3. Find x.

3 cm

Comparing with Experiments

- Three classes of experiments can see DM
- Direct detection (DD)
 - Underground small background + small signal
 - LUX : Most sensitive for spin-independent
 - Picasso/Coupp/Simple : Most sensitive spin-dependent
- Indirect detection (ID)
 - Bounds are generally looser than DD
 - Fermi-LAT provides best bounds (yy production)
- Collider experiments
 - CMS : the best detector
 - ATLAS : the cross check for CMS

Processes & Modeling

Vector	Axial
$g_{\rm DM} Z'_{\mu} \bar{\chi} \gamma^{\mu} \chi$	$g_{\rm DM} Z''_{\mu} \bar{\chi} \gamma^{\mu} \gamma^5 \chi$
EWK style coupling	EWK style coupling
(equal to all leptons)	(equal to all leptons)
Scalar $g_{\rm DM}S ar\chi \chi$	Pseudoscalar $g_{\rm DM} P ar{\chi} \gamma^5 \chi$
Yukawa style coupling (Mass based coupling)	Yukawa style coupling (Mass based coupling)

12/09/14

Simplified Models

Direct Detection

Collider detection

Only difference is one more vertex

Direct Detection w/Simplified Models

- Direct detection :
 - Couplings and mediator all get merged into one

Direct Detection Cross sections

$$\rho = m_{\rm DM} m_p / (m_{\rm DM} + m_p)$$
• Vector
$$\sigma_{\chi p}^V = \frac{9}{\pi} \frac{g_{\rm DM}^2 g_{\rm SM}^2 \rho}{m_{\rm MED}^4}$$
• Axial
$$\sigma_{\chi p}^A = \frac{3}{\pi} \frac{g_{\rm DM}^2 g_{\rm SM}^2 a^2 \rho^2}{m_{\rm MED}^4} a = \Delta u + \Delta d + \Delta s \simeq 0.43$$
• Scalar
$$\sigma_{\chi p}^S = \frac{\rho^2}{\pi} \left| \frac{m_p}{m_t} \frac{g_t y_t g_\chi y_\chi}{m_{\rm MED}^2} \frac{2}{27} f_{\rm TG} \right|^2 \quad f_{\rm TG} \simeq 0.9$$

Direct Detection Cross sections

• Vector
$$\sigma_{\chi p}^{V} = \frac{9}{\pi} \frac{g_{DM}^{2} g_{SM}^{2} \rho}{m_{MED}^{4}}$$

• Axial $\sigma_{\chi p}^{A} = \frac{3}{\pi} \frac{g_{DM}^{2} g_{SM}^{2} a^{2} \rho^{2}}{m_{MED}^{4}}$ $a = \Delta u + \Delta d + \Delta s \simeq 0.43$
• Scalar $\sigma_{\chi p}^{S} = \frac{\rho^{2}}{\pi} \left| \frac{m_{p}}{m_{t}} \frac{g_{t} y_{t}}{m_{MED}^{2}} \frac{2}{27} f_{TG} \right|^{2}$ $f_{TG} \simeq 0.9$
• Pseudo-Scalar $\sigma_{\chi p}^{PS} \sim \frac{c_{q}^{2} \left[\Delta \tilde{q}^{(N)} \right]^{2} \rho^{4} \left(v^{2} \right)}{m_{N}^{2} m_{MED}^{4}}$

No direct coupling to particles at rest Direct detection with a pseudo-scalar is velocity suppressed*

 \mathbf{i}

11

Indirect Detection

- Indirect detection :
 - Gamma production from pair annihalation
 - Use this for pseudo-scalar bounds
- Pseudo-Scalar

LHC Experiments

Collider Setup

- For this study :
 - Models were generated in MCFM
 - LO production of :
 - Vector
 - Axial
 - Scalar
 - Pseudo-Scalar
 - Have the ability to vary :
 - Couplings
 - Width
 - Mediator Mass
 - Dark Matter mass

5 tunable parameters

Setup cont'd

- All collider plots :
 - Generate samples with MCFM
 - Showered samples with Pythia 8
 - Smeared samples with parametric model
 - Model is tuned to CMS simulation
 - ~little bit better than Delphes (well validated)
- Extract limits with the current CMS analysis
 - Using the summer paper (EXO-12-048)
 - Validated with the CMS results to ~ few %

