

HIGGS MEASUREMENTS PERSPECTIVE

André David (CERN)

HIGGS MEASUREMENTS PERSPECTIVE (AND LACK THEREOF)

André David (CERN)

Rules of engagement

I tell you a little about a lot.

Session II

 Contents depends on your feedback and interests.

Look for slides with a

Menu of discussion topics

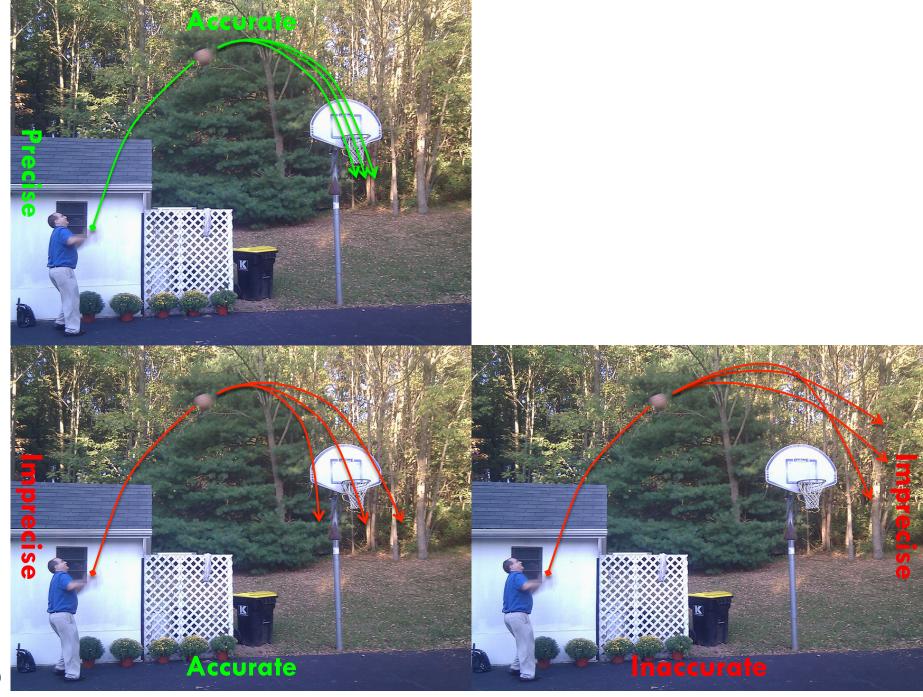
- 1. EFT and pseudo-observables.
- 2. What's in a signal strength?
- 3. CMS H→γγ analysis.
- 4. The maximum entropy coincidence.
- 5. What's inside the CMS combination?
- 6. Concrete BSM model searches.
- 7. Tensor structure: spin/CP.
- 8. More on the m_H combination.
- 9. Going off-shell.
- 10. HL-LHC extrapolations.
- 11. Kappa: BSM interpretations.
- 12. Statistics primer.

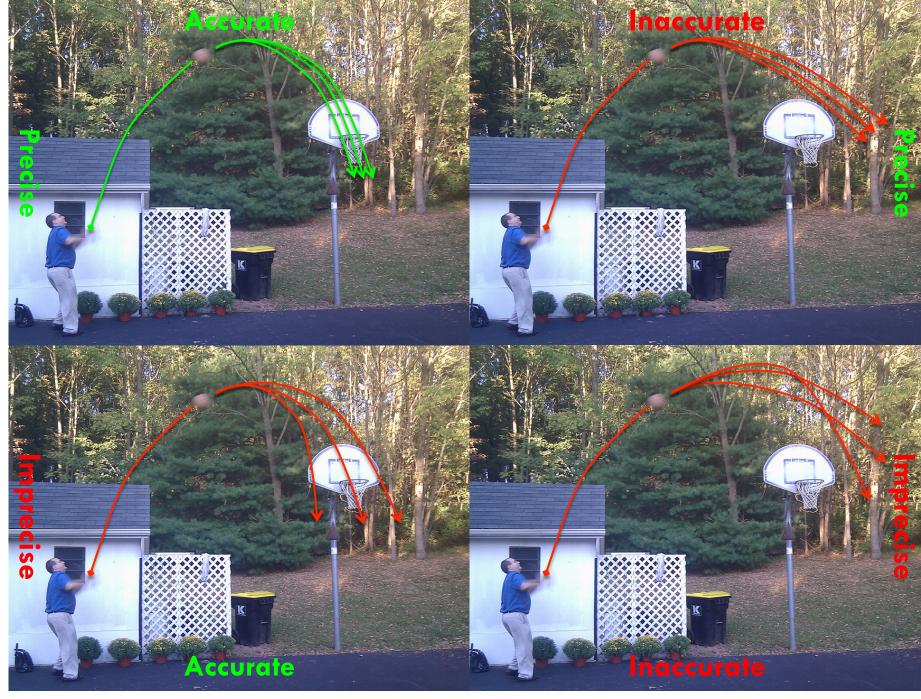
6

"A complete disas... a mess"

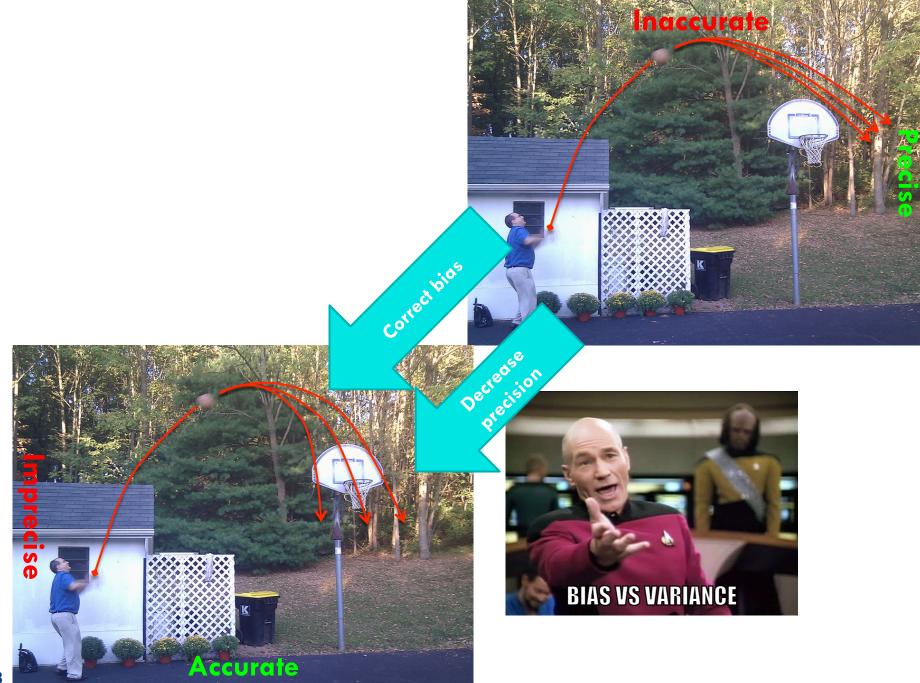
Accuracy vs. precision. Uncertainty vs. error. Sources of uncertainty vs. effects of uncertainties. Scale variations vs. "scale uncertainties".

Two words on accuracy and precision


K


measuring.higgs@cern.ch HiggsTools School - June 2015

7



Two words on error and uncertainty

- **Error**: the result of a **bias** or **mistake**.
- Uncertainty: the degree to which some thing is not known.
- □ It's a mistake to call errors uncertainties.
- □ E.g.:
 - Exp. correct for syst. effects (a bias).
 - Corrections come with added uncertainty.

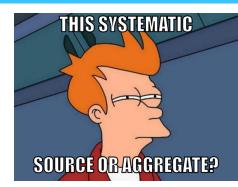
Two words on

sources of syst. uncertainties

Jet energy scale uncertainty:

- Makes ggH events move in (out) of 0-jet (1-jet) selections.
- Reduces (increases) overall acceptance, etc.

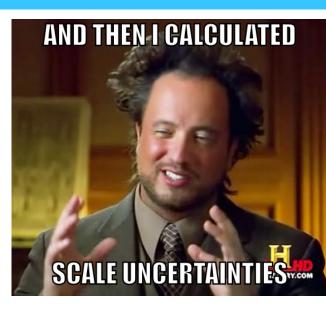
JES has an effect, but is not a source per se.


Sources of systematic uncertainty are:

Knowledge of the material in the detector, alignment precision, pile-up subtraction, etc.

Be mindful to not mix

- sources (independent, can be improved, combinable) with
- effects (aggregate, cannot be improved, uncombinable).
- (Theory "uncertainties", which is yet another story.)



Two words on scale variations

- There's no such thing as scale uncertainty.
- There are scale variations.
 - Calculations should not depend on them...
 - ... and some times they don't.
 - Does that mean the calculation is done?

¹⁶ About who is between what

Cf. Fabio's "Aneesh↔Fabio↔André"

Nature

Theory

22

Theorists (inside) Phenomenologists

Nature

Experimentalists

Nature

Theory

Theorists (inside)

measuring.higgs@cern.ch HiggsTools School - June 2015

Phenomenologists

Nature

Experienced experimentalists

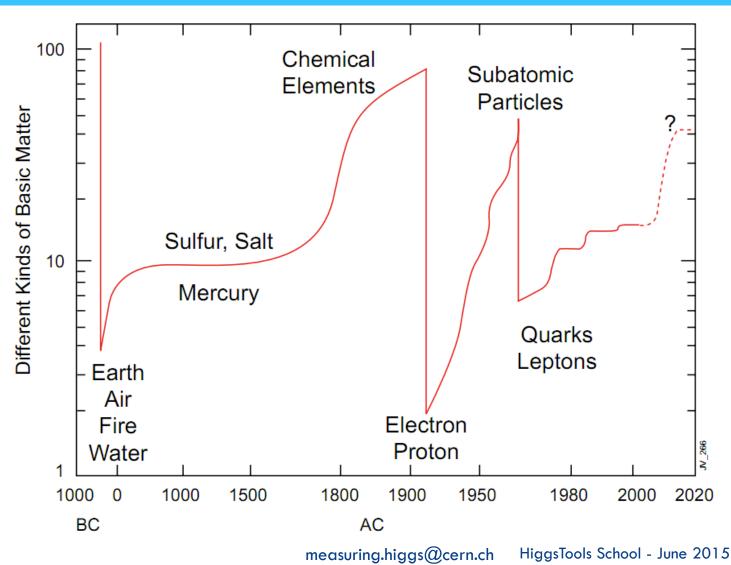
Experimentalists

Nature

Theory

Theorists (inside)

