Imperial College London

HEPDATA as seen from LHCb Ulrik Egede

11 November 2014

Experience

Alex Grecu from LHCb has so far been the contact point for entering and verifying cross section data that is entered

- Experience has been good but it is quite time consuming
- Could be improved by enforcing the standardisation of output format within the collaboration
- System of first encoding and then approving the data suits us well
- Ability to include figures is interesting
 - But system for adding them too cumbersome
 - Some worry about unnecessary duplication of information between CDS/HEPDATA/Inspire

Beyond cross sections

There can be a need for theorists to access data well beyond just cross sections

Dalitz plots

Fit results

Full likelihood "expressions"

Unclear if HEPDATA is the place to store this data

At the moment attached to CDS record of LHCb papers

Difficult to find

Format not standardised at all

Examples of these ideas will follow

Dalitz plots

Store the content of each bin and associated uncertainties

11 Nov 2014

Ulrik Egede

Fit results

Example from fit of a resonance structure in $B^+ \rightarrow K \mu \mu$ decays, Phys. Rev. Lett. 111, 112003 (2013).

Ulrik Egede

Fit results

Example from fit of a resonance structure in $B^+ \rightarrow K \mu \mu$ decays, Phys. Rev. Lett. 111, 112003 (2013).

The full shape with background subtracted is of interest At the moment just attached as data file to CDS record

#dBF/dm data points for B+->K+mumu low recoil data
obtained from Phys. Rev. Lett. 111, 112003 (2013)
#Mass ranges are in MeV/c2

#Mass rang	e dBF/dm	error
3770-3795	3.15e-07	2.87e-08
3795-3820	2.31e-07	2.47e-08
3820-3845	1.93e-07	2.2e-08
3845-3870	1.54e-07	1.97e-08
3870-3895	1.07e-07	1.63e-08

Full likelihood expression

A decay like $B \rightarrow K\pi\mu\mu$ is described by 8 amplitudes that each are functions of the dimuon invariant mass

In total 48 parameters are used to describe this

Theorists wants to use the full information in global fits for New Physics

The central values and the 48x48 correlation matrix is not sufficient as likelihood surface is not very Gaussian

Would really like to be able to transfer full likelihood information to theorists with "internal" marginalisation over experimental nuisance parameters