Electroweak Physics at the LHC — TH Lecture 2 — Single-W/Z Production

Stefan Dittmaier

Albert-Ludwigs-Universität Freiburg

Contents

Drell–Yan-like W/Z production – physics goals

Unstable particles in QFT

QCD and electroweak corrections to inclusive W/Z production

Photon-induced processes and photon PDF

W/Z production with hard jets

Combination of QCD and EW corrections

Drell–Yan-like W/Z production

physics goals

Stefan Dittmaier, *Electroweak Physics – TH Lecture 2* HiggsTools Summer School, Aosta Valley, June/July 2015 – 3

W- and Z-boson production at hadron colliders

Physics goals:

- $M_{\rm Z}$ \rightarrow detector calibration by comparing with LEP1 result
- $\sin^2 \theta_{\rm eff}^{\rm lept} \rightarrow \text{ comparison with results of LEP1 and SLC}$
- $M_W \rightarrow \text{improvement to } \Delta M_W \sim 15 \text{ MeV}$, strengthen EW precision tests (W/Z shape comparisons even sensitive to $\Delta M_W \sim 7 \text{ MeV}$ at LHC) Besson et al. '08
- $\sigma, d\sigma \rightarrow$ precision SM studies
- decay widths $\Gamma_{\mathbf{Z}}$ and $\Gamma_{\mathbf{W}}$ from M_{ll} or $M_{\mathrm{T},l\nu_l}$ tails
- search for Z' and W' at high M_{ll} or $M_{T,l\nu_l}$
- information on PDFs

Tevatron example: M_W determination @ CDF (2012)

 $M_{\rm W}^{\rm CDF} = 80.387 \,{
m GeV} \pm 19 \,{
m MeV}$ from fits to distributions in

a) transverse W-boson mass

b) transverse lepton momentum $p_{\mathrm{T},l}$

$$M_{\mathrm{T},l\nu} = \sqrt{2(E_{\mathrm{T},l} \not\!\!\!E_{\mathrm{T}} - \mathbf{p}_{\mathrm{T},l} \cdot \not\!\!\!p_{\mathrm{T}})}$$

Sensitivity to $M_{\rm W}$ via Jacobian peaks from W resonance at

$$M_{\mathrm{T},l\nu} \sim M_{\mathrm{W}}$$
 $p_{\mathrm{T},l} \sim M_{\mathrm{W}}/2$

 \Rightarrow Reduction of $\Delta M_{\rm W}$ requires higher theoretical precision in W resonance region !

(for Z resonance as well for reference)

Fits of Γ_W to W transverse mass

Result from CDF: $\Gamma_{\rm W} = 2.032 \pm 0.071 \, {\rm GeV}$

(=most precise single measurement)

Result from LEP: $\Gamma_W = 2.196 \pm 0.083 \, \text{GeV}$

Z-boson invariant-mass and transverse-momentum distributions

 $p_{\mathrm{T,Z}}$ distribution:

- probes jet recoil, i.e. QCD jet dynamics
- at low $p_{\mathrm{T,Z}}$ not describable with fixed-order predictions
 - \hookrightarrow QCD resummations required

FB asymmetry at the LHC

(plots taken from Dittmar, Djouadi, Nicollerat '03)

- Naive definition: "Good" definition: $A_{FB} = 0$ in pp collisions (no preferred direction!) identify boost direction of l^+l^- pair with quark direction (x spectra of q / \bar{q} on average lead to boost in q direction)
- Measureable A_{FB} can be enhanced upon excluding small Z rapidity Y_{ll} \hookrightarrow require e.g. $|Y_{ll}| > 0.8$
- $A_{\rm FB}$ can discriminate between different ${\rm Z}'$ models at the LHC

Unstable particles in QFT

Problem of unstable particles:

description of resonances requires resummation of propagator corrections → mixing of perturbative orders potentially violates gauge invariance