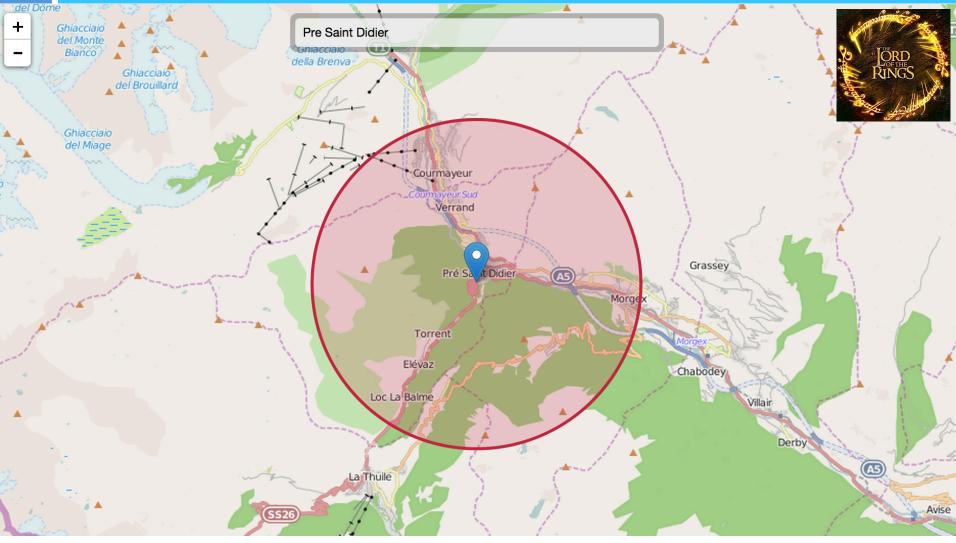
measuring.higgs@cern.ch HiggsTools School - June 2015


Phenomenologists

Evolutions & revolutions of the elements

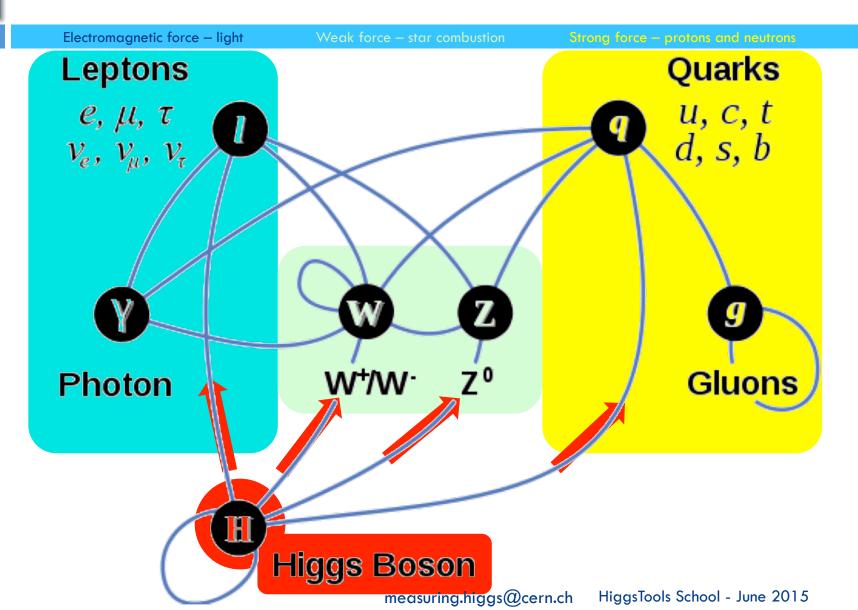
25

CÉRN


[Plot courtesy of Jim Virdee]

LHC – the lord of the rings

[http://natronics.github.io/science-hack-day-2014/lhc-map/]

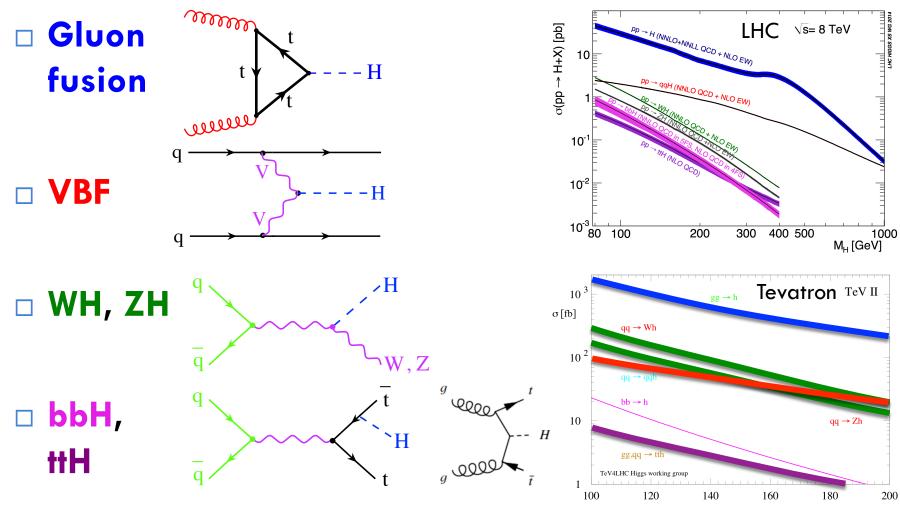


Standard Model of Particle Physics

[http://cern.ch/go/dW6z]

 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu$ $\partial_{\nu}W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2c^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\mu}A_{\mu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\mu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\mu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\mu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\mu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\mu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\mu} - \frac{1}{2}\partial_{\mu}A$ $M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{w}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{q^{2}} + \frac{2M}{q}H + \frac{1}{2}(H^{2} + \phi^{0}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \psi^{0})] + \frac{2M^{4}}{q}M_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-}) + \frac{2M^{4}}{q}M_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-}) + \frac{2M^{4}}{q}M_{\mu}^{0}(W_{\mu}^{-}) + \frac{2M^{4}}{q}M_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-}) + \frac{2M^{4}}{q}M_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-}) + \frac{2M^{4}}{2$ $W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs$ $A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+$ $g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - Z_{\mu}^{b}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] + \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] + \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{2} + 4(\phi^{+}\phi^{-})^{2}\phi^{+}\phi^{-}] + \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{2} + 4(\phi^{+}\phi^{-})^{2}\phi^{+}\phi^{$ $4H^{2}\phi^{+}\phi^{-} + 2(\phi^{0})^{2}H^{2}] - gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c_{w}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{$ $\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W^{-}_{\mu}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s^{2}_{w}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s^{2}_{w}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^$ $W_{\mu}^{-}\phi^{+}) + igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - ig\frac{1-2c_{w}^{2}}{2c_{w}}Z_{\mu}^{0}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) + igs_{w}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) - ig\frac{1-2c_{w}^{2}}{2c_{w}}Z_{\mu}^{0}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) - ig\frac{1-2c_{w}^{2}}{2c_{w}}Z_{\mu}^{0}(\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) - ig\frac{1-2c_{w}^{2}}{2$ $\frac{1}{4}g^2W^+_{\mu}W^-_{\mu}[H^2 + (\phi^0)^2 + 2\phi^+\phi^-] - \frac{1}{4}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + \phi^-)] - \frac{1}{4}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + \phi^-)] - \frac{1}{4}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + \phi^-)] - \frac{1}{4}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + \phi^-)]$ $W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} + W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig$ $g^{2} \frac{s_{w}}{c_{w}} (2c_{w}^{2}-1) Z_{\mu}^{0} \bar{A}_{\mu} \phi^{+} \phi^{-} - g^{1} s_{w}^{2} A_{\mu} A_{\mu} \phi^{+} \phi^{-} - \bar{e}^{\lambda} (\gamma \partial + m_{e}^{\lambda}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} - \bar{u}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{d}^{$ $igs_wA_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_j^{\lambda}\gamma^{\mu}u_j^{\lambda}) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma^{\mu}d_j^{\lambda})] + \frac{ig}{4c_w}Z^0_{\mu}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_w^2 - 1 - \gamma^5)e^{\lambda}) + (\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2 - 1 - \gamma$ $1 - \gamma^{5})u_{j}^{\lambda}) + (\bar{d}_{j}^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_{w}^{2} - \gamma^{5})d_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{+}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[($ $\gamma^{5}(\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_{e}^{\lambda}}{M}[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] - \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \bar{e}^{\lambda}(1-\gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \bar{e}^{\lambda}(1-\gamma^{5})e^{\lambda})] - \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda})$ $i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})u_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda$ $m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}] - \frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda}) - \frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda}) + \frac{ig}{2}\frac{m_u^{\lambda}}{M}\phi^0(\bar{u}_i^{\lambda}\gamma^5u_j^{\lambda}) - \frac{ig}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{d}_j^{\lambda}\gamma^5d_j^{\lambda}) + \bar{X}^+(\partial^2 - \bar{U}_j^{\lambda}) + \bar{X}^$ $M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{c_{w}^{2}})\bar{X}^{0} + \bar{Y}\partial^{2}\bar{Y} + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}\bar{X}^{-} - \partial_{\mu}\bar{X}^{+}X^{0}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{X}^{+}\bar{X}^{0}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{X}^{-}\bar{X}^{0}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{X}$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) \\ + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) \\ + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{-}) + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{-}) \\ + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{-})$ $igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{w}^{2}}{2c_{w}}igM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{\mu}\bar{X}^{-}A^{-}] - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{w}^{2}}{2c_{w}}igM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{\mu}\bar{X}^{-}A^{-}] - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{w}^{2}}{2c_{w}}igM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{\mu}\bar{X}^{-}A^{-}] - \frac{1}{2}gM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{\mu}\bar{X}^{-}] - \frac{1}{2}gM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{\mu}\bar{X}^{-}] - \frac{1}{2}gM[\bar{X}^{+}X^$ $\bar{X}^{-}X^{0}\phi^{-}] + \frac{1}{2c_{w}}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}ig\tilde{M}[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

The Standard Model of Particle Physics


CERN

How SM Higgses are born

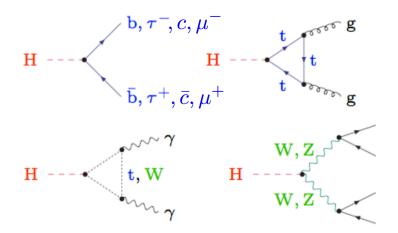
29

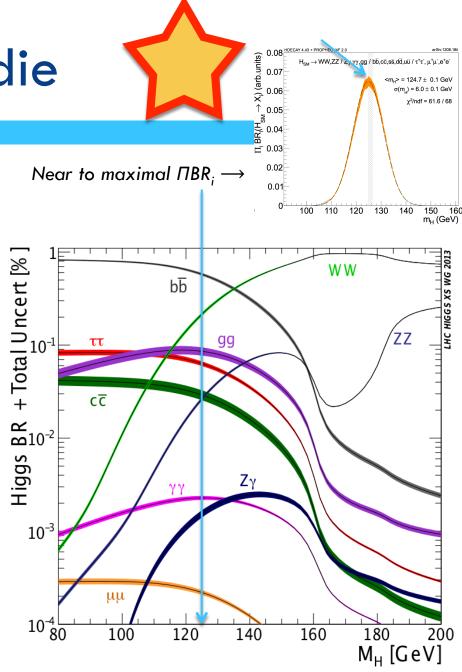
[http://cern.ch/go/cWH8][http://cern.ch/go/SnJ8]

m_h [GeV]

measuring.higgs@cern.ch

HiggsTools School - June 2015




How SM Higgses die

30

[http://cern.ch/go/qkh6][arXiv:1208.1993][arXiv:1408.0827]

 Couplings and kinematics drive BR (bb, WW, ττ, ZZ).
 Decays with photons (γγ, Zγ) through loops.

