<u>Vector/Axial-vector</u>

Technical stuff:

- use POWHEG-BOX process of pp-->DM DM Ij at NLO (need to check how sufficient this will be for multijet+Met processes)

- use generation cut of 30 GeV, 50000 events each model. (previously used 20k events with a cut of 80 GeV, this was sufficient for monojets, but likely not sufficient for multijet analyses)

- vector coupling to both SM and DM
- axial vector coupling to both SM and DM
- no mixed coupling case yet (we can add later)

Width is calculated from couplings from using following formulas

$$\begin{split} \Gamma(Z' \to \bar{\chi}\chi)_{\text{vector}} &= \frac{g_{\text{DM}}^2 M_{\text{med}}}{12\pi} \left(1 + \frac{2m_{\text{DM}}^2}{M_{\text{med}}^2} \right) \sqrt{1 - \frac{4m_{\text{DM}}^2}{M_{\text{med}}^2}} \\ \Gamma(Z' \to \bar{q}q)_{\text{vector}} &= \frac{3g_q^2 M_{\text{med}}}{12\pi} \left(1 + \frac{2m_q^2}{M_{\text{med}}^2} \right) \sqrt{1 - \frac{4m_q^2}{M_{\text{med}}^2}} \\ \Gamma(Z' \to \bar{\chi}\chi)_{\text{axial}} &= \frac{g_{\text{DM}}^2 M_{\text{med}}}{12\pi} \left(1 - \frac{4m_{\text{DM}}^2}{M_{\text{med}}^2} \right)^{3/2} \\ \Gamma(Z' \to \bar{q}q)_{\text{axial}} &= \frac{3g_q^2 M_{\text{med}}}{12\pi} \left(1 - \frac{4m_q^2}{M_{\text{med}}^2} \right)^{3/2} . \end{split}$$

gq	g dm
M _{med}	Mdm

<u>Vector/Axial-vector</u>

Proposal for scans:

- Vary M_{med} and M_{DM} and keep g_q and g_{DM} fixed to 0.3, 0.5, 1.0, 1.45 (weak coupling, semi-weak coupling, strong coupling, max coupling based on width~mass)

- Ranges depend on values of couplings

g q	g dm
M _{med}	Mdm

g _q =g _{DM} =0.3		
M _{DM} = 25, 50, 75, 100, 125, 150, 175, 200 M _{MED} = 50, 100, 200, 300, 400, 500, 600, 700, 800		
g _q =g _{DM} =0.5		
M _{DM} = 25, 50, 100, 150, 200, 250, 300 M _{MED} = 50, 100, 200, 400, 600, 800, 1000, 1100, 1200		
g _q =g _{DM} =1.0		
M _{DM} = 25, 50, 100, 150, 200, 250, 300, 350 ,400, 450, 500 М _{MED} = 50, 100, 200, 400, 600, 800, 1000, 1100, 1200, 1300, 1400, 1500		
g _q =g _{DM} =1.45		
M _{DM} = 25, 50, 100, 150, 200, 250, 300, 350 ,400, 450, 500, 550, 600, 650 M _{MED} = 50, 100, 200, 400, 600, 800, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400, 2600		

- use MCFM
- yukawa coupling to quarks ONLY, not to DM.
- 50k events each with generation cut of 30 GeV

$$\mathcal{L} \supset g_{\rm DM}^{S}(\bar{\chi}\chi) S + g_{\rm SM}^{S} \sum_{q} \frac{m_{q}}{v} (\bar{q}q) S + ig_{\rm DM}^{P}(\bar{\chi}\gamma_{5}\chi) P + ig_{\rm SM}^{P} \sum_{q} \frac{m_{q}}{v} (\bar{q}\gamma_{5}q) P,$$

$$g_{\rm q}=g_{\rm DM}=0.1$$

$$M_{\rm DM}=25, 50, 75, 100, 125, 150, 175, 200$$

$$M_{\rm MED}=50, 125, 200, 300, 400, 500, 600, 700, 800$$

$$g_{\rm q}=g_{\rm DM}=1.0$$

$$M_{\rm DM}=25, 50, 100, 150, 200, 250, 300, 350$$

$$M_{\rm MED}=50, 100, 200, 400, 600, 800, 1000, 1100, 1200$$

$$Higgs invisible scan, g_{\rm q}=1.0, g_{\rm DM}=x \text{ (value of coupling which gives width of Higgs)}$$

$$g_{\rm q}=g_{\rm DM}=2.0$$

$$M_{\rm DM}=25, 50, 100, 150, 200, 250, 300, 350, 400$$

$$M_{\rm MED}=50, 100, 200, 400, 600, 800, 1000, 1100, 1200, 1400$$

$$g_{\rm q}=g_{\rm DM}=3.2 \text{ (max coupling for which mass ~ width)}$$

$$M_{\rm DM}=25, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550$$

$$M_{\rm MED}=50, 125, 200, 400, 600, 800, 1000, 1200, 1400, 1800, 2000$$

Implementation of scalar model in POWHEG

$$\mathcal{L} \supset g_{\rm DM}^{S}(\bar{\chi}\chi) S + g_{\rm SM}^{S} \sum_{q} \frac{m_{q}}{v} (\bar{q}q) S + ig_{\rm DM}^{P}(\bar{\chi}\gamma_{5}\chi) P + ig_{\rm SM}^{P} \sum_{q} \frac{m_{q}}{v} (\bar{q}\gamma_{5}q) P,$$

No yukawa coupling to DM