became progressively more dif-
ficult to analyze as the temperature was increased. This was
due primarily to the increased length of the extrapolation
back to the center of the pulse after the thermal transient had
decayed sufficiently. The bin-averaged specific-heat results
near the transition are shown on a linear scale in Fig. 17.

C. Curve fitting

As described in the Introduction, the RG theory makes a
prediction for the critical exponent ! , describing the diver-
gence of the heat-capacity near the transition and for the ratio
of the leading-order coefficients on the two sides of the tran-
sition. The asymptotic form for the heat-capacity near the

transition is expected to be given by Eq. "1#. We fit the re-
sults over the whole range measured with the truncated trial
function:

Cp!
A"

!
t"!"1#ac

"t$#bc
"t2$##B", T$T%

!
A#

!
!t!"!#B", T%T% , "9#

where we have assumed the constraint B#!B". The simpler
form was used above T% because the data extend only to
!t!&10"6, where the additional terms would still be negli-
gible. All parameters were allowed to vary except for $ ,
which was fixed at its theoretical value25 of 0.529, and T% ,
which was determined as described earlier. See Ref. 60 for
the complete set of raw data used in the curve fitting. Also
listed is the bin-averaged dataset shown in Fig. 15.
The best-fit values for the parameters are listed in the first

line of Table II along with the ratio A#/A". The correspond-
ing uncertainties are listed below the values and refer to the
standard statistical error evaluated from the curve fitting rou-
tine. The uncertainties for the derived quantities A#/A"
and P were evaluated by the usual formulas for propagation
of errors61 taking into account the strong correlation between
the fitted parameters ! , A# , and A" . To obtain some feel
for the sensitivity of the results to small changes in the analy-
sis, we performed a number of extra fits to the data. The
second group in the table shows the effect of modifying Eq.
"9# to the form

Cp!
A"

!
t"!"1#ac

"t$##bc
"t#B", T$T%

!
A#

!
!t!"!#B", T%T% , "10#

FIG. 17. Bin-averaged data close to the transition. Line shows
the best-fit function.

TABLE II. Results from curve fitting to the specific-heat measurements using Eq. "9# except where noted. Statistical uncertainties are
given in parentheses beneath the values.

Constraint ! A#/A" A" B" ac
" bc

" P Range of fit

Eq. "9# "0.01264 1.05251 5.6537 460.19 "0.0157 0.3311 4.154 5&10"10$!t!$10"2

"0.00024# "0.0011# "0.015# "7.3# "0.0015# "0.011# "0.022#
Eq. "10# "0.01321 1.05490 5.6950 443.76 "0.0253 "128.4 4.155 5&10"10$!t!$10"2

"0.00025# "0.0011# "0.092# "7.0# "0.0015# "2.5# "0.022#
Reduced range "0.01254 1.05210 5.6458 463.11 "0.0136 0.3035 4.154 5&10"10$!t!$3&10"3

"0.00043# "0.0018# "0.030# "13.4# "0.0043# "0.044# "0.022#
Reduced range "0.01264 1.05251 5.6537 460.20 "0.0157 0.3311 4.154 10"9$!t!$10"2

"0.00024# "0.0011# "0.015# "7.4# "0.0015# "0.012# "0.022#
T% # 1 nK "0.01278 1.05307 5.6623 455.80 "0.0165 0.3372 4.151 5&10"10$!t!$10"2

"0.00024# "0.0011# "0.015# "7.2# "0.0015# "0.012# "0.022#
P5%10"7 W "0.01269 1.05273 5.6570 458.55 "0.0160 0.3335 4.154 5&10"10$!t!$10"2

"0.00026# "0.0012# "0.017# "8.0# "0.0017# "0.013# "0.025#
P5$5&10"4 W "0.01323 1.05498 5.6970 443.27 "0.0228 0.3853 4.156 5&10"10$!t!$10"2

"0.00042# "0.0018# "0.029# "11.6# "0.0038# "0.028# "0.022#
'%0.02% "0.01275 1.05297 5.6620 456.89 "0.0176 0.3473 4.154 5&10"10$!t!$10"2

"0.00041# "0.0018# "0.028# "12.3# "0.0034# "0.025# "0.022#

SPECIFIC HEAT OF LIQUID HELIUM IN ZERO . . . PHYSICAL REVIEW B 68, 174518 "2003#

174518-21

Reached T-Tc~nK  ⇒  ξ/a~106 

α = - 0.0127(3)