31

Prato dei Miracoli

[http://goo.gl/K8Lqmu]

Prato dei Miracoli scalare

32 [http://goo.gl/K8Lqmu]["Scalar meadow"]

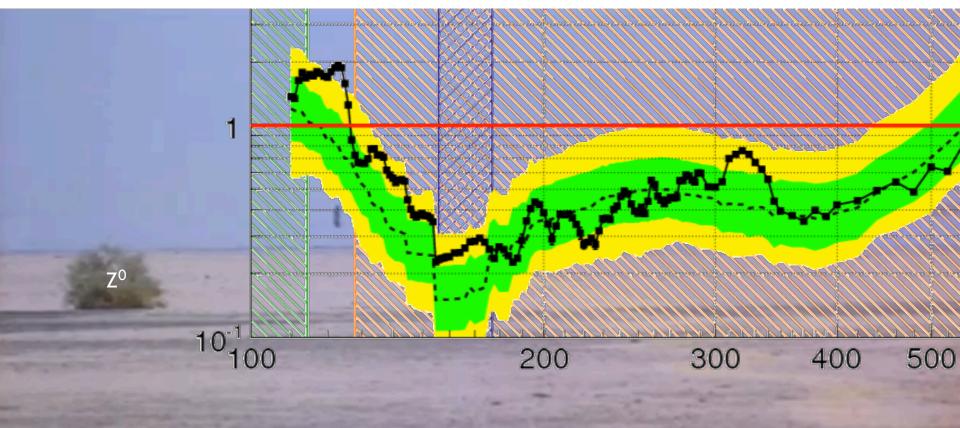
33

Prato dei Miracoli scalare

[http://goo.gl/K8Lqmu]["Scalar meadow"]

Boson discovery & first measurements

["Lawrence of Arabia" idea from C. Grojean]

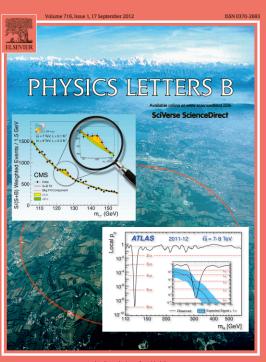

We first saw that we could not exclude a narrow range.

["Lawrence of Arabia" idea from C. Grojean]

We first saw that we could not exclude a narrow range.

36

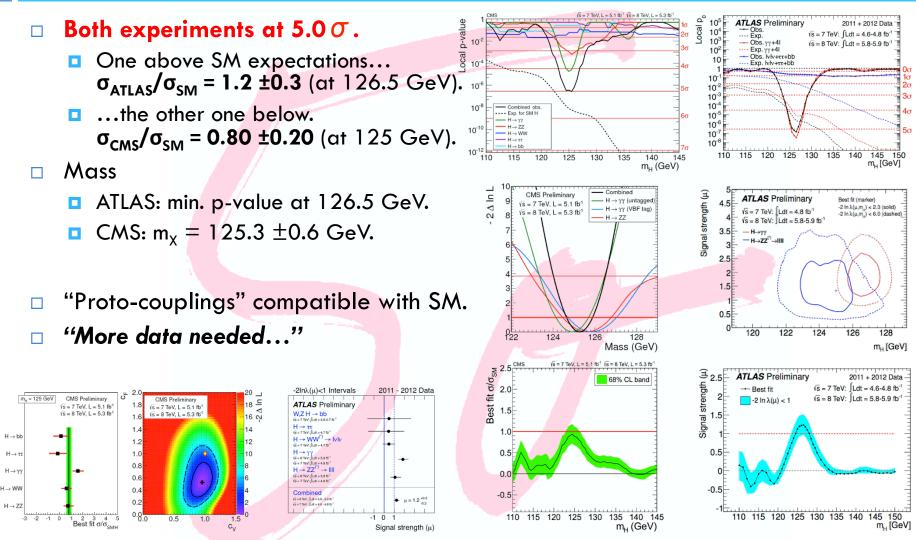
["Lawrence of Arabia" idea from C. Grojean]


□ We discovered a peak rising from the background.

July 4, 2012 Looking up to a new boson

[http://cern.ch/go/q8jx]

37



38

Higgsdependence day recap

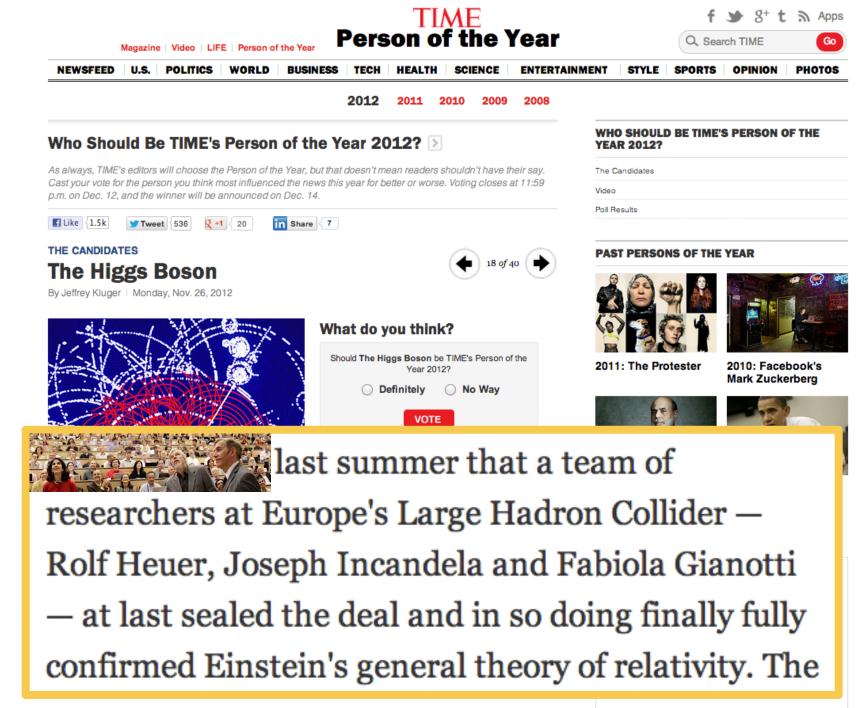
[http://cern.ch/go/q8jx]

measuring.higgs@cern.ch

HiggsTools School - June 2015

	TIME Person of the Year	f 🎐 8 ⁺ t እ A
Magazine Video LIFE Person of the Ye	Person of the Year	Q, Search TIME
NEWSFEED U.S. POLITICS WORLD BUS	INESS TECH HEALTH SCIENCE ENTERTAIN	MENT STYLE SPORTS OPINION PHOT
	2012 2011 2010 2009 2008	
Who Should Be TIME's Person of t	he Year 2012? 🖻	WHO SHOULD BE TIME'S PERSON OF THE YEAR 2012?
As always, TIME's editors will choose the Person of the Year,		The Candidates
Cast your vote for the person you think most influenced the n p.m. on Dec. 12, and the winner will be announced on Dec.	,	Video
E Like 1.5k Tweet 536 2 +1 20 in Shar	re 7	Poll Results
THE CANDIDATES	18 of 40	PAST PERSONS OF THE YEAR
The Higgs Boson By Jeffrey Kluger Monday, Nov. 26, 2012	What do you think? Should The Higgs Boson be TIME's Person of the Year 2012?	2011: The Protester 2010: Facebook's
	Definitely No Way VOTE Take a moment to thank this little particle for all the	Mark Zuckerberg
	work it does, because without it, you'd be just inchoate energy without so much as a bit of mass. What's more, the same would be true for the entire universe. It was in the 1960s that Scottish physicist	2009: Ben Bernanke 2008: Barack Obar
	Peter Higgs first posited the existence of a particle that causes energy to make the jump to matter. But it	Most Read Most Emailed
	was not until last summer that a team of researchers at Europe's Large Hadron Collider — Rolf Heuer,	1 Who Should Be TIME's Person of the Year 2012?
	Joseph Incandela and Fabiola Gianotti — at last sealed the deal and in so doing finally fully confirmed Einstein's general theory of relativity. The Higgs — as particles do — immediately decayed to	2 LIFE Behind the Picture: The Photo That Changed the Face of AIDS

SSPL/GETTY IMAGES

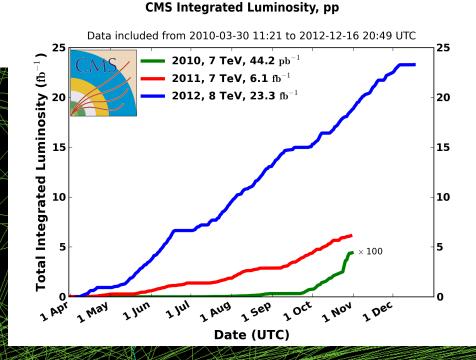

Simulation of a Higgs-Boson decaying into four muons, CERN, 1990.

39

Higgs - as particles do - immediately decayed tomore-fundamental particles, but the scientists would surely be happy to collect any honors or awards in its stead.

Photos: Step inside the Large Hadron Collider.

