NNLL RESUMMATION A NOVEL APPROACH

ANDREA BANFI

IN COLLABORATION WITH

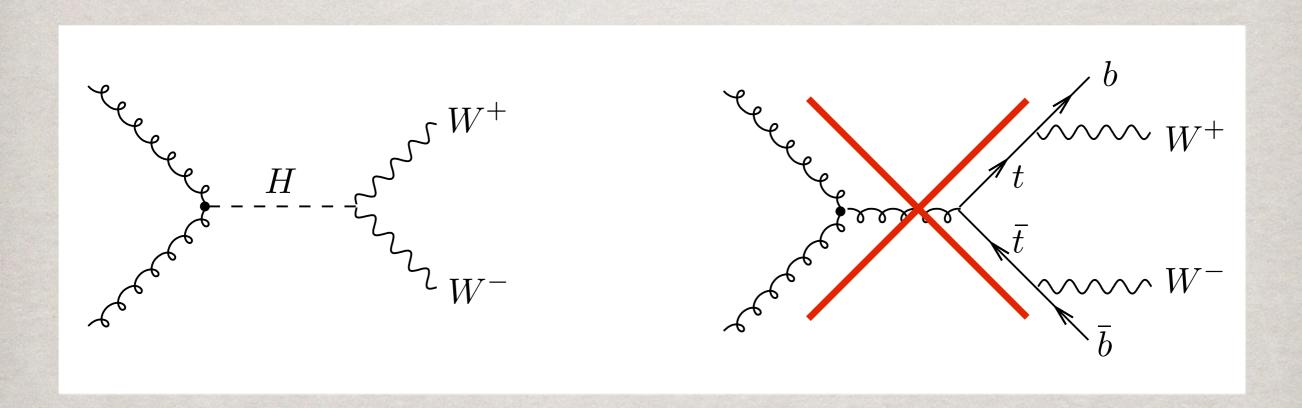
H. MCASLAN, P.F. MONNI AND G. ZANDERIGHI

OUTLINE

- Motivations
- State of the art of QCD resummations
- General technique for QCD resummations
 - Observable's properties
 - Amplitudes
 - Relevant phase space regions
- ho Applications in e^+e^- annihilation
- Current work in progress and outlook

AN EXAMPLE: JET-VETO

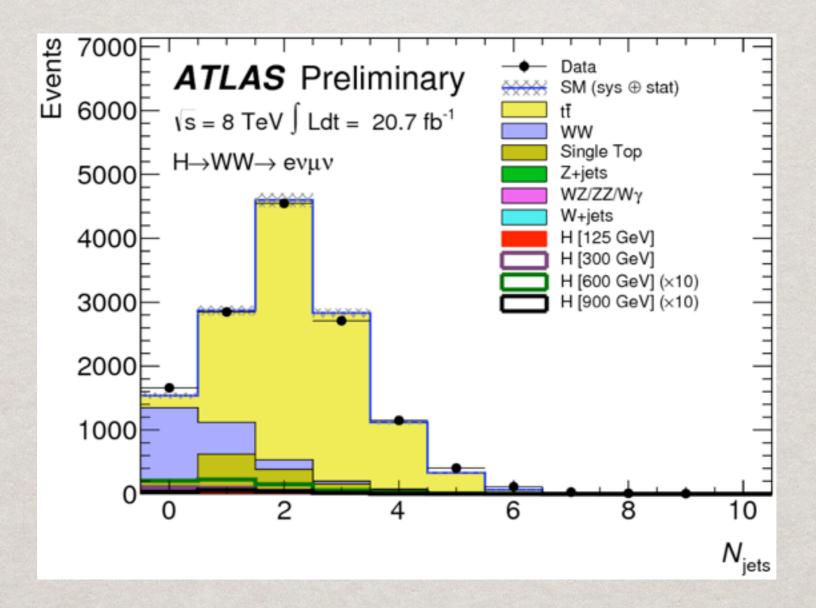
 Example: Higgs decaying into WW suffers from a large background from top-antitop production



- Each top quark decays into a b-jet ⇒ veto events with jets in the final state
- Jet-vetoes are employed in many LHC analyses (e.g. vector-boson cross sections, boosted Higgs searches, etc.)

HOW DO WE VETO JETS?

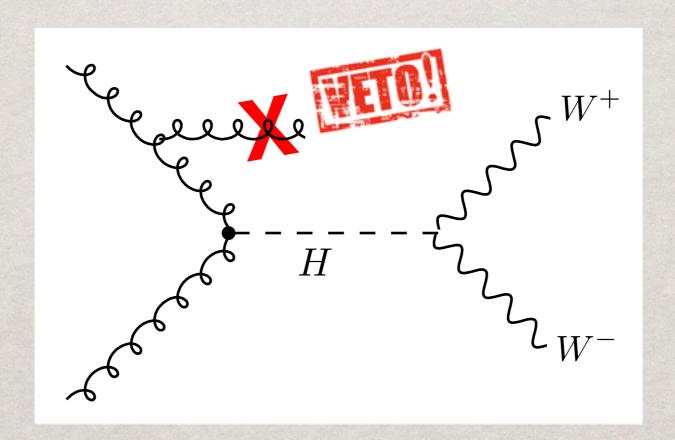
ullet We require that all jets with transverse momentum smaller than $p_{
m t,veto}$



• The zero-jet cross section $\sigma_{0-{
m jet}}$ is least contaminated by the huge (yellow) top-antitop background

INFRARED SENSITIVITY

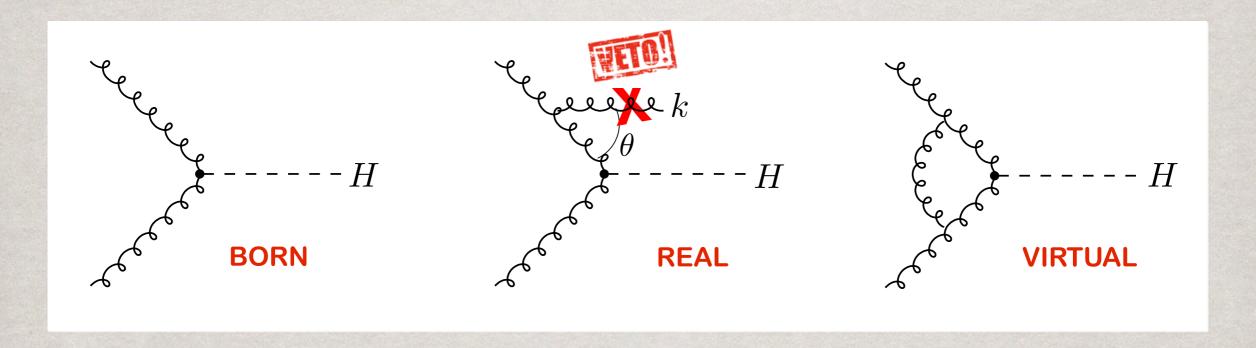
feta The 0-jet cross section is characterised by two scales, the Higgs mass m_H and the jet resolution $p_{
m t,veto}$