11

Lipa et al, Phys.Rev.Lett. 76,944(1996)

λ-point of He-4
space shuttle measurement

Specific heat exponent

in the 3d O(2) model
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Other ways to extract CFT data

12

● Renormalization Group 
    hard in strongly coupled theories

● Monte Carlo
expensive

- conformal symmetry left unused

- 3pt function coefficients fijk much harder
  to get than Δi (never done in practice)

Common disadvantages:



Conformal Bootstrap

Original idea  
Ferrara, Gatto, Grillo 1973; Polyakov 1974

Concrete realization in 2d  
Belavin, Polyakov, Zamolodchikov 1983

First results in 4d (motivated by BSM) 
 Rattazzi, S.R., Tonni, Vichi 2008
(Using 4d conformal blocks by Dolan,Osborn 2000)

First results in 3d (applications to Ising-3) 
El-Showk, Paulos, Poland, S.R.,Simmons-Duffin,Vichi 2012
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Analogy: Modular invariance

Put a Lorentz-inv theory on

2d CFT: ⇒ constraint on Δ’s  
Cardy 1986

View L1 as space and L2 as β: 



/27

Now real bootstrap

15

Consider 4-pt function:



/27

sphere S

Now real bootstrap

15

Consider 4-pt function:



/27

sphere S

Now real bootstrap

15

Consider 4-pt function:

states on S



/27

sphere S

Now real bootstrap

15

Consider 4-pt function:

states on S

● States:



/27

sphere S

Now real bootstrap

15

Consider 4-pt function:

states on S

● States:

● Matrix elements:
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conformal bootstrap eqn

16

Get
conformal partial waves

=

1. functional constraint on CFT data - must be satisfied for every 
x1,…,x4

2. one equation for every 4-point function
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Concrete application: 3d Ising model CFT

Many other applications exist:

- Wilson-Fisher fixed point in 2<d<4
- O(N) models in d=3
- SUSY conformal theories in d=2,3,4,6 dimensions
... 
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Local operators

18

3d Ising model CFT can be def ’d as IR fixed point of

- has Z2 symmetry φ → -φ 

Can think of operators in terms of powers of φ and derivatives:
φ, φ2 ... 

These are just `names’, because the operators are strongly 
renormalized.

E.g.    [φ2]=1 in the UV (free theory) becomes
[φ2] ≈ 1.41 in the IR (CFT)
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In bootstrap, φ-content of operators is irrelevant
(only their dimension, spin, and Z2 count)

Very important experimental fact: 
3d Ising CFT contains 2 and only 2 relevant (i.e. Δ<3) 

scalar operators:

- one Z2-odd, call it σ (it’s coming from φ in the UV)
- one Z2-even, call it ε (coming from φ2) 

Coupling <σ σ ε> allowed by Z2 symmetry ⇒ fσσε ≠ 0
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More generally, consider OPE σ x σ 

It contains all operators A such that fσσA ≠ 0
(infinitely many per each spin)
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(Ward identity)

stress tensor, Δ=3

More generally, consider OPE σ x σ 

It contains all operators A such that fσσA ≠ 0
(infinitely many per each spin)

To solve the theory we must find dimensions and f ’s 
for all these operators
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 (Δσ, Δε)-oracle using <σσσσ>

22

El-Showk, Paulos, Poland, S.R.,Simmons-Duffin,Vichi 2012

saturates the optimal bound on ∆�, achieved in the limit N → ∞. Thus, in this work, we

will take seriously the idea:

• �σσσσ� in the 3d Ising CFT lies on the boundary of the space of unitary, crossing

symmetric four-point functions.

We will further present a plausible guess for where on the boundary the 3d Ising CFT lies,

and use this to formulate a precise conjecture for the spectrum of operators in the σ × σ
OPE.

3d Ising ?
�78 comp.�

0.50 0.52 0.54 0.56 0.58 0.60 0.62 0.64 �Σ1.0

1.2

1.4

1.6

1.8
�Ε

Figure 1: An upper bound on the dimension of the lowest dimension scalar � ∈ σ × σ, as a
function of ∆σ. The blue shaded region is allowed; the white region is disallowed. Left : The
bound at N = 78 [1]. Right : The bound at N = 105, in the region near the kink. This bound
is thus somewhat stronger than the previous one, and the kink is sharper.