3 Nativity-Scene Battles: Score One for the Atheists 4 The \$7 Cup of Starbucks: A Logical Extension of the Coffee Chain's Long-Term Strategy

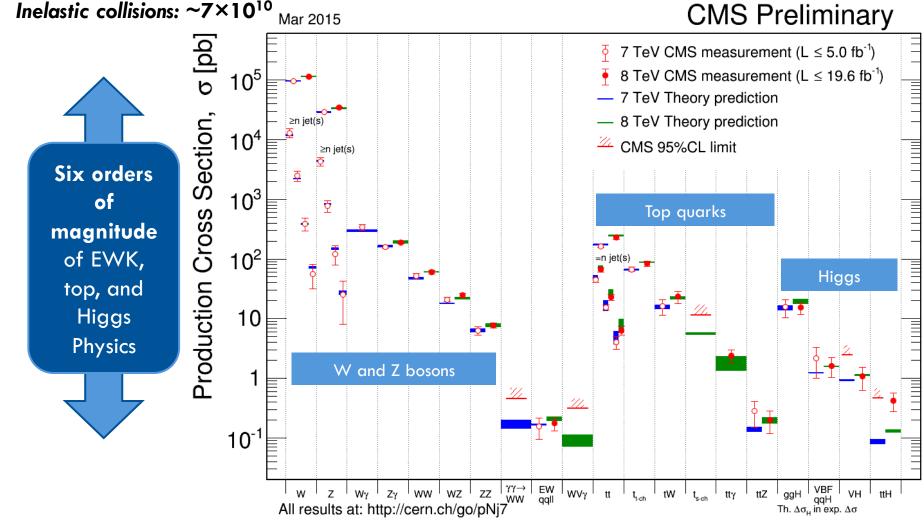


The LHC Run 1: a bountiful harvest

[http://cern.ch/go/K8Tj] [http://cern.ch/go/ZW9S]

□ LHC delivered \sim 30 fb⁻¹.

Challenge: precision physics with ~20 simultaneous proton-proton collisions.


Event with 78 reconstructed vertices along \sim 10 cm.

On the shoulders of giants

detector makers & theory calculators

"Yesterday's discovery is today's calibration, and tomorrow's background." – V. L. Telegdi [http://cern.ch/go/lf9C][http://cern.ch/go/KD8D]

measuring.higgs@cern.ch

HiggsTools School - June 2015

["Lawrence of Arabia" idea from C. Grojean]

□ By early 2013 a clear Higgs-like picture emerged.

(self-inflicted) Mission: impossible

	4 24							
			ATLAS					
			David 1	Documentation), Date				
	Figures			HIDO 2019 11, 28 (6-1 28/02/01)			Recent Results (Preliminary)	
				47.49-009-312-02, 30-1 MIDIDIN			Max-2015 Bearch for VIET-H-Invisible decaws TWBS PAG	
12 Destaction L L 1916				47.45.0047.019.004, 2046.1 (1002204) 97.45-990-011-011, 2046-1 (1002204)			Mar 2016 Search for a light NMSSM Higgs bision produced in supersymmetric cascades and decaying into a biquark pair TWW, PVS,	
Bedgeweitt Weitige spre	S Index Ref 1, 1, 1 (b) State (and the state (a state	and a state basedents, con	Budy of the Wage lower description INV produces in association with a send lower with the ASLAS detender active LNC	KT.AD.COMP.30 (\$100, \$14-1 Millipon)			Peb-2015 Second to A-2g at light mass TWM, PAS, Peb-2015 Second to Mrd, H + WW TWS, PAS.	
2	1	and the state and the second	Search for new light gauge board in Tagge toward down at their appendix the states in gal collarion at which Jusy with the 47,447 develops at the phil Development at leading Developming a Board Protocol on Yorking Board Partner up California at Hill (17) and the XX-42 Development at the CMC on the CMC.	47.45.000 (01.000, 20.00) 1000(2010) 47.45.000(10.000, 20.00) 1000(2010)			Paib 2015 Beaming for whigh H -+ WW Jan-2015 Beaming for whigh physicia in feal states with low transverse energy photon and missing transverse energy. TWIS, PAG,	
	and the second of the second		Baservice a Charged Ngga Baservice and Produced in the Tester Inner Packer Market all Casery Int Int Z using po California and exploit A Texture into a Result Experiment	\$7.45.460.00 (0.1.) (0.4.1 (0.10000))			Sep-2014 Seemin for Hig, H > bb TWW, PAS,	
	and the second of the second	-	Desimination of spin and parts of the registrocen in the VMP — 4 + p + deals channel with the #3,45 designs. Desimination of the efficient registrocent spin distribution for high mass 22 and 34% that deals with the X1,42 designs.	11.40-400-01214, 2016-1 11022018 11.40-400-012-10, 2016-1 02000018			8es 2014 Been/if by H → Sum Bes 2014 Been/if by H → Sum gliquton frait status 1700s, (PK)	
	The second secon	Real and the second second second	Search dy a (2-out Hopp Search Booying to Exit pp collecter at april 4 1 Fair with the ATLAS Reactor	11.45-106-01-0.0, 20-1 Mapping			Jul-2014 Search for high-mass diphoton meansances TWHK, PAG,	
	(eps) (ipeg) (eps) (ipeg)	(eps) (jpeg)	Evidence for Higgs Intern Tubasea stupings in the K - 11 design node with the ATLAS determine	\$1.45.403.001.10 (Million 2009)0048			Jun-2014 Seenth for H+ -> raiber TWIs, PAG.	
(cps) (jpcg)			bench to Higgs and 2 Boom Deseas to Jay gamme and Finds gamme with the AFLAB Detector	11.40-400-074-08, 204-1 13010218 11.40-400-073-08, 204-1 20102019			May-2014 Beent for X → HH > 2 gamma - 2 h Mai:2014 H → gamma gamma - murras-gamma m	
- Control - Control And A. L. of D. B.	The second sector and the second second sector and the sector and the sector and the sector and the second sector and the	In Deschart, Call man		#1.45+000.0013.00_204-1.20102014 #1.45+000-0013-15_2046-1.9102014			Mar-2014 Search for Hig, H -> gamma gamma TWH, PAS,	
Taxati P. (Bon)	a that - Checkeen a restriction and a second		High Summers Pols				Nas-2014 Combined to-dkl limit from multi-lepton and di-photon searches TWHs PKG.	
			Accession.				Highlights	
			nggi onna risalaanna Nat tee Maanamens et na Tea an Othernia rigo-baan Postaton Ensa Sarion Contring ta Bri optamar genna gennal antifri optama 2015/optamar 441 Ensy na 2120	Asunal State	Table .	6/3428		
		the second second		Conversion and and and and and a state of the second secon	Summer product	14505		16.1
(cps) (ipcg)	(cps) (jpcg) (cps) (jpcg)	(cps) (ipcg)	Bench for involve despect the Wige lease protoed in another with a federatory ensaying water leaves a light orthogra of the Vice Wick in NCAS debater Contribut Measurement the New Reservices in feed Conterns at Kells 2 and 1 for any new York if the SCAS departments		Bulantine 20180418	1908		1 20
	f at hereitettettettet	S" [Supported Ly 1989 - Theory]	Combet Neuronant of the fligs Reamities in Epil Collains at Expl. or an it for an the ATUAL and CAS Equitment Search the Strong Meterings Science Sociation and and a search in Store 21 in Science at Store 21 in Strong to the ATUAL search	Pik Carm.	Anapied (Damiles 27.6520) Dubrids 27.6520)	19905		the Summary of the fits for c
afternam -11	The second secon	an a state of the second secon	Beach to the Standard Materiage Science Sociation and and an an and an an an and an	Pro Apres, AND,	Survey Distant	1000	Values of the best-fit civGM for the combination (solid vertical line) and for subcombinations by 1D test statistics q(mH) scan vs hypothesized (mH variables; prop	00
and the state of the state	an	- Xiliant	beemsets stop and parts of the riggs been in the BMM - + x ris the risk does memori with the x3.40 deems	(Pro) Property, with,		17964	analysis tage tageting individual production mechanisms: prog Higgs boson mass mit prog	
			Determination of the off-end mappe basics agricul description the high-mean ZZ and 1977 Trust addressed the NTLAD descelar	1070, 470,		14908	Publications (by submittation date)	
			NUMBER INVO TO CONTAIN THE PARTY IN THE PARTY INTERPARTY IN	Na Pers, etc.	Promo Letters & The CAT Str. 190-19 (Duametical Str. 190-201-201-201-201-201-201-201-201-201-20	R H008	Date Linut Big (7 + 5 Tay) Analysis	Documentation
(cps) (ipcg)		Auto) The fill the fill the fill the fill the fill the s_month	beautive mechanisms in the state with an exception and any meaning transmiss manetum in databasement at beging in differ with the 45,40 decision	and Annual Annual	9-01904 (2195219	ENDF.rmda1	Acr-2015 19.7 Search for perudoscalar A -> Zh -> Bib	TWN, #207.1504.04710,
0000 (0000)	(cps) (ipcg) (cps) (ipcg)	(eps) (ipeg)	Enterna for the Higgs laware Valuese surging to be leaders with the XTLAE ontenian	Jack Thirty, AXL,	Aliabel INSTRUCTORISTICS	HOOS		TWH, arXiv:1504.00835, TWH, arXiv:1503.07589,
mained a staff on Innotation and	A 10 Description of the International States And Lance Bar	1 I I I I I I I I I I I I I I I I I I I	Second Se	Mr. Party, alth.	Phys. Rev. Lett. 114 (2016) 124801 (Submitted 2016/0174)	1000519704	Mar 2016 17.9 Search for X > HH > 4.0	TWHS, ar20x 1903 04114,
-panendar Resold Fail	Mith of configures in the second in the seco	a Markenster, white	CONTRACTOR STATES THE ANALY AND A STATES AND A STATES AND A STATES AND A STATES AND A STATE AND A STAT	MP 1003-075-	Phonese analysis	H908		TWH, #797.1902.07400,
	1 + y -		Rescaled based for the latter decay of the Elevelet Under Higgs bases is associated (HZP) productor with the ATLAS detector	240 1000, 100, 100, 100,	PART STATEMENT	HODE		TWIK, arXiv:1502.02485, TWIK, arXiv:1412.8662,
	F-0'W 14		NAME OF A DESCRIPTION OF THE PROPERTY OF THE PROPERTY AND A DESCRIPTION OF THE PROPERTY OF THE	AND INST. HIS.	PRPTON CON. Burnhait 20403470	10086	Nov-2014 4.9 + 19.7 Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV	TW96, ar20v:5411.3441,
	- not Vision in		Received: Seven to the to generalized boolunch assumption with the scales and containing on the Yaware source power the top scales and the Higgs bools-unique to the Artista sevent		Physics Latters 8 Add (2015) 450-2 (6-4749ad (2014) 500	²² NG65	Ont-2214 1197 Search for Higgs to sumake Ont-2214 1195 Search for Higgs doublet models and for 1 to ch dealy using multilepton and dehotin final states in pp collisions at 5 TeV	TWH, e/29/1410.6679,
		(cps) (jpcg)	For the second of the second s	MD INN. IN.	Phys. Rev. J. 10, 11200-0214, Budrebut, 2140920 Phys. Rev. 3 91, 01338 (2010).	NOBS	Aug-2014 4.9 × 19.7 Search for MSSM Higgs to tauteu	TW96, ar30v: 1408.3316,
(cps) (jpcg)	(eps) (jpeg) (eps) (jpeg)		The set of the second strings from prototor and scopings if the bariagen during in logis scheme at some dimeasurages of 1 and 1 (or with the location					TW96, ar90x 5408.1682,
	6400 (1948)		Total State of the second of the second of the second of the second of the test approximation of the second of the	na train, ello,	Participation in the point come	²² #060		TWH, arXiv:1407.0558, TWH, arXiv:1405.3455,
and a big of the second		a a marriet, the second	Reach and the first include the finance of the second second in the second	Pik. Patrice, etc.,	Phys. Rev. Lett. 72, 17907, Bulletini, 20407340 APPROXIMAN II	NGBA	Apr-2014 A 9 * 19.7 H -> Invisible Combination	TWH, arXiv:1404.1344,
	1- 1 1	2.00	Received Annuals Process of Photos and Photos and the Integration of the Annual State of the Photos of the Integration of the I	Mar Index, alter, Farm,	Research College Research College Resear	1000		TW65, arXiv: 5401.6527, TW65, arXiv: 5401.6527
			The second second restance was regulated and a second restance of a second restance.	rare.	Butmbut 2140540 Pays Rev Lett. 216 08 1920 2018 Butmbul 20103470			TWHS #70v 1312 5353
Arres		1 the second	A second to the second of the regard own mean too the bit or distribution of the APUM percent of the APUM percent of the OPUM	The later, still,	Barriel 2140810 Par Sec. 5. 80.0508-0114, Ramber 2140841;	1000	Dec-2013 4.9 × 19.4 H -> WW	TWH, ar99y:1312.1129,
(eps) (jpeg)	(eps) (jpeg) (eps) (jpeg)	(eps) (ipeg)	The local Densit for the spath design (- of a life) - reproducing the XTLAD detector	249 Tards 1985	ASPREMANNIE Bandhat grietorge	HODE		TW06, ar90v:1310.3687, TW06, ar90v:1307.5515.
			TATION SHEET Search for investes Decays of a rigge Board Protocol 1. In Assessments with a Streetymen (2)5 Board in A/LAS	PR. Correct Institute	Pays Res. Lett. 19, 30 (60) (01) Bulantinel 201400121	noss	Mar 2013 5.1 + 5.3 High-mass Higgs Decoying to WW or ZZ	TW65, ar90y 1304 0213,
Busine Rock La C DA' Constrainty a Sa Bis Co. Brock	F Trade Tart L (108'		The set of the set of the decent More Maja boor deals to administed a Decent number of in 1 and 1 Norwell the MDAB dealer	ALL DECK. TOPOL	Phys. Lett. D 7531 (0714), 30 4-57	NOS9		TWH, #797.1303.4571,
Banco Banco	e tigername A (M) Burch Burch	Constant on the Work of the	Figure 1992 Dennis for a multi Higgs instance annalise in 2014 Withinship (Instation with the ATLAS instance in 2014) (Instation at 2014) (Instation of 2014)	MD Darm-Inity	Part Net 2 18 CERE 2014. Biologic Entropy:	NOBS		TWH, arXiv:1303.0783, TWH, arXiv:1302.2892.
	a to the the the total of t	And Section and Se	TABLE A Second Strategy polyclon and society and street find street with the ATLAS second with LINO	Na Street, Cares	Page Law, 0.324 (Str. 1), pp. 98-11 (Bulleting 2018)700	8. moss	Feb-2013 5.1 + 5.3 SM4 and Ferniophobic Higgs	TW65, ar90y:1302.1764,
			And the second s		BANKAR PERSON		Dec0/12 5.11 + 12.3 Spin-confr pero H - 22.19 0 Bes2012 5.11 - Contrive Results VI Resorter	TWHS, 8/29/1212.6839, TWHS, 8/29/1228.3837,
			The second secon	Disc Darma Index.	Rev. Proc. J. G. The Statistical Social Street, 2013;21(4), 2013;21(5)			TWHI, #707.1209.3837, TWHI, #707.1207.7235,
		* der der här här här sich sich der här sich bei	Transmission for the endoted the section of the evolution	APP Room, Inpin,	Researched 2012/2010	1000		TWIK, ar90x 1207.2006
65 1 15 2 15	(cps) (ipcg)	(eps) (ipeg)		242 Date: 1005	But the second s			TWHS, arXiv:1207.1130, TWHS, arXiv:1208.6328,
to 1 to 1 is		4	Recorded A Meeter Partice Constant with the Danskell Indentifying Book stanswel with the #7.43 Deleter of the Large Nation California	Boleva Institu-	184.	HODE	Map-2012 2.3 H* -> tau nu	TWH, arXiv:1205.5735,
(cps) (ipcg)	(eps) (ipeg)	1 1	PURCHARGE Drawments of a new particle in the search for the Brandschlinder riggs soler with the AR.Ad-Intercept at the LINC	na rom, index,	Bulandor (2019) Prys. Lett. 6 (19) (2012) 1-24, Bulandor (2012) 1-11 Prys. Rev. Dec. 002100, Bulandor (2012) 100000, Bulandor (2012) 100000,	19666		TWIK, arXiv: 1202.4195
0400 (455)	Instruction to the Construction		Total Lines: Condenses search for the Dianstand Hopen Income Advances of the + 1 Net with Neu Art Add Associate	PRD TURN, 1991,	Part No. 100 2012 (1976)	HODE		TWH, #7971202.4083, TWH, #7971202.3817,
Lation" Couran	The Association of Associatio of Association of Association of Association of Ass		Reach 1995 Barrie for the Tanzier Unite Higgs Inster-product is associate with a prote forms and instepleys a logart part with the XTLAI determine REACONSERS, Second Art the Higgs Inster in the Higgs Inster product as (1) My with the AFLAS subject	KA CONT. OVER	BANDAR PERSON	HODE	Peb-2012 4.8 H → 22 → 22mu	TWN, ar79v.1202.3478,
Decision - Decision	4		We want to the maps same in the model and the second set of the weather the 11 Mer was the ATUM second We want to the line and Most Head second her is used for the mark where the 12 Mir parallelises with 473-43	NJ KIN, HOM	Pays Lett, 6 TH (2022) IN LAVE, Butween 20 (2020) Advanced 20 (2020) Butween 20 (2020)	1000	Peb2012 4.7 H > 2Z > 41 Peb2021 4.7 H > W > 42au	TWH, #707.1202.1997, TWH, #707.1202.1489,
	1 100		Proceedings there is the literated Model Higgs beam to their Estate tau decay makes in a 1 feet parallelane and 15,40 Proceedings there is the a literated Model Higgs in the mean-maps 200,000 GeV in the decay of 1, 200, 310,000 Higgs in the MacAll Advance	NA Cares, Instr	Butmbul (1101590) Physical (1110) (2015) Butmbul (2120510)	10000	Feb-2012 4.8 Higgs Combination (7 TeV)	TWM, ar907.1202.1488,
V			TRANSFER SAVE IN THE SECOND VALUE PRODUCED IN THE ADDRESS AND ADDRESS	Tarres, Index	Balvaliel 2020/0 Pays Let 0 71 (07:051-0) Balvalies 2020(0)	1000	Feb 2012 4.8 H → gamma gamma	TWIK, #797.1202.1487,
							Peb-2012 4.7 H → ZZ → 200	TWIKI, #r90y: 1202.1418,
(cps) (jpcg)	(cps) (ipcg)		TO COMPANY THE A TRADUCTION OF A DECEMBER OF A	Na Dant-met-	Part Let. 9117 (2010)21-91. (Submout at 1915-90)	HODE	Apr-2011 0.04 MSSW Higgs to Tau Tau, Limits on SUSY Higgs to tau tau production	TWIK, arXiv:1104.1512,