In QCD, logarithms $\ln(m_H/p_{\rm t,veto})$ appear whenever the phase space for the emission of soft and/or collinear gluons is restricted

ONE GLUON EMISSION

• Example: veto one soft ($E \ll m_H$) and collinear ($\theta \ll 1$) gluon k



$$\sigma_0 \left[1 \right. + \left. C_A \frac{\alpha_s}{\pi} \int \frac{dE}{E} \frac{d\theta^2}{\theta^2} \Theta \left(p_{\rm t,veto} - E\theta \right) \right. - \left. C_A \frac{\alpha_s}{\pi} \int \frac{dE}{E} \frac{d\theta^2}{\theta^2} \right]$$
 factorisation of soft radiation
$$\sigma_{0-\rm jet} = \sigma_0 \left[1 - C_A \frac{\alpha_s}{\pi} \ln^2 \left(\frac{m_H}{p_{\rm t,veto}} \right) \right]$$

ALL-ORDER O-JET CROSS SECTION

 $oldsymbol{\circ}$ The zero-jet cross section contains logarithmic contributions which can become large when $p_{
m t,veto} \ll m_H$

$$\sigma_{0-
m jet} \simeq \sigma_0 \left(1 - 2C_A rac{lpha_s(m_H)}{\pi} \ln^2 rac{m_H}{p_{
m t,veto}} + \ldots
ight)$$
LO NLO

breakdown of perturbation theory!

ALL-ORDER O-JET CROSS SECTION

• All-order resummation of large logarithms \Rightarrow reorganisation of the PT series in the region $\alpha_s L \sim 1$, with $L = \ln(m_H/p_{\rm t,veto})$

$$\sigma_{0-\text{jet}} \sim \sigma_0 \exp \left[\underbrace{Lg_1(\alpha_s L)}_{\text{LL}} + \underbrace{g_2(\alpha_s L)}_{\text{NLL}} + \underbrace{\alpha_s g_3(\alpha_s L)}_{\text{NNLL}} + \dots \right]$$

ALL-ORDER O-JET CROSS SECTION

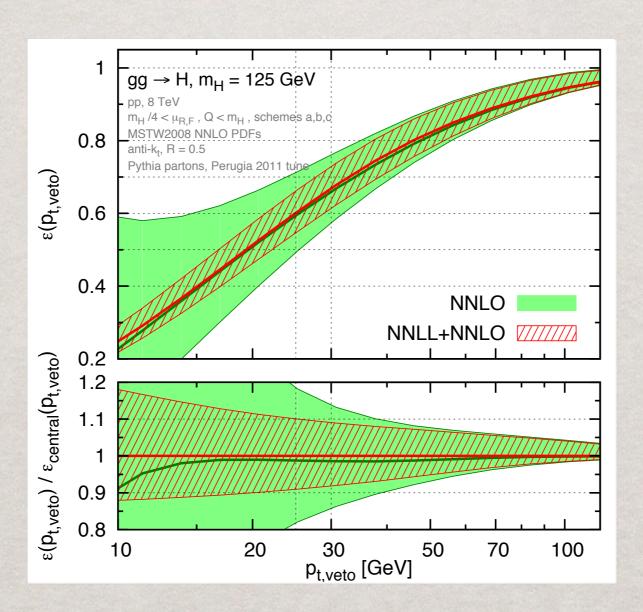
• All-order resummation of large logarithms \Rightarrow reorganisation of the PT series in the region $\alpha_s L \sim 1$, with $L = \ln(m_H/p_{\rm t,veto})$

$$\sigma_{0- ext{jet}} \sim \sigma_0 e^{Lg_1(\alpha_s L)} \times \left(\underbrace{G_2(\alpha_s L)}_{ ext{NLL}} + \underbrace{\alpha_s}_{ ext{NNLL}} + \ldots\right)$$

PREDICTIONS FOR JET-VETO EFFICIENCY

9 Jet-veto efficiency $\epsilon(p_{\rm t,veto}) = \sigma_{\rm 0-jet}/\sigma_{\rm tot}$

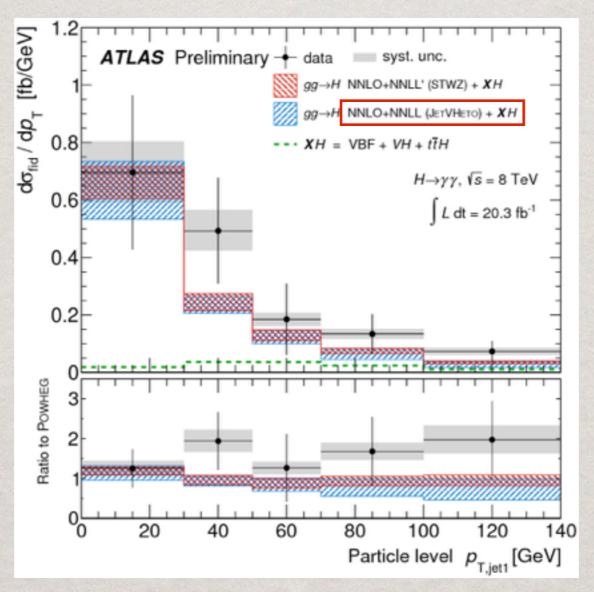
[AB Monni Salam Zanderighi]



Reduction of theoretical uncertainty from NNLO to NNLL+NNLO

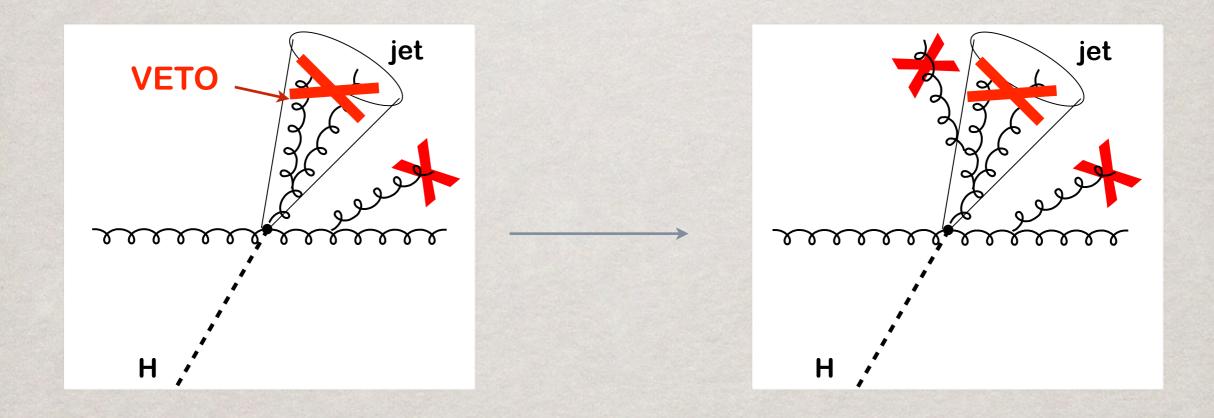
COMPARISON TO DATA

ullet With existing data it is already possible to have a measurement of $\sigma_{0-{
m jet}}$