 $\Sigma(p^2)={\rm renormalized}$ self-energy, $\ m={\rm ren.}\mbox{ mass}$

stable particle: $\operatorname{Im}\{\Sigma(p^2)\} = 0 \text{ at } p^2 \sim m^2$

 \hookrightarrow propagator pole for real value of p^2 , renormalization condition for physical mass m: $\Sigma(m^2) = 0$

unstable particle: $\operatorname{Im}\{\Sigma(p^2)\} \neq 0 \text{ at } p^2 \sim m^2$

 \hookrightarrow location μ^2 of propagator pole is complex, possible definition of mass M and width Γ : $\mu^2 = M^2 - iM\Gamma$

Different proposals:

• Naive fixed-width schemes:

 $\frac{1}{p^2 - M^2} \rightarrow \frac{1}{p^2 - M^2 + iM\Gamma} \quad \text{in all or at least in resonant propagators}$

→ breaks gauge invariance only mildly (?),
 but partial inclusion of widths in loops screws up singularity structure

• Pole scheme Stuart '91; Aeppli et al. '93, '94; etc.

Isolate resonance pole and introduce width Γ only there.

 \hookrightarrow consistent, gauge invariant, but involves subtleties

Pole approximation: isolate and keep only leading (=resonant) terms

- → consistent, gauge invariant,
 but not reliable at threshold or in off-shell tails of resonances
- Effective field theory approach Beneke et al. '04; Hoang, Reisser '04
 - \hookrightarrow gauge invariant, involves pole expansions, but can be combined with threshold expansions
- Complex-mass scheme Denner, S.D., Roth, Wackeroth '99; Denner, S.D., Roth, Wieders '05
 - \hookrightarrow gauge invariant, valid everywhere in phase space

The complex-mass scheme at NLO

Basic idea: mass² = location of propagator pole in complex p^2 plane \hookrightarrow consistent use of complex masses everywhere ! Application to gauge-boson resonances:

• replace $M_W^2 \rightarrow \mu_W^2 = M_W^2 - iM_W\Gamma_W$, $M_Z^2 \rightarrow \mu_Z^2 = M_Z^2 - iM_Z\Gamma_Z$ and define (complex) weak mixing angle via $c_W^2 = 1 - s_W^2 = \frac{\mu_W^2}{\mu_Z^2}$

• virtues:

- ◇ gauge-invariant result (Slavnov–Taylor identities, gauge-parameter independence)
 → unitarity cancellations respected !
- perturbative calculations as usual (loops and counterterms)
- on double counting of contributions (bare Lagrangian unchanged !)

• drawbacks:

- ♦ unitarity-violating spurious terms of $\mathcal{O}(\alpha^2) \rightarrow$ but beyond NLO accuracy ! (from *t*-channel/off-shell propagators and complex mixing angle)
- ◊ complex gauge-boson masses also in loop integrals

Commonly used mass/width definitions:

• "on-shell mass/width"
$$M_{OS}/\Gamma_{OS}$$
: $M_{OS}^2 - m^2 + \operatorname{Re}\{\Sigma(M_{OS}^2)\} \stackrel{!}{=} 0$
 $\hookrightarrow G^{\phi\phi}(p) \xrightarrow{p^2 \to M_{OS}^2} \frac{1}{(p^2 - M_{OS}^2)(1 + \operatorname{Re}\{\Sigma'(M_{OS}^2)\}) + i\operatorname{Im}\{\Sigma(p^2)\}}$
comparison with form of Breit–Wigner resonance $\frac{R_{OS}}{p^2 - m^2 + im\Gamma}$
yields: $M_{OS}\Gamma_{OS} \equiv \operatorname{Im}\{\Sigma(M_{OS}^2)\} / (1 + \operatorname{Re}\{\Sigma'(M_{OS}^2)\}), \qquad \Sigma'(p^2) \equiv \frac{\partial\Sigma(p^2)}{\partial p^2}$
• "pole mass/width" M/Γ : $\mu^2 - m^2 + \Sigma(\mu^2) \stackrel{!}{=} 0$
complex pole position: $\mu^2 \equiv M^2 - iM\Gamma$
 $\hookrightarrow G^{\phi\phi}(p) \xrightarrow{p^2 \to \mu^2} \frac{1}{(p^2 - \mu^2)[1 + \Sigma'(\mu^2)]} = \frac{R}{p^2 - M^2 + iM\Gamma}$