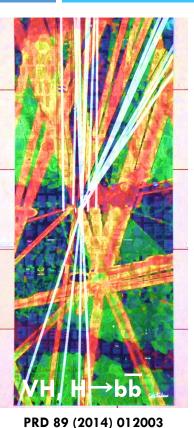
Present a coherent view of (some) present-day Higgs coupling results from LHC (and Tevatron) experiments.
 Any mistake is the speaker's fault (send email).

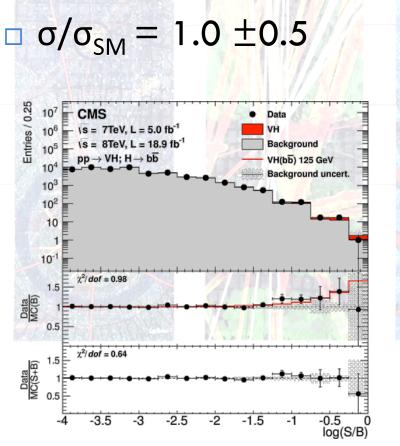
Oversimplified big picture

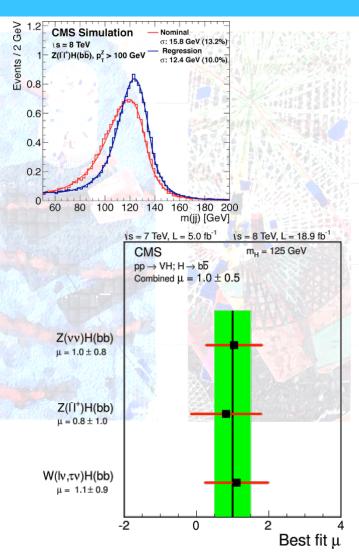
T – Tevatron; A – A	ATLAS; C – CM	S; combination	drivers in red.
---------------------	---------------	----------------	-----------------

★ "seen" ★ "tried" ·"impossible"	H→bb		b	$H \rightarrow \tau \tau$			H→ 7		H	→W	w	н	→Z	Z	H-	$ ightarrow \gamma$	γ	H	→Z	r	H	→in	١٧.	H-	$ ightarrow \mu$	μ		∣→c →H	
	Т	А	С	т	А	С	т	А	С	т	А	С	Т	А	С	Т	А	С	Т	А	С	Т	А	С	т	А	С		
ggH	-	-	-	☆	*	*	☆	*	*	☆	*	*	☆	*	*	-	☆	☆				-	☆	☆	-				
VBF			☆	☆	*	*		*	*		*	☆		*	☆	-		☆			☆	-		☆	-				
VH	*	☆	*	☆		☆	☆	☆	☆		☆	☆		☆	☆	-				☆	☆	-			-				
ttH		☆	☆	☆		☆	☆							☆	☆	-						-			-				

□ Still much to explore on the rarer ends.