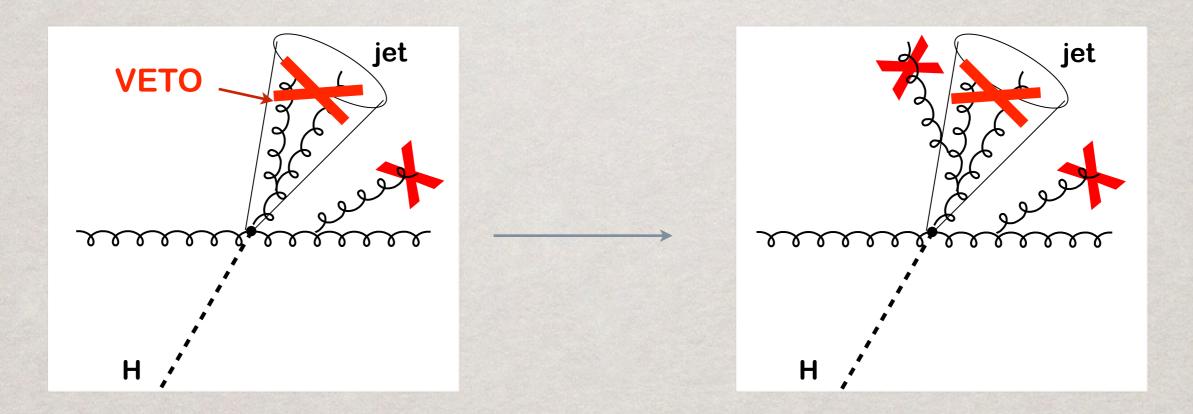


- Good agreement with data in the zero-jet bin
- The leading-jet p_t spectrum is underestimated at high p_t , but there VBF and NNLO corrections to Higgs+1jet are missing

The 0-jet cross section has the special property that is sensitive to soft and collinear gluons everywhere in the phase space

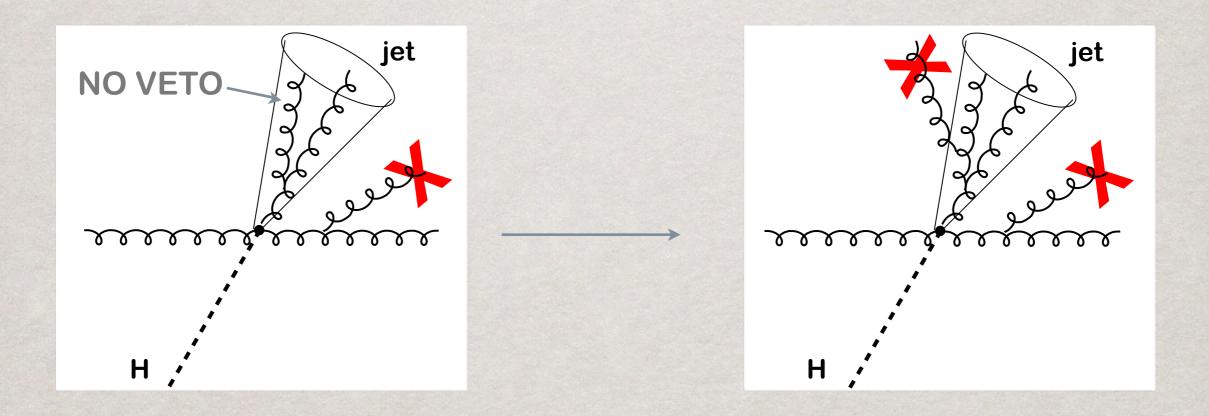


• The 0-jet cross section has the special property that is sensitive to soft and collinear gluons everywhere in the phase space

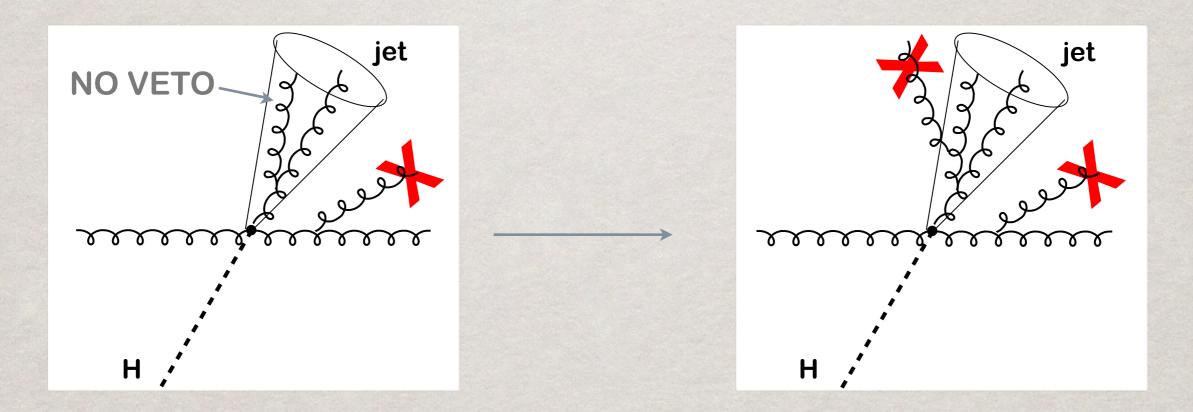


• Gluon splitting close to the jet boundary gives a small contribution, of relative order α_s , hence NNLL [AB Salam Zanderighi]

• The one-jet exclusive cross section is insensitive to emissions inside the tagged jet \Rightarrow new logarithmic contributions for $p_{\rm t,veto} \ll p_{\rm t,jet}$