Note: $\mu =$ gauge independent for any particle (pole location is property of *S*-matrix) $M_{OS} =$ gauge dependent at 2-loop order Sirlin '91; Stuart '91; Gambino, Grassi '99; Grassi, Kniehl, Sirlin '01

Relation between "on-shell" and "pole" definitions:

Subtraction of defining equations yields:

$$M_{\rm OS}^2 + {\rm Re}\{\Sigma(M_{\rm OS}^2)\} = M^2 - iM\Gamma + \Sigma(M^2 - iM\Gamma)$$

Equation can be uniquely solved via recursion in powers of coupling α :

ansatz:
$$M_{OS}^2 = M^2 + c_1 \alpha^1 + c_2 \alpha^2 + \dots$$

 $M_{OS} \Gamma_{OS} = M \Gamma + d_2 \alpha^2 + d_3 \alpha^3 + \dots$, $c_i, d_i = \text{real}$
counting in α : $M_{OS}, M = \mathcal{O}(\alpha^0), \quad \Gamma_{OS}, \Gamma, \Sigma(p^2) = \mathcal{O}(\alpha^1)$

Result:

$$M_{OS}^{2} = M^{2} + \operatorname{Im}\{\Sigma(M^{2})\} \operatorname{Im}\{\Sigma'(M^{2})\} + \mathcal{O}(\alpha^{3})$$
$$M_{OS}\Gamma_{OS} = M\Gamma + \operatorname{Im}\{\Sigma(M^{2})\} \operatorname{Im}\{\Sigma'(M^{2})\}^{2}$$
$$+ \frac{1}{2} \operatorname{Im}\{\Sigma(M^{2})\}^{2} \operatorname{Im}\{\Sigma''(M^{2})\} + \mathcal{O}(\alpha^{4})$$

i.e. $\{M_{OS}, \Gamma_{OS}\} = \{M, \Gamma\} + \text{gauge-dependent 2-loop corrections}$

Important examples: W and Z bosons

In good approximation: $W \to f\bar{f}', \quad Z \to f\bar{f}$ with masses fermions f, f'so that: $\operatorname{Im}\{\Sigma_{\mathrm{T}}^{\mathrm{V}}(p^2)\} = p^2 \times \frac{\Gamma_{\mathrm{V}}}{M_{\mathrm{V}}} \theta(p^2), \quad \mathrm{V} = \mathrm{W}, \mathrm{Z}$ $\hookrightarrow M_{\mathrm{OS}}^2 = M^2 + \Gamma^2 + \mathcal{O}(\alpha^3) \qquad M_{\mathrm{OS}}\Gamma_{\mathrm{OS}} = M\Gamma + \frac{\Gamma^3}{M} + \mathcal{O}(\alpha^4)$

In terms of measured numbers:

W boson: $M_{\rm W} \approx 80 \,{\rm GeV}$, $\Gamma_{\rm W} \approx 2.1 \,{\rm GeV}$ $\hookrightarrow M_{\rm W,OS} - M_{\rm W,pole} \approx 28 \,{\rm MeV}$ Z boson: $M_{\rm Z} \approx 91 \,{\rm GeV}$, $\Gamma_{\rm Z} \approx 2.5 \,{\rm GeV}$ $\hookrightarrow M_{\rm Z,OS} - M_{\rm Z,pole} \approx 34 \,{\rm MeV}$ Exp. accuracy: $\Delta M_{\rm W,exp} = 29 \,{\rm MeV}$, $\Delta M_{\rm Z,exp} = 2.1 \,{\rm MeV}$

 \hookrightarrow Difference in definitions phenomenologically important !