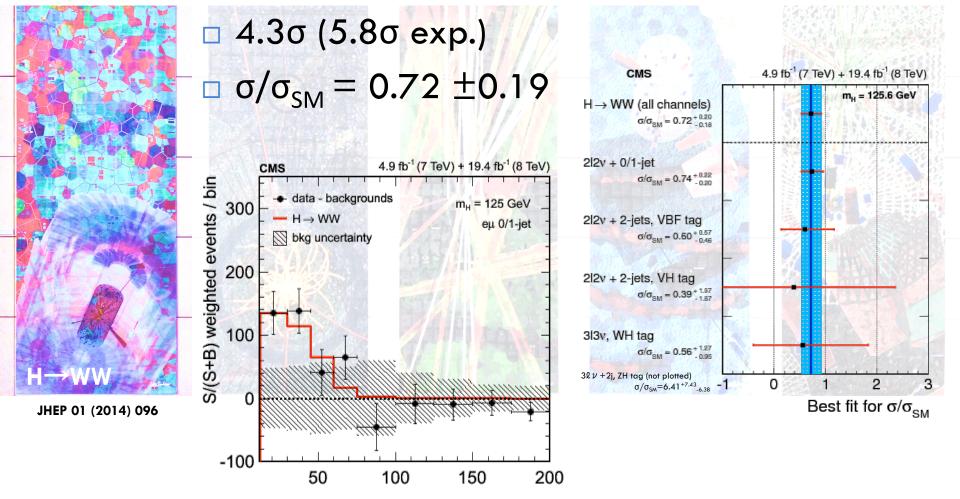

(to the right and to the bottom) (and outside this picture 🗮)




VH, $H \rightarrow b\overline{b}$ vignettes

2.1σ (2.3σ exp.)

[PRD 89 (2014) 012003]

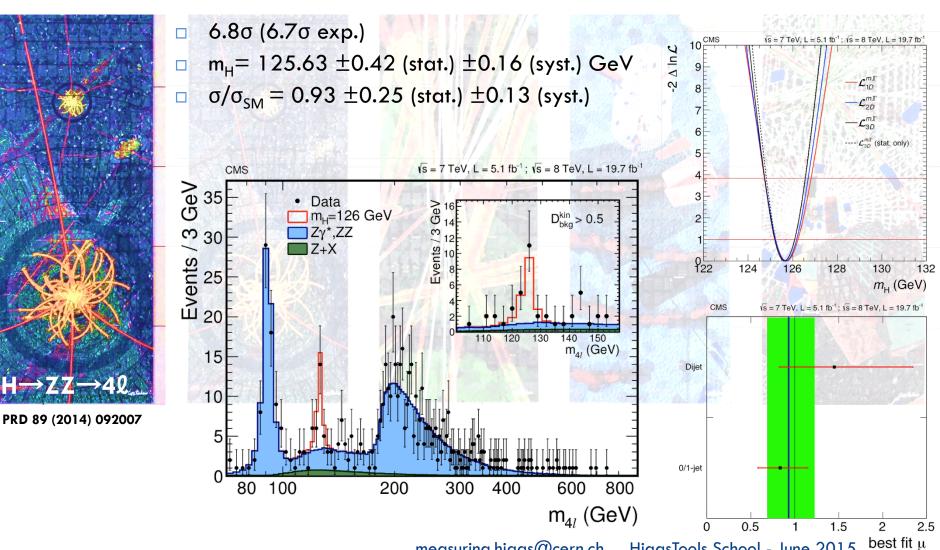


measuring.higgs@cern.ch

HiggsTools School - June 2015

[JHEP 01 (2014) 096]

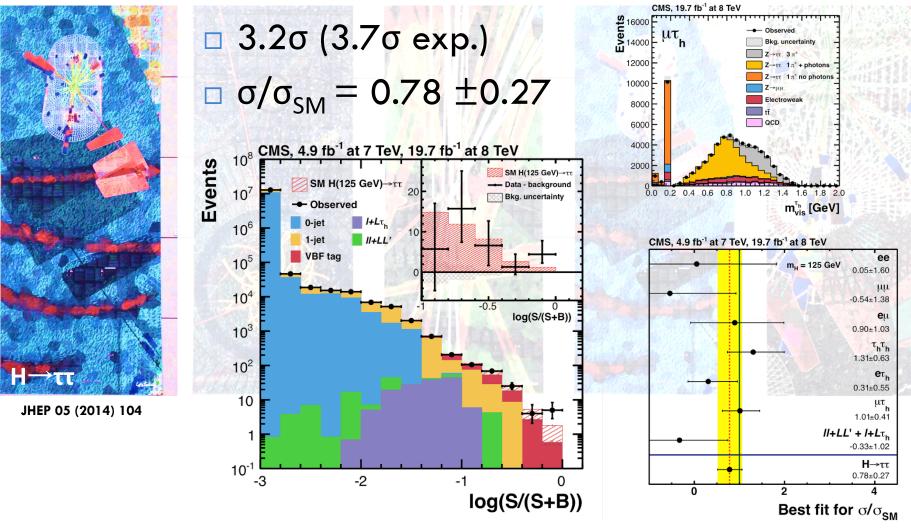
m_{//} [GeV]


measuring.higgs@cern.ch

HiggsTools School - June 2015

$H \rightarrow ZZ \rightarrow 4\ell$ vignettes

[PRD 89 (2014) 092007]

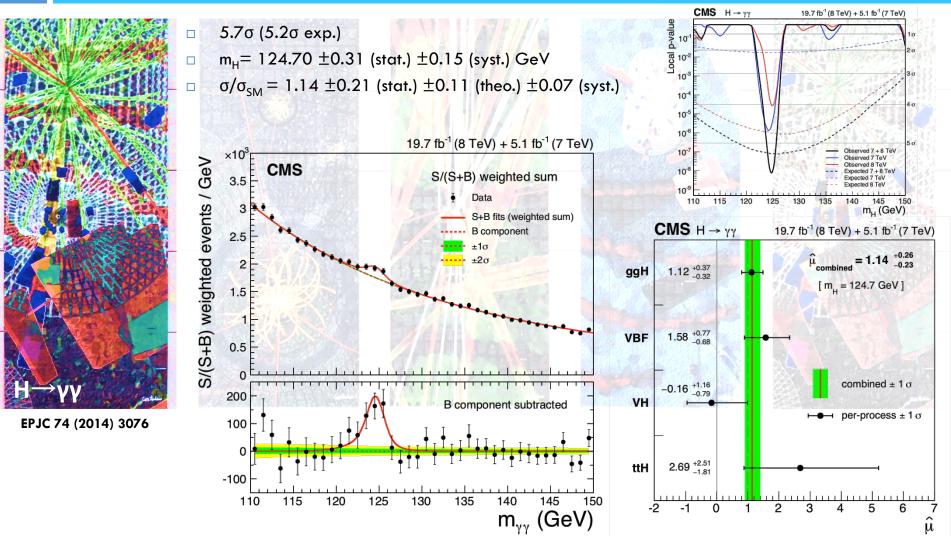

48

H→ττ vignettes

[JHEP 05 (2014) 104]

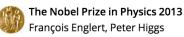
measuring.higgs@cern.ch

HiggsTools School - June 2015



50

$H \rightarrow \gamma \gamma$ vignettes


[EPJC 74 (2014) 3076]

measuring.higgs@cern.ch

HiggsTools School - June 2015

Share this: 📑 8 🔽 🛨 🗐 1.8K 📼

The Nobel Prize in Physics 2013

Photo: A. Mahmoud François Englert Prize share: 1/2

Photo: A. Mahmoud Peter W. Higgs Prize share: 1/2

The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"

Standard Model of Particle Physics

[http://cern.ch/go/dW6z]

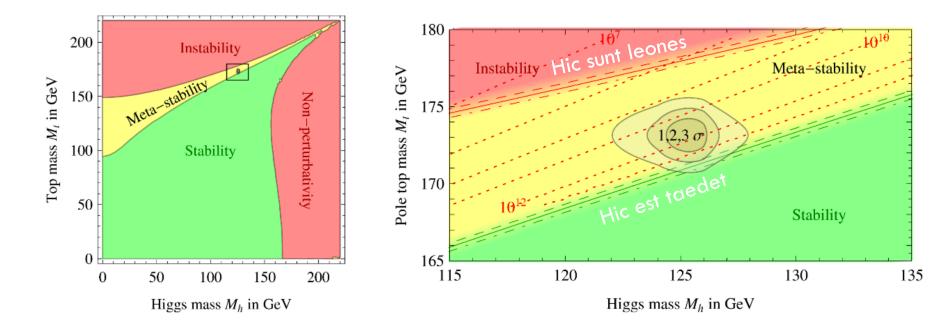
 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu$ $\partial_{\nu}W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2c^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\mu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial$ $M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{w}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{q^{2}} + \frac{2M}{q}H + \frac{1}{2}(H^{2} + \phi^{0}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \psi^{0})] + \frac{2M^{4}}{q}M_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-}) + \frac{2M^{4}}{q}M_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-}) + \frac{$ $W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs$ $A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+$ $g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - Z_{\mu}^{b}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] + \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] + \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{2} + 4(\phi^{+}\phi^{-})^{2}\phi^{+}\phi^{-}] + \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{2} + 4(\phi^{+}\phi^{-})^{2}\phi^{+}\phi^{$ $4H^{2}\phi^{+}\phi^{-} + 2(\phi^{0})^{2}H^{2}] - gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c_{w}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{-}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{$ $\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W^{-}_{\mu}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s^{2}_{w}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s^{2}_{w}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^$ $W_{\mu}^{-}\phi^{+}) + igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - ig\frac{1-2c_{w}^{2}}{2c_{w}}Z_{\mu}^{0}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) + igs_{w}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) - ig\frac{1-2c_{w}^{2}}{2c_{w}}Z_{\mu}^{0}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) - ig\frac{1-2c_{w}^{2}}{2c_{w}}Z_{\mu}^{0}(\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) - ig\frac{1-2c_{w}^{2}}{2$ $\frac{1}{4}g^2W^+_{\mu}W^-_{\mu}[H^2 + (\phi^0)^2 + 2\phi^+\phi^-] - \frac{1}{4}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + \phi^-)] + \frac{1}{4}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + \phi^-)] + \frac{1}{4}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + \phi^-)] + \frac{1}{4}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + \phi^-)] + \frac{1}{4}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + \phi^-)] + \frac{1}{4}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + \phi^-)] + \frac{1}{4}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + \phi^-)]$ $W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} + W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} + W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{$ $g^{2} \frac{s_{w}}{c_{w}} (2c_{w}^{2}-1) Z_{\mu}^{0} \bar{A}_{\mu} \phi^{+} \phi^{-} - g^{1} s_{w}^{2} A_{\mu} A_{\mu} \phi^{+} \phi^{-} - \bar{e}^{\lambda} (\gamma \partial + m_{e}^{\lambda}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} - \bar{u}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{d}^{$ $igs_wA_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_j^{\lambda}\gamma^{\mu}u_j^{\lambda}) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma^{\mu}d_j^{\lambda})] + \frac{ig}{4c_w}Z^0_{\mu}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_w^2 - 1 - \gamma^5)e^{\lambda}) + (\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2 - 1 - \gamma$ $1 - \gamma^{5})u_{j}^{\lambda}) + (\bar{d}_{j}^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_{w}^{2} - \gamma^{5})d_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{+}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[($ $\gamma^{5}(\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_{e}^{\lambda}}{M}[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] - \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \bar{e}^{\lambda}(1-\gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \bar{e}^{\lambda}(1-\gamma^{5})e^{\lambda})] - \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda})$ $i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})u_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda$ $m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}] - \frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda}) - \frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda}) + \frac{ig}{2}\frac{m_u^{\lambda}}{M}\phi^0(\bar{u}_i^{\lambda}\gamma^5u_j^{\lambda}) - \frac{ig}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{d}_j^{\lambda}\gamma^5d_j^{\lambda}) + \bar{X}^+(\partial^2 - \bar{U}_j^{\lambda}) + \bar{X}^$ $M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{c_{w}^{2}})\bar{X}^{0} + \bar{Y}\partial^{2}\bar{Y} + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}\bar{X}^{-} - \partial_{\mu}\bar{X}^{+}X^{0}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{X}^{+}\bar{X}^{0}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{X}^{-}\bar{X}^{0}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{X}$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) \\ + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) \\ + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{-}) + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{-}) \\ + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{-})$ $igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{w}^{2}}{2c_{w}}igM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{\mu}\bar{X}^{-}A^{-}] - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{w}^{2}}{2c_{w}}igM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{\mu}\bar{X}^{-}A^{-}] - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{w}^{2}}{2c_{w}}igM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{\mu}\bar{X}^{-}A^{-}] - \frac{1}{2}gM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{\mu}\bar{X}^{-}] - \frac{1}{2}gM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{\mu}\bar{X}^{-}] - \frac{1}{2}gM[\bar{X}^{+}X^$ $\bar{X}^{-}X^{0}\phi^{-}] + \frac{1}{2c_{w}}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}ig\tilde{M}[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