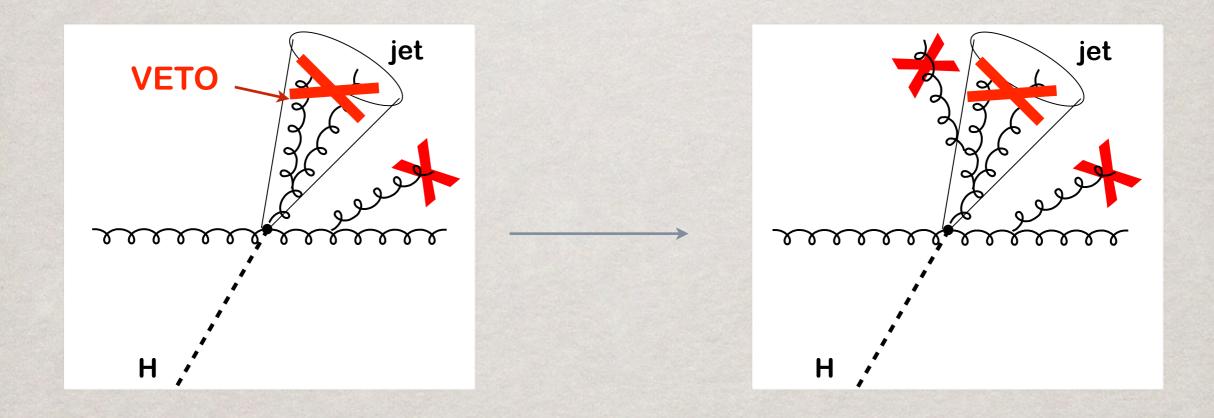


Property The one-jet exclusive cross section is insensitive to emissions inside the tagged jet \Rightarrow new logarithmic contributions for $p_{\rm t,veto} \ll p_{\rm t,jet}$

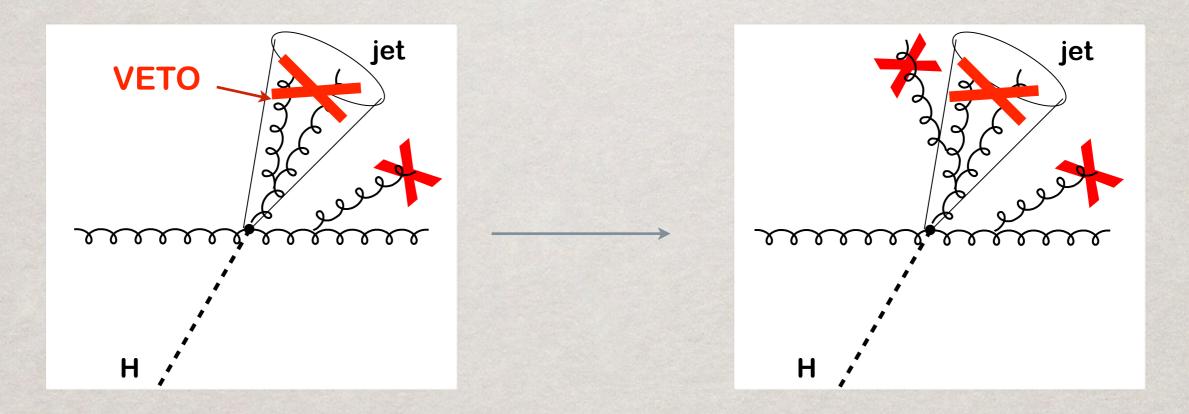


- Gluon splitting close to the jet boundary gives contributions of order $\alpha_s L$, called non-global and clustering logarithms, large for $p_{\rm t,veto} \ll p_{\rm t,jet}$ [Dasgupta Salam; Appleby Seymour; AB Dasgupta]
- ho Non-global logarithms known only in the large- N_c limit \Rightarrow we restrict ourselves to global observables

One can veto emissions inside the tagged jet as well, for instance imposing a cut on the resolution of sub-jets inside the leading jet



One can veto emissions inside the tagged jet as well, for instance imposing a cut on the resolution of sub-jets inside the leading jet



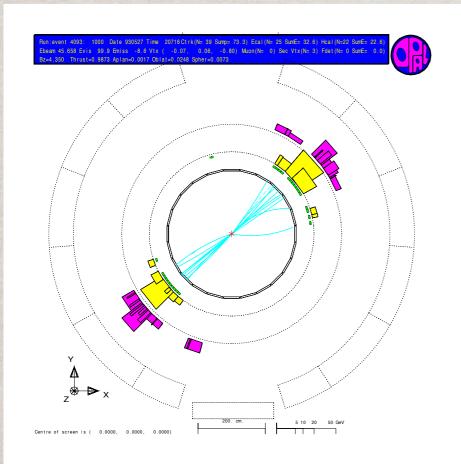
- Besides its theoretical interest, a NNLL resummation of a global one-jet exclusive cross section has important applications
 - measurements of the QCD coupling
 - matching of parton-shower event generators with exact NNLO

FINAL-STATE OBSERVABLES

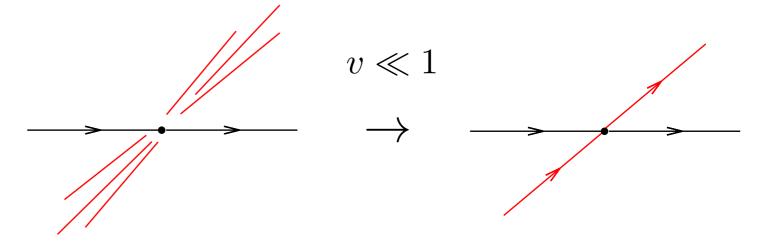
- We consider a generic final-state observable, a function $V(p_1, \ldots, p_n)$ of all possible final-state momenta p_1, \ldots, p_n
- Examples: leading jet transverse momentum in Higgs production or thrust in $e^+e^- \to \mathrm{hadrons}$

$$\frac{p_{t,\text{max}}}{m_H} = \max_{j \in \text{jets}} \frac{p_{t,j}}{m_H}$$

$$T \equiv \max_{\vec{n}} \frac{\sum_{i} |\vec{p_i} \cdot \vec{n}|}{\sum_{i} |\vec{p_i}|}$$



$$\Sigma(v) = \operatorname{Prob}[V(p_1, \dots, p_n) < v]$$



NLL RESUMMATION

- Several NLL exist for a number of observables (extensive literature ~1 observable per article)
- (~) 4 approaches to Sudakov resummation are available
 - Branching algorithm

[Catani Marchesini Webber et al.]

Soft Collinear Effective Theory (SCET)

Resummation achieved through factorisation of cross section into leading kinematic subprocesses and subsequent RGE evolution

[Bauer Fleming Pirol Stewart Beneke Becher Neubert et al.]