Example of W and Z bosons continued:

Approximation of massless decay fermions:

$$\Gamma_{\rm V,OS}(p^2) = \Gamma_{\rm V,OS} \times \frac{p^2}{M_{\rm V,OS}^2} \theta(p^2), \qquad {\rm V} = {\rm W}, {\rm Z}$$

Fit of W/Z resonance shapes to experimental data:

• ansatz
$$\left| \frac{R'}{p^2 - m'^2 + i\gamma' p^2/m'} \right|^2$$
 yields: $m' = M_{V,OS}$, $\gamma' = \Gamma_{V,OS}$
• ansatz $\left| \frac{R}{p^2 - m^2 + i\gamma m} \right|^2$ yields: $m = M_{V,pole}$, $\gamma = \Gamma_{V,pole}$

Note: the two forms are equivalent:

$$R = \frac{R'}{1 + i\gamma'/m'}, \quad m^2 = \frac{{m'}^2}{1 + {\gamma'}^2/{m'}^2}, \quad m\gamma = \frac{m'\gamma'}{1 + {\gamma'}^2/{m'}^2}$$

 $\hookrightarrow\,$ consistent with relation between "on-shell" and "pole" definitions !

QCD and electroweak corrections to inclusive W/Z production

SM predictions for W/Z production:

- NNLO QCD (differential)
- QCD resummations / parton showers
- NLO EW (+ h.o. improvements)
- NLO QCD/EW POWHEG matching
- NNLO QCD + parton shower
- $\mathcal{O}(\alpha \alpha_{\rm s})$ corrs. near resonances

Melnikov, Petriello '06; Catani et al. '09; Gavin et al. '10,'12

Arnold, Kauffman '91; Balazs et al. '95; ...

Baur et al. '97; Brein et al. '99; S.D., Krämer '01; Baur, Wackeroth '04; Arbuzov et al. '05; Carloni Calame et al. '06; ...

Bernaciak, Wackeroth '12; Barze et al. '13

Hoeche et al. '14; Karlberg et al. '14

S.D., Huss, Schwinn '14,'15 (soon)

Some details on the NLO calculation

Loop corrections:

Field-theoretical subtlety:

gauge-invariant description of resonance with higher-order corrections

Corrections to $M_{T,l\nu}$ distribution in W production:

- QCD corrections (not shown) sizeable, but quite flat ($\sim 20-30\%$)
- EW corrections
 - $\diamond\,$ no unambiguous separation into photonic and weak corrections for W
 - significant shape distortion near Jacobian peak
 - \hookrightarrow shift in M_W determination by $\sim 100(50) \,\mathrm{MeV}$ for bare (dressed) leptons
 - multi-photon final-state radiation relevant

Corrections to $p_{T,l}$ distribution in W production:

- QCD corrections huge (> 100%) for $p_{\mathrm{T},l} \gtrsim M_{\mathrm{W}}/2$ due to jet recoil
 - $\,\hookrightarrow\,$ importance of multi-jet merging / QCD parton-shower matching

• EW corrections

- \diamond shape distortion, etc., similar to $M_{\mathrm{T},l\nu}$ distribution
- observable cleaner experimentally, but more delicate theoretically than $M_{{
 m T},l
 u}$

Corrections to W/Z rapidity distribution

QCD predictions at LO / NLO / NNLO:

- particularly relevant in PDF fits
- QCD corrections show nice perturbative convergence
- EW corrections at the level of few % (mostly photonic)

Corrections to M_{ll} distribution in Z production – overview _{S.D., Huber '09}

Physikalisches Institut

Corrections to M_{ll} distribution in Z production – features

- QCD corrections significant, but quite flat in resonance region
- Photonic corrections
 - \diamond large radiative tail for $M_{ll} \lesssim M_Z$ from photonic final-state radiation
 - Multi-photon emission significant in resonance region
 - ◇ photon recombination reduces large corrections drastically (cancellation of large mass-singular corrections $\propto (\alpha \ln m_{\ell})^n$ a la KLN)
- weak corrections significant for large $M_{ll} \gg M_{ll}$
- *q*γ channel seemingly significant, but swamped by QCD corrections (same signature, similar shape!)
- $\gamma\gamma$ channel significant off resonance with kinematical signature different from $q\bar{q}$ \hookrightarrow sensitivity to photon PDF in PDF fits !