Standard Theory of Particle Physics

[http://cern.ch/go/dW6z]

 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{c}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}$ $\partial_{\nu}W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2c^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{b}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\mu} - \frac{1}{2$ $M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{w}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{q^{2}} + \frac{2M}{q}H + \frac{1}{2}(H^{2} + \phi^{0}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \psi^{0})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-} - \psi^{0})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\mu}Z_{\mu}^{0}(W_{\mu}^{-}W_{\mu}^{-} - \psi^{0})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\mu}Z_{\mu}^{0}(W_{\mu}^{-}W_{\mu}^{-} - \psi^{0})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\mu}Z_{\mu}^{-}W_{\mu}^{-} - \psi^{0})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\mu}Z_{\mu}^{-}W_{\mu}^{-} - \psi^{0})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\mu}Z_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-} - \psi^{0})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial$ $W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-}] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{-}W_{\mu}^{$ $W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} +$ $A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+})+A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-})$ $g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-}-Z_{\mu}^{0}Z_{\nu}^{0}W_{\nu}^{+}W_{\nu}^{-})$ $+ q^2 s_w^2 (A_\mu W_\mu^+ A_\nu W_\mu^- - A_\mu A_\mu W_\mu^+ W^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\mu^- - A_\mu A_\mu W_\mu^+ W_\mu^- - A_\mu A_\mu W_\mu^+ W_\mu^- - A_\mu A_\mu W_\mu^+ W_\mu^-)]$ $W^+_{\nu}W^-_{\mu}) - 2A_{\mu}Z^0_{\nu}W^+_{\nu}W^-_{\nu} - q\alpha[H^3]$ $\alpha_h [H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2 \phi^+ \phi^- +$ $4H^2\phi^+\phi^-+2(\phi^0)^2H^2]-gMV$ $\phi \ \partial_{\mu}\phi^{0}) - W^{-}_{\mu}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] +$ $-\phi^0\partial_\mu H) - ig \frac{s_w}{c} M Z^0_\mu (W^+_\mu \phi^- () + igs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \phi^- \partial_\mu \phi^+) - \phi^- \partial_\mu \phi^+) - \phi^- \partial_\mu \phi^+$ $[\phi^{0}]^{2} + 2(2s_{u}^{2}-1)^{2}\phi^{+}\phi^{-}] - \frac{1}{2}g^{2}\frac{s_{u}^{*}}{c}Z_{\mu}^{0}\phi^{0}(W_{\mu}^{+}\phi^{-}) +$ $-W_{-}\phi^{+}) - d_i^{\lambda} (\gamma \partial + m_d^{\lambda}) d_i^{\lambda} +$ $-1-\gamma^{5})e^{\lambda})+(\bar{u}_{i}^{\lambda}\gamma^{\mu}(rac{4}{3}s_{w}^{2} (\mu(1+\gamma^5)e^{\lambda}) + (\bar{u}_j^{\lambda}\gamma^{\mu}(1+\gamma^5)C_{\lambda\kappa}d_j^{\kappa})] + \frac{ig}{2\sqrt{2}}W^-_{\mu}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^5)C_{\lambda\kappa}d_j^{\kappa})]$ $\frac{ig}{2\sqrt{2}}\frac{m_e^{\lambda}}{M}\left[-\phi^+(\bar{\nu}^{\lambda}(1-\gamma^5)e^{\lambda})+\phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})\right]-\frac{g}{2}\frac{m_e^{\lambda}}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\right]$ $\frac{ig}{2M\sqrt{2}}\phi^{+}[-\overline{m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa})} + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})u_{j}^{\kappa})] + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})u_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})u_{j}^{\kappa})$ $m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}] - \frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda}) - \frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda}) + \frac{ig}{2}\frac{m_u^{\lambda}}{M}\phi^0(\bar{u}_j^{\lambda}\gamma^5u_j^{\lambda}) - \frac{ig}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{d}_j^{\lambda}\gamma^5d_j^{\lambda}) + \bar{X}^+(\partial^2 - ig_j^{\lambda}) + \bar{X}^+(\partial^2 - i$ $M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{c_{w}^{2}})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - \partial_{\mu}\bar{X}^{+}X^{0}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{-}) + igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z_{\mu}^{0}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{-}) + igc_{w}W_{\mu}^{-}(\partial_{\mu$ $igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{w}^{2}}{2c_{w}}igM[\bar{X}^{+}X^{0}\phi^{+} - \frac{1}{2}gM[\bar{X}^{+}X^{0}\phi^{+}] + \frac{1}{2}$ $\bar{X}^{-}X^{0}\phi^{-} + \frac{1}{2c}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{\bar{0}}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

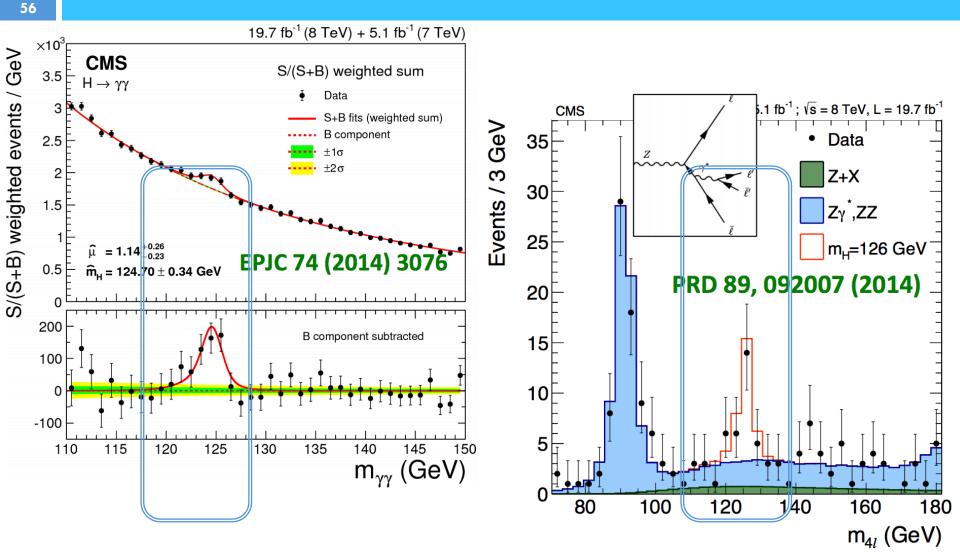
Standard Theory of Particle Physics


[http://cern.ch/go/dW6z]