Collins-Soper-Sterman factorisation theorems

[Collins Soper Sterman Kidenakis Laenen Magnea et al.]

CAESAR approach

[Banii Salam Zanderighi]

Resummation achieved by simulating (numerically) the QCD radiation to all orders in perturbation theory

From CAESAR onwards, NLL resummation is a solved problem (at least for rIRC safe observables)

RESUMMATION BEYOND NLL

- How many approaches to resummations survive beyond NLL?
 - Branching algorithm

[Catani Marchesini Webber et al.]

Soft Collinear Effective Theory (SCET)

[Bauer Fleming Pirol Stewart Beneke Becher Neubert et al.]

Collins-Soper-Sterman factorisation theorems

[Collins Soper Sterman Kidonakis Laenen Magnea et al.]

CAESAR approach

[Banfi Salam Zanderighi]

- Only SCET and CSS formalism are able to go beyond NLL accuracy, but with factorisation formulae that are observable dependent
- Is it possible to devise a synergy for a new, more powerful approach?

STATE OF THE ART

- NNLL corrections are often sizeable and important for precision physics
- 9 Few results exist in e^+e^- annihilation, and even fewer in hadron collisions
- The most important limitation is the analytical treatment of the observable in some (smartly defined) conjugate space ⇒ resummation often leads to very tedious calculations (~ 14-16 years to go from NLL to NNLL)
- GOAL: devise a semi-numerical approach that:
 - does not rely on analytical properties of the observable
 - is NNLL accurate and extendable to higher orders
 - is fully general for a very broad category of observables (~ all that can be possibly resummed at NNLL accuracy)
 - is flexible and automated (only input: observable's routine)

DEFINITION OF THE PROBLEM

- The problem consists in computing all-order logarithmic enhanced contributions to a generic final-state observable (e.g. event shape or jet resolution parameter)
- We need to control the behaviour of QCD matrix elements and the observable in the presence of an arbitrary number of soft and/or collinear emission
- We divide the problem (and its solution) in three parts
 - observable's properties
 - amplitudes in the soft/collinear limit
 - relevant phase space regions

OBSERVABLE'S PROPERTIES

We consider an infrared and collinear (IRC) safe observable normalised as

$$v = V(\{\tilde{p}\}, k_1, \dots, k_n) \le 1$$

- ho We study the limit $v \to 0$
- In this limit, radiative corrections are just virtual corrections and soft/and or collinear emissions ⇒ QCD amplitudes factorise

$$|\mathcal{M}(\{\tilde{p}\}, k_1, ..., k_n)|^2 \simeq |M_{\text{Born}}(\{\tilde{p}\})|^2 |M(k_1, ..., k_n)|^2 + ...$$

Standard approach: full factorisation is achievable only if the constrained phase space (including the observable's definition) factorises ⇒ resummation can be achieved once a factorisation theorem is available (and a lot of patience to carry out the calculations)

OBSERVABLE'S PROPERTIES

- Final-state observables (e.g. event shapes) do not trivially factorise in products of terms ⇒ integral transforms needed
- ho Successful for simple very inclusive observables (e.g. thrust in e^+e^-)

$$1 - T \simeq \sum_{i=1}^{n} \frac{k_{ti}}{Q} e^{-\eta_i} \qquad \to \qquad \Theta(1 - T < \tau) = \int \frac{d\nu}{2\pi i \nu} e^{\nu \tau} \prod_{i=1}^{n} e^{-\nu \frac{k_{ti}}{Q}} e^{-\eta_i}$$

- ⁹ Cumbersome for more involved observables, like the jet broadening in e^+e^- or the vector boson transverse momentum in hadron collisions
- Impossible for observables in which all emissions cooperate in a non-trivial way (e.g. two-jet rate or thrust minor in e^+e^-
- Factorisation is a unnecessary request for resummation, all is needed is some scaling properties of the observable

OBSERVABLE REQUIREMENTS

Parametrisation for a single soft/collinear emission

$$V(\{\tilde{p}\}, k_i) = \zeta_i v$$

Standard requirement of IRC safety

$$\lim_{\zeta_{n+1}\to 0}V(\tilde{p},k_1(\zeta_1),\ldots,k_n(\zeta_n)) = V(\tilde{p},k_1(\zeta_1),\ldots,k_n(\zeta_n))$$
 soft and/or collinear

An analogous condition holds for secondary collinear splittings

OBSERVABLE REQUIREMENTS

Parametrisation for a single soft/collinear emission

$$V(\{\tilde{p}\}, k_i) = \zeta_i v$$

Further requirements of recursive IRC safety

[Banfi Salam Zanderighi]

$$\lim_{v \to 0} \frac{V(\tilde{p}, k_1(\zeta_1), \dots, k_n(\zeta_n))}{v} = \text{finite (non-zero)}$$

all emissions simultaneously soft and/or collinear

- This conditions means that the observable scales in the same fashion in the present of one or many emissions
- It is necessary for the exponentiation of double logarithms at all orders

OBSERVABLE REQUIREMENTS

Parametrisation for a single soft/collinear emission

$$V(\{\tilde{p}\}, k_i) = \zeta_i v$$

Further requirements of recursive IRC safety

[Banfi Salam Zanderighi]

$$\lim_{\zeta_{n+1}}\lim_{v\to 0}\frac{V(\tilde{p},k_1(\zeta_1),\dots,k_n(\zeta_n),k_{n+1}(\zeta_{n+1})}{v}=\lim_{v\to 0}\frac{V(\tilde{p},k_1(\zeta_1),\dots,k_n(\zeta_n))}{v}$$
 all emissions simultaneously soft and/or collinear collinear than the others

- This conditions ensures that there exists $\epsilon\gg v$ such that we can neglect all emissions with $V(\{\tilde{p}\},k_i)<\epsilon v$
- An analogous condition holds for secondary collinear splittings

VIRTUAL AND (UNRESOLVED) REAL

- Virtual corrections to the underlying Born process (e.g. $e^+e^- \to q\bar{q}$) exponentiate [Parisi; Magnea Sterman]
- ullet We define a subset of (unresolved) emissions such that $V_{
 m sc}(\{ ilde{p}\},k_i)<\epsilon v$
 - The soft-collinear approximation for V is enough to ensure the cancellation of infrared singularities with virtual corrections (a different prescription can be used, leaving the final result unchanged)
 - By rIRC safety, these emissions do not generate new logarithms, and can be neglected

$$V(\{\tilde{p}\}, k_1, \dots, k_n, \dots, k_m) \simeq V(\{\tilde{p}\}, k_1, \dots, k_n) + \epsilon^{p} v$$

- Unresolved emissions are largely unconstrained ⇒ exponentiation
 [Frenkel Gatheral Taylor; Altarelli Parisi]
- Using rIRC safety and renormalisation group it is possible to show that unresolved emissions and virtual corrections exponentiate at all orders

[known for simple observables + work in progress...]