Although the 3d Ising CFT is certainly special, it is perhaps surprising that one might

find it by studying a single four-point function. After all, the full consistency constraints of

a CFT include crossing symmetry and unitarity for every four-point function, including all

possible operators in the theory. Nevertheless, other recent work supports the idea that for

some special CFTs it may be enough to consider �σσσσ�. For example, one can compute

similar bounds in fractional spacetime dimension 2 ≤ d ≤ 4. These bounds have similar

kinks which agree with the operator dimensions present at the Wilson-Fisher fixed point

near d = 4 and the 2d Ising CFT when d = 2 [3]. An analogous story holds for theories with

O(n) global symmetry in 3d, where O(n) vector models appear to saturate their associated

dimension bounds [4].

As a check on our conjecture, we will also apply it to the 2d Ising CFT. We find good

agreement with the known exact solution, and previous numerical explorations of the 2d

bootstrap [2]. Our study of 2d will serve as a useful guide for interpreting our results in 3d.

4

NO

MAYBE

free scalar
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Although the 3d Ising CFT is certainly special, it is perhaps surprising that one might

find it by studying a single four-point function. After all, the full consistency constraints of

a CFT include crossing symmetry and unitarity for every four-point function, including all

possible operators in the theory. Nevertheless, other recent work supports the idea that for

some special CFTs it may be enough to consider �σσσσ�. For example, one can compute

similar bounds in fractional spacetime dimension 2 ≤ d ≤ 4. These bounds have similar

kinks which agree with the operator dimensions present at the Wilson-Fisher fixed point

near d = 4 and the 2d Ising CFT when d = 2 [3]. An analogous story holds for theories with

O(n) global symmetry in 3d, where O(n) vector models appear to saturate their associated

dimension bounds [4].

As a check on our conjecture, we will also apply it to the 2d Ising CFT. We find good

agreement with the known exact solution, and previous numerical explorations of the 2d

bootstrap [2]. Our study of 2d will serve as a useful guide for interpreting our results in 3d.
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In [1], we also computed bounds on the squared OPE coefficient of the spin 2, dimension

d operator. It is natural to assume that the 3d Ising CFT contains one and only one operator

with such quantum numbers, namely the conserved stress tensor of the theory.7 The OPE

coefficient pT ≡ pd,2 is related via Ward identities to the central charge c,

c ∝ ∆2
σ

pT
, (2.8)

with a d-dependent factor which depends on the normalization of c.8 We use the definition

of the central charge c as the coefficient in the two point correlation function of the stress

tensor operator. This definition works for any d, in particular for d = 3. In d = 2, the central

charge can also be defined as the coefficient of a central term in a Lie algebra extending the

global conformal algebra (the Virasoro algebra), but an analogous interpretation for other d
is unknown and likely impossible. To avoid normalization ambiguities, we will give results

below for the ratio c/cfree, the latter being the central charge of the free scalar theory in the

same number of dimensions.

Figure 4 shows this lower bound on c (equivalently, an upper bound on pT ) as a function

of ∆σ. The bound displays a sharp minimum at the same value of ∆σ as the kink in

Figure 1, suggesting that the 3d Ising CFT might also minimize c.9 We will call this

method of localizing the 3d Ising point “c-minimization,” although it should be kept in

mind that in practice we minimize c by maximizing pT , which is a linear function on C∆σ .

0.50 0.52 0.54 0.56 0.58 0.60 �Σ0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25
c�cfree

Figure 4: A lower bound on c (the coefficient of the two-point function of the stress tensor),
as a function of ∆σ. Left: the bound from [1] computed with N = 78. Right: a slightly
stronger bound at N = 105 in the region near the minimum.

We have done numerical studies of both ∆�-maximization and c-minimization, and found

evidence that for all ∆σ in the neighborhood of the expected 3d Ising value ≈ 0.518 these

7The 3d Ising CFT can be obtained as an IR fixed point of the φ4 theory. The UV stress tensor then
naturally gives rise to the IR stress tensor, but there is no reason to expect that a second operator with the
same quantum numbers will emerge in the IR. This definitely does not happen in the �-expansion.

8In our previous work [1, 3] c was denoted CT .
9By contrast, bounds on c in 4d do not show a similar minimum [10–12].