Photon-induced processes and photon PDF

Photon-induced channels

γq collisions

- contributions to both W and Z production
- same signature as QCD corrections (V + jet)
 - $\,\hookrightarrow\,$ contributions swamped by QCD radiation effects

- contribution only to neutral-current process
- significant impact for high invariant mass M_{ll}

$\gamma\gamma \rightarrow l^+l^-$ – a handle on the photon PDF ?

Impact of $\gamma\gamma$ and $q\gamma$ channels enhanced above Z pole !

Note: $\gamma\gamma$ channel prefers scattering angles $\theta^* \to 0, \pi$!

LO kinematics: $M_{ll} = \sqrt{\hat{s}}, \quad p_{T,l} = \frac{1}{2}\sqrt{\hat{s}}\sin\theta^* = \frac{1}{2}M_{ll}\sin\theta^*$

 \hookrightarrow Enhance $\gamma\gamma$ channel by cuts on $p_{\mathrm{T},l}$?!

Scenario (c): $p_{\mathrm{T},l^{\pm}} < 100 \,\mathrm{GeV}$

$\gamma\gamma \rightarrow l^+l^-$ – a handle on the photon PDF ?

Impact of $\gamma\gamma$ and $q\gamma$ channels enhanced above Z pole !

Note: $\gamma\gamma$ channel prefers scattering angles $\theta^* \to 0, \pi$!

LO kinematics: $M_{ll} = \sqrt{\hat{s}}, \quad p_{T,l} = \frac{1}{2}\sqrt{\hat{s}}\sin\theta^* = \frac{1}{2}M_{ll}\sin\theta^*$

 \hookrightarrow Enhance $\gamma\gamma$ channel by cuts on $p_{\mathrm{T},l}$?!

$\gamma\gamma \rightarrow l^+l^-$ – a handle on the photon PDF ?

Impact of $\gamma\gamma$ and $q\gamma$ channels enhanced above Z pole !

Note: $\gamma\gamma$ channel prefers scattering angles $\theta^* \to 0, \pi$!

LO kinematics: $M_{ll} = \sqrt{\hat{s}}, \quad p_{T,l} = \frac{1}{2}\sqrt{\hat{s}}\sin\theta^* = \frac{1}{2}M_{ll}\sin\theta^*$

 \hookrightarrow Enhance $\gamma\gamma$ channel by cuts on $p_{\mathrm{T},l}$?!

Scenario (a): $p_{\mathrm{T},l^{\pm}} < M_{ll}/4$ (sin $\theta^* < \frac{1}{2}$ in LO)

S.D., Huber '09

New sensitivity study on NC Drell-Yan production

Boughezal, Petriello '14

High invariant dilepton masses $M_{\ell\ell}$

- $\gamma\gamma$ and NLO EW contributions can be separated by cuts
- γ PDF can be further constrained
- inclusion of EW corrections required
- QCD corrections are under control @ NNLO QCD

W/Z production with hard jets

SM predictions for W/Z (\rightarrow leptons) + hard jets:

- NLO QCD to $W/Z+\leq 5\,{\rm jets}$
- NLO EW to W/Z + 1 jet
- NLO EW to Z + 2 jets
- NLO EW to $W_{(stable)} + \leq 3 \text{ jets}$
- NNLO QCD to W + 1 jet

... Berger et al. '09,'10; Ellis et al. '09; Bern et al. '11–'13; Goetz et al. '14

Denner et al. '09-'12

Denner et al. '14

Kallweit et al. '14

Boughezal et al. '15

NNLO QCD corrections to W+jet production

Boughezal et al. '15

Technical breakthrough in treatment of IR divergences !