12/09/14

Simplified Models

Analysis Setup

- Limit with full systematics @ 7 MET points
 - For a given DM model take limit with best MET
- 14 TeV => scale yields using MC & repeat

Production model

Quark initiated similar

Gluon initiated similar

Gluon initiated production has a higher p_{τ} spectra

Mediator model

For mass > 1 TeV Variation is reduced

Variation very similar for axial/vector

Mediator mass : large effect on the change in sensitivity

• Width variation

Width can reduce sensitivity substantially

Dark matter mass

Not so important

Dark matter mass only matters when process ~off-shell

Executive Summary

Dealing with Kinematic Variation

- For a discovery we want :
 - Maximal coverage of all possible shapes
 - Most essential parameters
 - Varying the process model
 - Varying the mediator
 - Choice of width
 - Bounded by detector limitations
 - Choice of DM mass
 - Effect is relatively small (not really needed)

Limit Extraction

Each point is a MC => compute limit with each point

1D projections are the plots shown in the paper

1D Limit Extraction

- Note collider limits are for a jet pT > 15 GeV
- Yukawa coupling reduces sensitivity @low mass

Translating into cross section

- Note collider limits are for a jet pT > 15 GeV
- Yukawa coupling reduces sensitivity @low mass

Collider vs Direct Detection

Vector	Axial
$g_{\rm DM} Z'_{\mu} \bar{\chi} \gamma^{\mu} \chi$ Sensitive w/Direct Detection Dominant bounds from LUX	$g_{\rm DM} Z''_{\mu} \bar{\chi} \gamma^{\mu} \gamma^5 \chi$ Less Sensitive w/DD Requires spin-dependent DD Picasso/Coupp/Simple
Scalar	Pseudoscalar
$g_{ m DM}Sar\chi\chi$	$g_{ m DM} P ar\chi \gamma^5 \chi$
Less Sensitive w/DD EFT coupling to gluons Bounds still from LUX	No bounds from DD Only Cosmic bounds exist FermiLAT reported bounds Can yield Galactic x-rays

Usual Plots

Mediator Plots

Mediator Plots

Mediator Plots

Mass Bounds vs DD/ID

Mass Bounds vs DD/ID

Mass Bounds vs DD/ID

Conclusions

- Take home messages from the arxiv paper
 - Interpretation differs for each Vector/Axial/Scalar/Pseudo
 - Simplified scheme for understanding these
 - Mediator mass has a large impact on kinematics
 - Scanning the dark matter mass is not so important
 - MinWidth assumption not always true (can & should vary)
 - Will have real effects on the physics interpretation
- Moving ahead : Questions
 - What needs to be done to keep the presentation simple?
 - What can be done for a consistent picture?

12/09/14

Processes & Modeling

Vector	Axial
$g_{ m DM} Z^\prime_\mu ar\chi \gamma^\mu \chi$	$g_{ m DM} Z^{\prime\prime}_\mu ar\chi \gamma^\mu \gamma^5 \chi$
$\Gamma_{f \overline{f}}^{V} = \frac{g_{f}^{2}(m_{ m MED}^{2} + 2m_{f}^{2})}{12\pi m_{ m MED}} \sqrt{1 - \frac{4m_{f}^{2}}{m_{ m MED}^{2}}}$	$\Gamma_{f \overline{f}}^A \;=\; rac{g_f^2 (m_{ m MED}^2 - 4 m_f^2)}{12 \pi m_{ m MED}} \sqrt{1 - rac{4 m_f^2}{m_{ m MED}^2}}$
Scalar	Pseudoscalar
$g_{ m DM}Sar\chi\chi$.	$g_{ m DM} P ar\chi \gamma^5 \chi$.
$\Gamma_{f\overline{f}}^{S} \;=\; rac{g_{f}^{2}m_{f}^{2}m_{ m MED}}{8\pi v^{2}} \left(1 - rac{4m_{f}^{2}}{m_{ m MED}^{2}} ight)^{rac{3}{2}}$	$\Gamma^P_{f\overline{f}} \;=\; rac{g_f^2 m_f^2 m_{ m MED}}{8\pi v^2} \left(1 - rac{4m_f^2}{m_{ m MED}^2} ight)^{rac{1}{2}}$

Meaning of Width

12/09/14

Kinematic Variation