9

MAYBE
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We have done numerical studies of both ∆�-maximization and c-minimization, and found

evidence that for all ∆σ in the neighborhood of the expected 3d Ising value ≈ 0.518 these

7The 3d Ising CFT can be obtained as an IR fixed point of the φ4 theory. The UV stress tensor then
naturally gives rise to the IR stress tensor, but there is no reason to expect that a second operator with the
same quantum numbers will emerge in the IR. This definitely does not happen in the �-expansion.
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We find that the resulting Z2-even spectrum shows a dramatic transition in the vicinity

of ∆σ = 0.518154(15), giving a high precision determination of the leading critical exponent

η. Focusing on the transition region, we are able to extract precise values of the first

several Z2-even operator dimensions and of their OPE coefficients, see Table 1. We also

give reasonable estimates for the locations of all low dimension (∆ � 13) scalar and spin 2

operators in the Z2-even spectrum.

spin & Z2 name ∆ OPE coefficient

� = 0, Z2 = − σ 0.518154(15)

� = 0, Z2 = + � 1.41267(13) f 2
σσ� = 1.10636(9)

�� 3.8303(18) f 2
σσ�� = 0.002810(6)

� = 2, Z2 = + T 3 c/cfree = 0.946534(11)
T � 5.500(15) f 2

σσT � = 2.97(2)× 10−4

Table 1: Precision information about the low-lying 3d Ising CFT spectrum and OPE

coefficients extracted in this work. See sections 3.4 and 3.6 for preliminary information about

higher-dimension � = 0 and � = 2 operators. See also section 4 for a comparison to results by

other techniques.

The transition also shows the highly intriguing feature that certain operators disappear
from the spectrum as one approaches the 3d Ising point. This decoupling of states gives

an important characterization of the 3d Ising CFT. This is similar to what occurs in the

2d Ising model, where the decoupling of operators can be rigorously understood in terms of

degenerate representations of the Virasoro symmetry. To better understand this connection,

we give a detailed comparison to the application of our c-minimization algorithm in 2d,

where the exact spectrum of the 2d Ising CFT and its interpolation through the minimal

models is known. We conclude with a discussion of important directions for future research.

2 A Conjecture for the 3d Ising Spectrum

Consider a 3d CFT with a scalar primary operator σ of dimension ∆σ. In [1], we studied

the constraints of crossing symmetry and unitarity on the four-point function �σσσσ�.
From these constraints, we derived universal bounds on dimensions and OPE coefficients of

operators appearing in the σ×σ OPE. Figure 1, for example, shows an upper bound on the

dimension of the lowest-dimension scalar in σ × σ (which we call �), as a function of ∆σ.

This bound is a consequence of very general principles - conformal invariance, unitarity, and

crossing symmetry - yet it has a striking “kink” near (∆σ,∆�) ≈ (0.518, 1.412), indicating
that these dimensions have special significance in the space of 3d CFTs. Indeed, they are

believed to be realized in the 3d Ising CFT.

The curves in Figure 1 are part of a family of bounds labeled by an integer N (defined

in section 2.3), which get stronger as N increases. It appears likely that the 3d Ising CFT

3
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From minimum localization:

known fact in d=2
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operators in the Z2-even spectrum.
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an important characterization of the 3d Ising CFT. This is similar to what occurs in the
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degenerate representations of the Virasoro symmetry. To better understand this connection,

we give a detailed comparison to the application of our c-minimization algorithm in 2d,

where the exact spectrum of the 2d Ising CFT and its interpolation through the minimal

models is known. We conclude with a discussion of important directions for future research.
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dimension of the lowest-dimension scalar in σ × σ (which we call �), as a function of ∆σ.
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crossing symmetry - yet it has a striking “kink” near (∆σ,∆�) ≈ (0.518, 1.412), indicating
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 (Δσ, Δε)-oracle using <σσσσ>, <εεεε>, <σσεε>
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Kos,Poland,Simmons-Duffin 2014

allowed region with ∆ε′,∆σ′ ≥ 3 (nmax = 10)

∆σ

∆ε

0.5179 0.518 0.5181 0.5182 0.5183 0.5184 0.5185 0.5186
1.41

1.411

1.412

1.413

1.414

1.415

Figure 5: Allowed and disallowed (∆σ,∆ε) points in a Z2-symmetric CFT3 with only one
relevant Z2-odd and Z2-even scalar, using the constraints of crossing symmetry and unitarity
for 〈σσσσ〉, 〈σσεε〉, 〈εεεε〉 at nmax = 10 (275 components), νmax = 14. The light grey points
are ruled out, while the dark blue points are allowed. The light blue shaded region shows
the region allowed by crossing symmetry and unitarity of the single correlator 〈σσσσ〉 at
nmax = 14, computed in [22]. The final allowed region is the intersection of this shaded region
with the region indicated by the dark blue points (see figure 6).23

— such studies will likely use techniques similar to what we have developed in this work.