 \hookrightarrow "jettiness subtraction"

Jettiness subtraction – the idea

Boughezal et al. '15; Gaunt et al. '15

Definition: "jettiness"
$$\mathcal{T}_N \equiv \sum_k \min_i \left\{ \frac{2p_i \cdot q_k}{Q_i} \right\}$$

Stewart, Tackmann, Waalewijn '10

Procedure for calculating \mathcal{T}_N :

1. Determine N jets with any jet algorithm

Physikalisches Institut

- \hookrightarrow N light-like reference momenta p_i (+ 2 beam momenta for pp)
- 2. Calculate \mathcal{T}_N from sum over all parton momenta q_k . (The scales Q_i characterize the hardness of the jets.)
- $\Rightarrow T_N \rightarrow 0$ corresponds to exactly N resolved jets (independent of jet algorithm).

Phase-space partitioning by cutting on \mathcal{T}_N with small \mathcal{T}_N^{cut} :

W/Z + higher jet multiplicities @ NLO QCD

 $\hookrightarrow \mathsf{NLO}\ \mathsf{QCD}\ \mathsf{corrections}\ \mathsf{known}\ \mathsf{for}\ W/Z + n\mathsf{jets}\ \mathsf{with}\ n \leq 5$

Bern et al. '11-'13; Goetz et al. '14

Example: W + jets

- theoretical uncertainty reduced from $\sim 100\%$ (LO) to $\sim 30\%$ (NLO)
- good agreement between theory and LHC Run 1 data

W/Z + higher jet multiplicities @ NLO QCD+EW

QCD and EW orders mix for $W/Z + \ge 2$ jets Note:

Tree contributions: $\mathcal{O}(\alpha_{s}\alpha), \mathcal{O}(\alpha^{2})$

(W/Z emission suppressed in graphs)

$$V = \gamma, \mathbf{Z}, \mathbf{W}$$

Loop contributions: $O(\alpha_s^2 \alpha)$

Physikalisches Institut

W/Z + higher jet multiplicities @ NLO – results

Kallweit, Lindert, Maierhöfer, Pozzorini, Schönherr '14

- normalization to $\sigma_{
 m QCD}^{
 m NLO}$
- $\mu_{\rm ren} = \mu_{\rm fact} = \hat{H}_{\rm T} = \sum E_{\rm T}$
- $H_{\mathrm{T}}^{\mathrm{tot}} = p_{\mathrm{T,W}} + \sum p_{\mathrm{T},j_k}$

W/Z + higher jet multiplicities @ NLO – results

Kallweit, Lindert, Maierhöfer, Pozzorini, Schönherr '14

ät für Mathematik und Ph

- normalization to $\sigma_{
 m QCD}^{
 m NLO}$
- $\mu_{\rm ren} = \mu_{\rm fact} = \hat{H}_{\rm T} = \sum E_{\rm T}$
- $H_{\mathrm{T}}^{\mathrm{tot}} = p_{\mathrm{T,W}} + \sum p_{\mathrm{T},j_k}$

W/Z + higher jet multiplicities @ NLO – results

Kallweit, Lindert, Maierhöfer, Pozzorini, Schönherr '14

at für Mathematik und Ph

- normalization to $\sigma_{
 m QCD}^{
 m NLO}$
- $\mu_{\rm ren} = \mu_{\rm fact} = \hat{H}_{\rm T} = \sum E_{\rm T}$
- $H_{\mathrm{T}}^{\mathrm{tot}} = p_{\mathrm{T,W}} + \sum p_{\mathrm{T},j_k}$

W/Z + higher jet multiplicities @ NLO – results Kallweit, Lindert, Maierhöfer, Pozzorini, Schönherr '14

Observations:

• QCD corrections:

"giant K factors" in W + 1 jet due to real jet emission

(soft W's, hard jets recoiling against each other) Rubin, Salam, Sapeta '10

- \hookrightarrow multi-jet merging important (or apply jet veto)
- EW corrections: 2 competing effects in at high scales
 - \circ negative EW Sudakov corrections $\propto \frac{\alpha}{s_{\rm W}^2} \ln^2(M_{\rm W}^2/\hat{s})$, etc.
 - \diamond positive tree-like contributions $\sigma_{\rm tree}$ of $\mathcal{O}(\alpha_{\rm s}\alpha^2)$
- combination of QCD and EW corrections:
 - \diamond QCD \times EW versus QCD + EW
 - \hookrightarrow large difference if QCD and EW are huge !
 - factorization of some universal effects known, but use with care:

$$\sigma_{\text{best}} = \sum_{ij} \sigma_{\text{QCD},ij} \times (1 + \delta_{\text{EW},ij}) + \sigma_{\text{tree}} + \sigma_{\gamma-\text{induced}}$$