VIRTUAL AND (UNRESOLVED) REAL

ullet Unresolved real and virtual corrections give rise to an exponential factor, interpreted as the no emission probability up to the scale ϵv

$$P(\text{no emissions}) \sim e^{-R(\epsilon v)}$$

ullet Different logarithmic contributions are isolated by expanding around v

$$P(\text{no emissions}) \sim e^{-\sum_{\text{LL}} (v) - \sum_{\text{NLL}} (v) \ln \frac{1}{\epsilon} - \frac{1}{2} \sum_{\text{NNLL}} (v) \ln^2 \frac{1}{\epsilon} + \dots}$$

Owing to the definition of unresolved emissions, the radiator R(v) is the same for all observables that scale in the same way with respect to a single soft-collinear emission

The remaining terms in the exponent cancel the ε-dependence of resolved real emissions

RESOLVED REAL EMISSIONS

• General expression of the cumulative distribution of $V(\{\tilde{p}\}, k_1, \dots, k_n)$

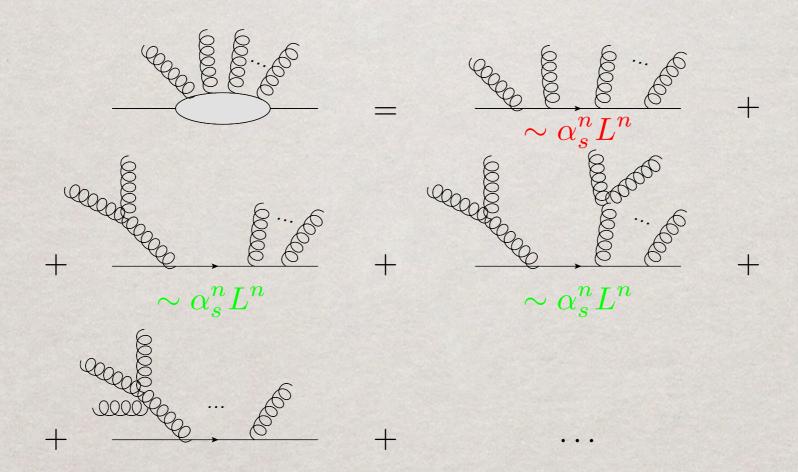
$$\Sigma(v) = \text{Prob}[V(\{\tilde{p}\}, k_1, \dots, k_n) < v] \sim e^{-R(v)} \mathcal{F}(v)$$

- rIRC safety ensures that
 - ullet all double logarithms are contained in the radiator R(v)
 - resolved real emissions are constrained in the region $\epsilon v \lesssim V(\{\tilde{p}\}, k_i) \lesssim v$

resolved real emissions lose one logarithm $\Rightarrow \mathcal{F}(v)$ starts at NLL

SOFT MATRIX ELEMENT

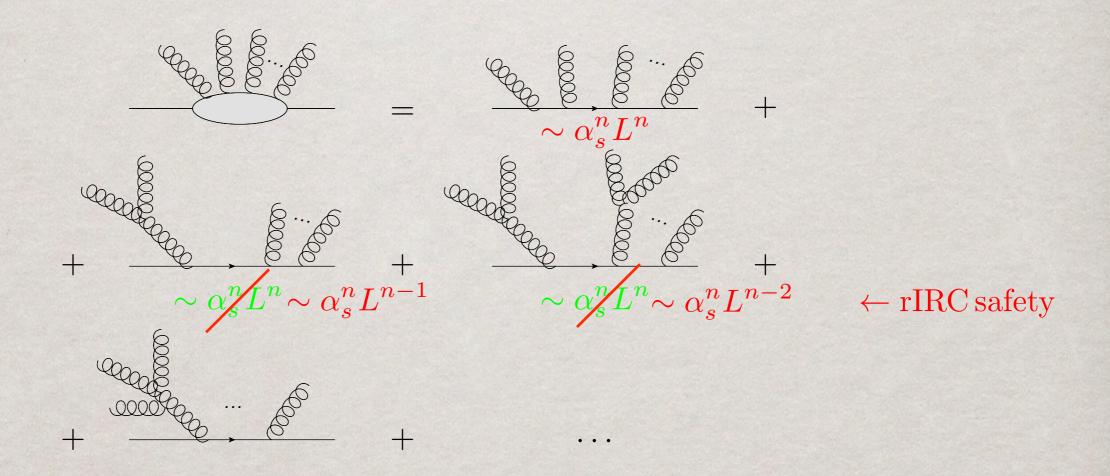
 Cluster decomposition of the matrix element for n soft emissions into terms with increasing number of colour correlations



Which diagrams do we need to achieve NNLL accuracy (i.e. neglect terms of order $\alpha_s^n L^{n-2}$?)

SOFT (RESOLVED) MATRIX ELEMENT

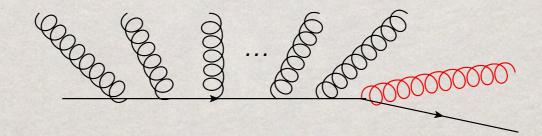
 Cluster decomposition of the matrix element for n soft emissions into terms with increasing number of colour correlations



Which diagrams do we need to achieve NNLL accuracy (i.e. neglect terms of order $\alpha_s^n L^{n-2}$?)

COLLINEAR (RESOLVED) MATRIX ELEMENT

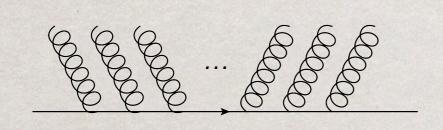
- From the previous analysis, at NNLL, we need to keep only configurations with an arbitrary number of independent soft-collinear emissions, and a single gluon branching
- Similarly, repeating the same analysis in the collinear limit, at NNLL only a single hard emission can be emitted collinear to any Born leg



Further gluon branchings or more collinear emissions can be included for extensions to higher logarithmic orders

PHASE SPACE AT NLL

• At NLL the multiple emission function $\mathcal{F}(v)$ is given by an ensemble of soft and collinear gluons, widely separated in rapidity (angle)



Measure defined by the soft-collinear ensemble

$$= \int \mathcal{Z}[\{R'_{\ell_i}, k_i\}] \Theta\left(1 - \lim_{v \to 0} \frac{V_{\text{sc}}(\{\tilde{p}\}, \{k_i\})}{v}\right)$$

$$\mathcal{F}_{\mathrm{NLL}}(v) = \langle \Theta(1 - \lim_{v \to 0} \frac{V_{\mathrm{sc}}(\{\tilde{p}\}, \{k_i\})}{v}) \rangle$$