It is also interesting to study mixed correlators in theories with supersymmetry. In par-
ticular, previous numerical bootstrap studies have focused on 4-point functions containing
the lowest component of a given supersymmetry multiplet, while mixed correlators could
allow one to incorporate the full constraints of supersymmetry on the external operators.24

Such studies may help to clarify the origin of the “kink” observed in previous studies of
the 4D N = 1 superconformal bootstrap [9] and may also reveal rich new structure in
theories with N = 2, 4 supersymmetry, extending the results of [14, 18, 25]. Finally, there
is significant room for incorporating mixed correlators into general analytical studies of the
bootstrap, both in the context of large N theories [26, 27] and in constraining the spectrum
at large spin [28, 29].

23The computed points in figure 5 lie on a grid, where each row has constant ∆ε−∆σ, because ∆ε−∆σ is
the quantity entering the conformal blocks g∆12,∆34

∆,# (u, v). Restricting it to a small number of values means
we have fewer tables of blocks to compute. We thank Slava Rychkov for this idea.

24One can think about this in two ways: in components, we have four-point functions of different operators
in the same SUSY multiplet; in manifestly supersymmetric notation, multiple superconformally covariant
structures can appear in a three-point function.

28

MAYBE if <σσσσ> 
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ticular, previous numerical bootstrap studies have focused on 4-point functions containing
the lowest component of a given supersymmetry multiplet, while mixed correlators could
allow one to incorporate the full constraints of supersymmetry on the external operators.24
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the 4D N = 1 superconformal bootstrap [9] and may also reveal rich new structure in
theories with N = 2, 4 supersymmetry, extending the results of [14, 18, 25]. Finally, there
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— such studies will likely use techniques similar to what we have developed in this work.

It is also interesting to study mixed correlators in theories with supersymmetry. In par-
ticular, previous numerical bootstrap studies have focused on 4-point functions containing
the lowest component of a given supersymmetry multiplet, while mixed correlators could
allow one to incorporate the full constraints of supersymmetry on the external operators.24
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Strongly coupled CFT computation with rigorous error bars
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Oracle inner workings
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Recall bootstrap:

Quadratic equation for f ’s

But if identical operators :



/27

Oracle inner workings

26

Recall bootstrap:

Quadratic equation for f ’s

But if identical operators :



/27

Oracle inner workings

26

Recall bootstrap:

Quadratic equation for f ’s

But if identical operators :



/27

Oracle inner workings
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Recall bootstrap:

Quadratic equation for f ’s

But if identical operators :

Is intersection nonempty?
Linear programming Dantzig 1947

Crucial:               is a convex condition

Linear constraint
on p’s:
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Several correlators <σσσσ>, <εεεε>, <σσεε>
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non sign-definite

positive semidefinite

Also a convex condition!

Linear programming → Semidefinite programming
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Conclusions and future

28

● conformal bootstrap works in any d

● for some models (Ising-3, O(N)) even better than expected
 - lots of mileage out of a few constraints

Short-term: go through the list of known CFTs

Long-term: classify CFTs with a small number
of low dimension operators
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Backup
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Monte Carlo
Hasenbusch 2010
(20 CPU-years)

RG 
Guida, Zinn-Justin 1998
(5-7 loops + Borel)

Δ(φ) 0.51814(5) 0.51675(125)

Δ(φ2) 1.41275(25) 1.41370(330)

RG vs Monte Carlo and experiment

30

Ising-3

agrees, with O(10) larger errors

Experiment 
Lipa et al 1996

MC+HT
Campostrini et al 

2006

RG 
Guida, Zinn-Justin 

1998

Δ(φ2) 1.5094(2) 1.5112(2) 1.5081(33)

O(2) d=3

8σ discrepancy
RG inconclusive
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QCD conformal window

SU(3) massless gauge theory in d=3+1 with Nf fermions

Flows to a conformal IR fixed point for

no as. freedomconfinement IR fixed point

precise value (10-12) debated
Del Debbio, 1102.4046
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