Issue ultimately resolved only by NNLO QCD-EW calculations

Combination of QCD and EW corrections

Stefan Dittmaier, *Electroweak Physics – TH Lecture 2* HiggsTools Summer School, Aosta Valley, June/July 2015 – 37

Combination of QCD and EW corrections to inclusive W/Z production

Issue unambiguously fixed only by calculating the 2-loop $\mathcal{O}(\alpha \alpha_s)$ corrections, until then rely on approximations and estimate the uncertainties:

Balossini et al. '09 (HORACE)

 \hookrightarrow limits precision in $M_{\rm W}$ measurement

Calculation of $\mathcal{O}(\alpha \alpha_s)$ corrections in progress for resonance region S.D., Huss, Schwinn '14,'15

Comparison of EW corrections to W+jet and single (jet-inclusive) W production

 $\,\hookrightarrow\,$ argument for factorization QCD \times EW if EW corrections coincide

Physikalisches Institut

Comparison of EW corrections to W+jet and single (jet-inclusive) W production

 $\hookrightarrow\,$ argument for factorization QCD $\times \text{EW}$ if EW corrections coincide

Fakultat für Mathematik ur Albert-Ludwigs Universitä

Physikalisches Institut

Stefan Dittmaier, *Electroweak Physics – TH Lecture 2* HiggsTools Summer School, Aosta Valley, June/July 2015 – 39

$\mathcal{O}(\alpha \alpha_{\rm s})$ corrections in pole approximation $_{\rm S.D.,\ Huss,\ Schwinn\ '14,'15}$

 \hookrightarrow take only leading (=resonant) contributions in expansion about resonance poles

Factorizable contributions:

(only virtual contributions indicated)

- no significant resonance distortion expected
- no PDFs with $\mathcal{O}(\alpha \alpha_{\rm s})$ corrections
- only Vlli' counterterm contributions
 → uniform rescaling, no distortions
- significant resonance distortions from FSR
- calculated, preliminary results

Non-factorizable contributions:

(only virtual contributions indicated)

- could induce shape distortions
- calculated, turn out to be small

Numerical results on initial–final factorizable $O(\alpha \alpha_s)$ corrections S.D., Huss, Schwinn '15 (preliminary)

W production: (γ recombination applied, "dressed leptons")

Naive factorization $\delta'_{\alpha_s} \times \delta_{\alpha}$ works!

Naive factorization deteriorates for $p_{{\rm T},\mu^+}\gtrsim M_{\rm W}/2$

In progress:

- comparison of $\mathcal{O}(\alpha_s \alpha)$ correction $\delta_{\alpha_s \alpha}^{\text{prod} \times \text{dec}}$ with MC approach $d\sigma_{\alpha_s} \otimes (\gamma \text{ shower})$
- estimate shifts in $M_{\rm W}$ by $\delta^{\rm prod \times dec}_{\alpha_{\rm s}\alpha}$

Numerical results on initial–final factorizable $O(\alpha \alpha_s)$ corrections S.D., Huss, Schwinn '15 (preliminary)

Z production: (no γ recombination applied, "bare leptons")

Naive factorization $\delta'_{\alpha_s} \times \delta_{\alpha}$ fails !

Naive factorization takes "wrong QCD *K* factor"

In progress:

- comparison of $\delta_{\alpha_s \alpha}^{\text{prod} \times \text{dec}}$ with MC approach $d\sigma_{\alpha_s} \otimes (\gamma \text{ shower})$
- estimate shift in $M_{\rm Z}$ by $\delta^{\rm prod \times dec}_{\alpha_{\rm S} \alpha}$