 The exact rapidity bound for each emission can be neglected at this order (but does contribute at NNLL)

PHASE SPACE AT NNLL

At most two soft-collinear emissions can get close in rapidity



Clustering correction (jet algorithms only)

Correlated corrections

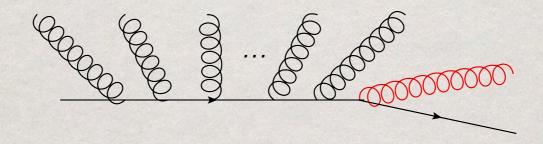
$$\delta F_{\text{correl}}(\lambda) = \int_0^\infty \frac{d\zeta_a}{\zeta_a} \int_0^{2\pi} \frac{d\phi_a}{2\pi} \sum_{\ell_a=1,2} \left(\frac{2C_{\ell_a}\lambda}{\beta_0} \frac{R_{\ell_a}''}{\alpha_s} \right) \int_0^\infty \frac{d\kappa}{\kappa} \int_{-\infty}^\infty \int_0^{2\pi} \frac{1}{2!} C_{ab}(\kappa, \eta, \phi) \times \int d\mathcal{Z}[\{R_{\ell_i}', k_i\}] \left[\Theta(v - V_{\text{sc}}(\{\tilde{p}\}, k_a, k_b, \{k_i\})) - \Theta(v - V_{\text{sc}}(\{\tilde{p}\}, k_a + k_b, \{k_i\})) \right]$$

$$C_{ab}(\kappa,\eta,\phi) = \frac{\tilde{M}^2(k_a,k_b)}{M_{\rm sc}^2(k_a)M_{\rm sc}^2(k_b)} \qquad \begin{array}{c} \text{All corrections in terms of four-} \\ \text{dimensional integrals} \end{array}$$

dimensional integrals

PHASE SPACE AT NNLL

At most one collinear emission that carries a significant fraction of the energy of the emitter, which recoils against it



We have split this contribution into a hard-collinear and recoil correction

$$\delta \mathcal{F}_{hc}(\lambda) = \sum_{\ell=1,2} \frac{\alpha_s(v^{1/(a+b_\ell)}Q)}{\alpha_s(Q)(a+b_\ell)} \int_0^\infty \frac{d\zeta}{\zeta} \int_0^{2\pi} \frac{d\phi}{2\pi} \int d\mathcal{Z}[\{R'_{\ell_i}, k_i\}] \times \\ \times \int_0^1 \frac{dz}{z} (zp_\ell(z) - 2C_\ell) \left[\Theta\left(1 - \lim_{v \to 0} \frac{V_{sc}(\{\tilde{p}\}, k, \{k_i\})}{v}\right) - \Theta\left(1 - \lim_{v \to 0} \frac{V_{sc}(\{\tilde{p}\}, \{k_i\})}{v}\right) \Theta(1 - \zeta)\right]$$

$$\delta \mathcal{F}_{\text{rec}}(\lambda) = \sum_{\ell=1,2} \frac{\alpha_s(v^{1/(a+b_\ell)}Q)}{\alpha_s(Q)(a+b_\ell)} \int_0^\infty \frac{d\zeta}{\zeta} \int_0^{2\pi} \frac{d\phi}{2\pi} \int d\mathcal{Z}[\{R'_{\ell_i}, k_i\}] \times \int_0^1 dz \, p_\ell(z) \left[\Theta\left(1 - \lim_{v \to 0} \frac{V_{\text{hc}}(\{\tilde{p}\}, k', \{k_i\})}{v}\right) - \Theta\left(1 - \lim_{v \to 0} \frac{V_{\text{sc}}(\{\tilde{p}\}, k, \{k_i\})}{v}\right) \right]$$

PHASE SPACE AT NNLL

At most one soft-collinear emission has exact phase space

$$\delta \mathcal{F}_{sc}(\lambda) = \frac{\pi}{\alpha_s} \int_0^\infty \frac{d\zeta}{\zeta} \int_0^{2\pi} \frac{d\phi}{2\pi} \sum_{\ell=1,2} \left(\delta R_\ell' + R_\ell'' \ln \frac{d_\ell g_\ell(\phi)}{\zeta} \right) \int d\mathcal{Z}[\{R_{\ell_i}', k_i\}] \times$$

$$\times \int_0^1 dz \, p_\ell(z) \left[\Theta \left(1 - \lim_{v \to 0} \frac{V_{sc}(\{\tilde{p}\}, k, \{k_i\})}{v} \right) - \Theta \left(1 - \lim_{v \to 0} \frac{V_{sc}(\{\tilde{p}\}, \{k_i\})}{v} \right) \Theta(1 - \zeta) \right]$$

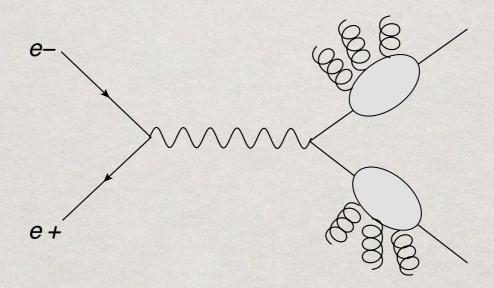
At most one soft emission can have small rapidity (large angle)

$$\delta \mathcal{F}_{wa}(\lambda) = \frac{2C_F}{a} \frac{\alpha_s(v^{1/a}Q)}{\alpha_s(Q)} \int_0^\infty \frac{d\zeta}{\zeta} \int_{-\infty}^\infty d\eta \int_0^{2\pi} \frac{d\phi}{2\pi} \int d\mathcal{Z}[\{R'_{\ell_i}, k_i\}] \times \left[\Theta\left(1 - \lim_{v \to 0} \frac{V_{wa}(\{\tilde{p}\}, k, \{k_i\})}{v}\right) - \Theta\left(1 - \lim_{v \to 0} \frac{V_{sc}(\{\tilde{p}\}, k, \{k_i\})}{v}\right)\right]$$

With more than two legs there are additional contributions due to colour correlations between hard legs

[Botts Sterman; Kidonakis Oderda Sterman]

• Event shapes in $e^+e^- \rightarrow 2 \text{ jets}$



- Relevant for precise determination of the strong coupling, through deviations from the 2-jet limit
- Toy model for final-state radiation (conceptually complete)
- Clean experimental environment to study non-perturbative corrections (hadronisation)

- Reproduced old results and presented new ones
 - thrust and heavy-jet mass (known)

$$T \equiv \max_{\vec{n}} \frac{\sum_{i} |\vec{p}_{i} \cdot \vec{n}|}{\sum_{i} |\vec{p}_{i}|} \qquad \rho_{H} \equiv \max_{i=1,2} \frac{M_{i}^{2}}{Q^{2}} \qquad M_{i}^{2} = \left(\sum_{j \in \mathcal{H}_{i}} p_{j}\right)^{2}$$

total and wide-jet broadening(known)

$$B_L \equiv \sum_{i \in \mathcal{H}_1} \frac{|\vec{p}_i \times \vec{n}_T|}{2Q}, \quad B_R \equiv \sum_{i \in \mathcal{H}_2} \frac{|\vec{p}_i \times \vec{n}_T|}{2Q} \qquad B_W \equiv \max\{B_L, B_R\}$$

$$B_W \equiv \max\{B_L, B_R\}$$

C-parameter (new)

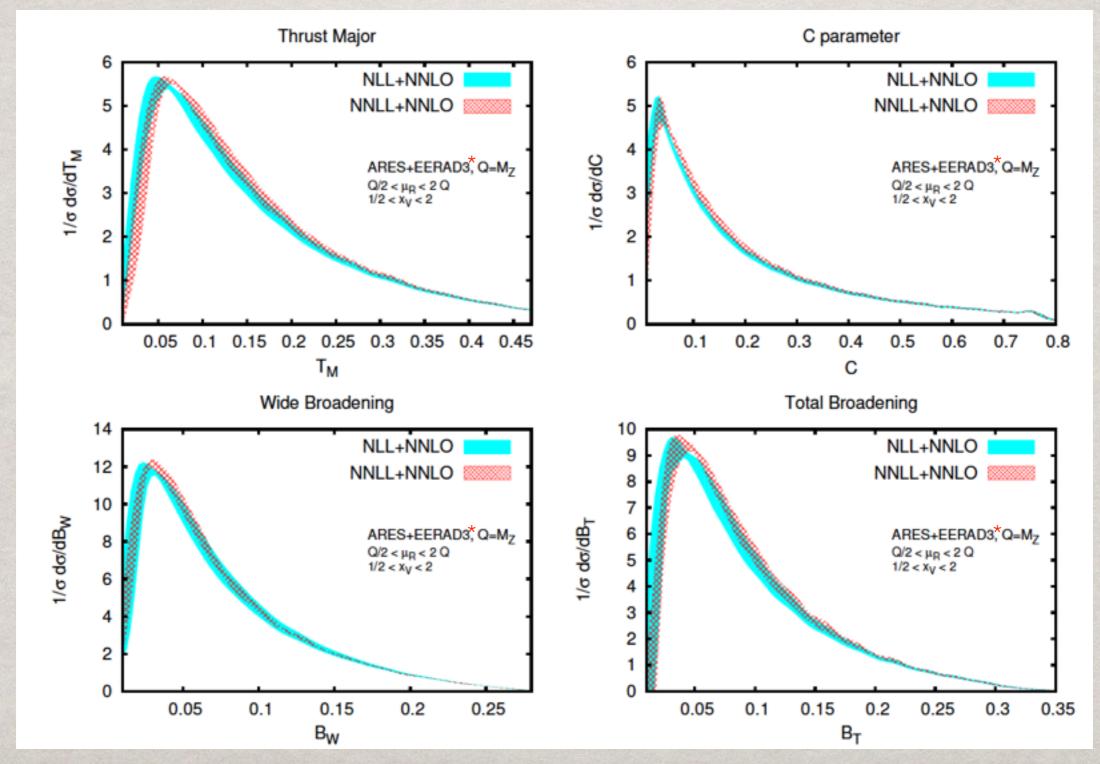
$$C \equiv 3 \left(1 - \frac{1}{2} \sum_{i,j} \frac{(p_i \cdot p_j)^2}{(p_i \cdot Q)(p_j \cdot Q)} \right)$$

thrust major and oblateness (new)

$$T_M \equiv \max_{\vec{n} \cdot n_T} \frac{\sum_i |\vec{p}_i \cdot \vec{n}|}{\sum_i |\vec{p}_i|} \qquad T_m \equiv \frac{\sum_i |\vec{p}_{x,i}|}{\sum_i |\vec{p}_i|} \qquad O \equiv T_M - T_m$$

Event-shapes distributions at NNLL matched to exact NNLO

[AB McAslan Monni Zanderighi]



[* Gehrmann-De Ridder Gehrmann Glover Heinrich]

Observables with different logarithmic structures can be resummed with the same method (fully general)

correction type	$p_{ m t,veto}$	1-T	B_T	B_W	C	$ ho_H$	T_M	O
$\mathcal{F}_{\mathrm{NLL}}$	✓	✓	√	✓	✓	✓	√	✓
$\delta\mathcal{F}_{\mathrm{rap}}$	X	✓	✓	✓	✓	✓	✓	 √
$\delta\mathcal{F}_{ m wa}$	X	X	X	X	✓	X	X	x
$\delta\mathcal{F}_{ m hc}$	X	✓	✓	✓	✓	✓	✓	√
$\delta \mathcal{F}_{ m rec}$	X	✓	✓	✓	✓	✓	✓	√
$\delta\mathcal{F}_{ m clust}$	✓	X	X	X	X	X	X	x
$\delta \mathcal{F}_{ ext{correl}}$	✓	X	✓	✓	X	X	✓	✓

CONCLUSIONS

- Novel general method for the resummation of any rIRC safe (global) observable in the two-scale regime
 - weak applicability conditions
 - cancellation of poles between real and virtual corrections performed analytically in dimensional regularisation
 - contributions of resolved real emissions formulated in terms of fourdimensional integrals (suitable for Monte Carlo implementation)
- Modulo technical work the NNLL resummation for any rIRC safe observable in the two-scale regime is a theoretically solved problem
- Application to jet cross sections in e^+e^- (Durham and Cambridge 2-jet rate) and in hadron collisions (H+1jet) is under way

CONCLUSIONS

- Novel general method for the resummation of any rIRC safe (global) observable in the two-scale regime
 - weak applicability conditions
 - cancellation of poles between real and virtual corrections performed analytically in dimensional regularisation
 - contributions of resolved real emissions formulated in terms of fourdimensional integrals (suitable for Monte Carlo implementation)
- Modulo technical work the NNLL resummation for any rIRC safe observable in the two-scale regime is a theoretically solved problem
- Application to jet cross sections in e^+e^- (Durham and Cambridge 2-jet rate) and in hadron collisions (H+1jet) is under way

Thank you for your attention!