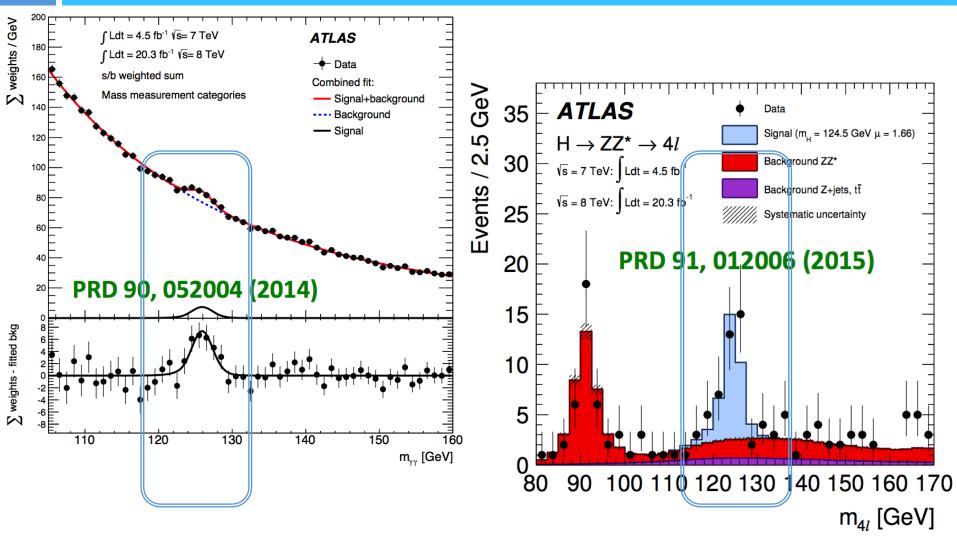
 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{s}g^{a}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{a}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{c}$ $\partial_{\nu}W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2c^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\mu} - \frac{1}{2}\partial_{\mu}A$ $M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{w}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{q^{2}} + \frac{2M}{q}H + \frac{1}{2}(H^{2} + \phi^{0}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z^{0}_{\mu}(W^{+}_{\mu}W^{-}_{\nu} - \psi^{-}_{\mu})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z^{0}_{\mu}(W^{+}_{\mu}W^{-}_{\nu} - \psi^{-}_{\mu})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z^{0}_{\mu}(W^{+}_{\mu}W^{-}_{\nu} - \psi^{-}_{\mu})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{-})] + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{-})]$ $W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] -$ $A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{$ $g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - Z_{\mu}^{0}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_$ $W_{\nu}^{+}W_{\mu}^{-}) - 2\dot{A}_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{2}\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^$ $4H^{2}\phi^{+}\phi^{-} + 2(\phi^{0})^{2}H^{2}] - gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c_{\omega}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{-}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{-}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac$ $\frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{\omega}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{\omega}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{\omega}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{\omega}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0})) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0})) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^$ $W^-_\mu \phi^+) + igs_u$ Valid up to ~Planck scale ? $\frac{1}{4}g^2 W^+_{\mu} W^-_{\mu} [H$ $W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} + W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}s_{w}A_{\mu}W(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}W(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}W(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}s_{w}A_{\mu}W(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}W(W_{\mu}^{+}\phi^{-}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}W(W_{\mu}^{+}\phi^{-}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}W(W_{\mu}^{+}\phi^{-}) + \frac{1}{2}ig^{2}s_{$ $g^{2} \frac{s_{w}}{c_{w}} (2c_{w}^{2}-1) Z_{\mu}^{0} \bar{A}_{\mu} \phi^{+} \phi^{-} - g^{1} s_{w}^{2} A_{\mu} A_{\mu} \phi^{+} \phi^{-} - \bar{e}^{\lambda} (\gamma \partial + m_{e}^{\lambda}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{d}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{d}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{d}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{d}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{d}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{d}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{d}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{d}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{u}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{j}^{\lambda} - \bar{u}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{j}^{\lambda} - \bar{u}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{j}^{\lambda} - \bar{v}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{d}^{$ $igs_w^{\sim}A_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_j^{\lambda}\gamma^{\mu}u_j^{\lambda}) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma^{\mu}d_j^{\lambda})] + \frac{ig}{4c_w}Z^0_{\mu}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_w^2 - 1 - \gamma^5)e^{\lambda}) + (\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2 - 1$ $1 - \gamma^{5})u_{j}^{\lambda}) + (\bar{d}_{j}^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_{w}^{2} - \gamma^{5})d_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{+}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^$ $\gamma^{5}(\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_{e}^{\lambda}}{M}[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] - \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \bar{e}^{\lambda}(1-\gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \bar{e}^{\lambda}(1-\gamma^{5})e^{\lambda})] - \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda})$ $i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa}) - m_{d}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa}) - m_{d}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}) + m_{d}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})$ $m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_i^{\kappa}] - \frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_i^{\lambda}) - \frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda}) + \frac{ig}{2}\frac{m_u^{\lambda}}{M}\phi^0(\bar{u}_j^{\lambda}\gamma^5u_j^{\lambda}) - \frac{ig}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{d}_j^{\lambda}\gamma^5d_j^{\lambda}) + \bar{X}^+(\partial^2 - \bar{U}_j^{\lambda}) + \bar{X}^$ $M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{c_{w}^{2}})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - \partial_{\mu}\bar{X}^{+}X^{0}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) \\ + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) \\ + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) \\ + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{-}X^{-}) \\ + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{-}) \\ + igc_{w}Z^{0}_{\mu}(\partial_{$ $igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{w}^{2}}{2c_{w}}igM[\bar{X}^{+}X^{0}\phi^{+} - \frac{1}{2}gM[\bar{X}^{+}X^{0}\phi^{+}] + \frac{1}{2}$ $\bar{X}^{-}X^{0}\phi^{-} + \frac{1}{2c}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

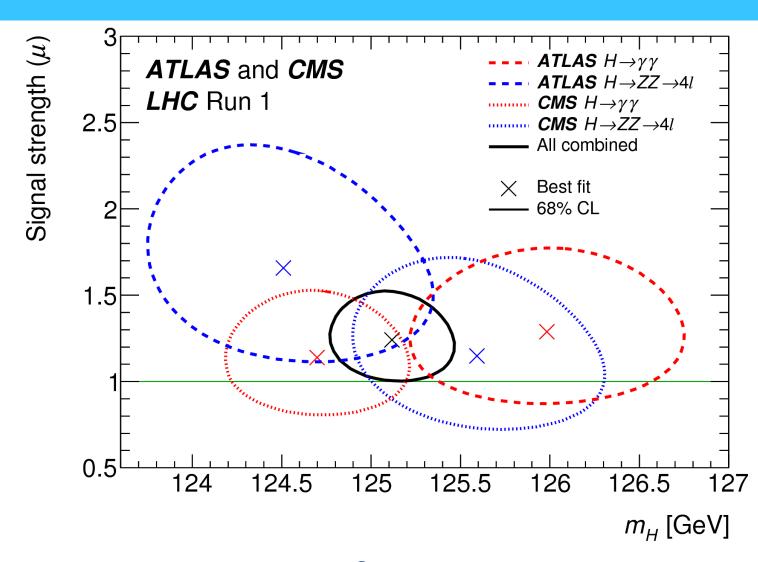
The fate/character of the Universe

[JHEP 08 (2012) 098]


55

The SM vacuum stability depends crucially on the masses of the top quark and Higgs boson.


Mass peaks: mass measurements

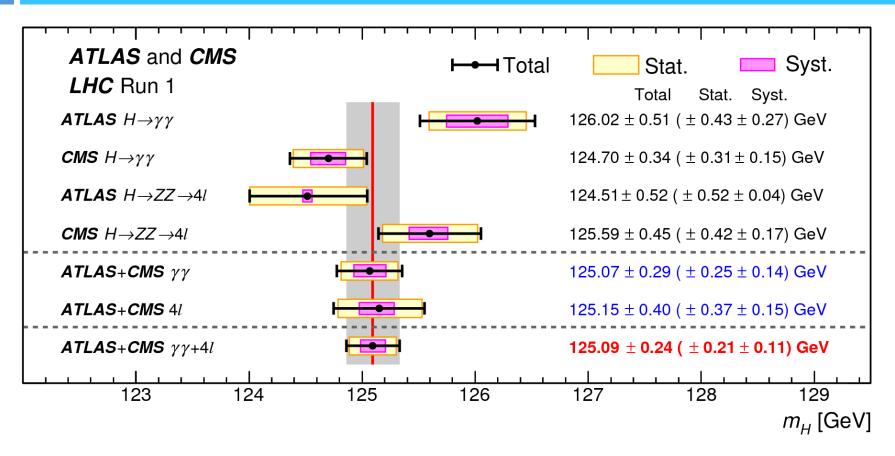

Mass peaks: mass measurements

57

Combined LHC mass measurement

[arXiv:1503.07589]

measuring.higgs@cern.ch HiggsTools School - June 2015


58

CERN

59

Combined LHC mass measurement

[arXiv:1503.07589]

Combined LHC mass measurement

$m_{H} = 125.09 \pm 0.21 ~(stat)$

Stat. uncertainty dominates overall.

Energy scale syst. can be improved.

Run 2 will reduce uncertainty !

 ± 0.11 (scale)

 ± 0.02 (other)

 ± 0.01 (theory*)

GeV

For the record

- □ ~5150 authors.
- Found that there are two:
 - Archana Sharma (both CMS)
 - Andrea Bocci
 - Muhammad Ahmad
 - F. M. Giorgi (one CMS, one ATLAS)

Physics paper sets record with more than 5,000 authors

Detector teams at the Large Hadron Collider collaborated for a more precise estimate of the size of the Higgs boson.

Davide Castelvecchi

15 May 2015

CERN

Thousands of scientists and engineers have worked on the Large Hadron Collider at CERN.

A physics paper with 5,154 authors has — as far as anyone knows — broken the record for the largest number of contributors to a single research article.

Standard Theory of Particle Physics

[http://cern.ch/go/dW6z]

 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{s}g^{a}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{a}_{\mu}g^{c}$ $\partial_{\nu}W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2c^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\mu} - \frac{1}{2}\partial_{\mu}A$ $M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{w}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{q^{2}} + \frac{2M}{q}H + \frac{1}{2}(H^{2} + \phi^{0}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z^{0}_{\mu}(W^{+}_{\mu}W^{-}_{\nu} - \psi^{-}_{\mu})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z^{0}_{\mu}(W^{+}_{\mu}W^{-}_{\nu} - \psi^{-}_{\mu})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z^{0}_{\mu}(W^{+}_{\mu}W^{-}_{\nu} - \psi^{-}_{\mu})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{-})] + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{-})]$ $W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] -$ $A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{$ $g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - Z_{\mu}^{0}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_$ $W_{\nu}^{+}W_{\mu}^{-}) - 2\dot{A}_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{2}\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^$ $4H^{2}\phi^{+}\phi^{-} + 2(\phi^{0})^{2}H^{2}] - gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c_{\omega}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{-}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{-}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac$ $\frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{\omega}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{\omega}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{\omega}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{\omega}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0})) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0})) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^$ $W^-_\mu \phi^+) + igs_u$ Valid up to \sim Planck scale ? $\frac{1}{4}g^2 W^+_{\mu} W^-_{\mu} [H$ $W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} + W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}s_{w}A_{\mu}W(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}W(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}W(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}s_{w}A_{\mu}W(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}W(W_{\mu}^{+}\phi^{-}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}W(W_{\mu}^{+}\phi^{-}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}W(W_{\mu}^{+}\phi^{-}) + \frac{1}{2}ig^{2}s_{$ $g^{2} \frac{s_{w}}{c_{w}} (2c_{w}^{2}-1) Z_{\mu}^{0} \bar{A}_{\mu} \phi^{+} \phi^{-} - g^{1} s_{w}^{2} A_{\mu} A_{\mu} \phi^{+} \phi^{-} - \bar{e}^{\lambda} (\gamma \partial + m_{e}^{\lambda}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{d}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{d}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{d}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{d}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{d}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{d}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{d}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{d}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{u}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{j}^{\lambda} - \bar{u}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{j}^{\lambda} - \bar{u}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{j}^{\lambda} - \bar{v}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{d}^{$ $igs_w^{\sim}A_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_j^{\lambda}\gamma^{\mu}u_j^{\lambda}) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma^{\mu}d_j^{\lambda})] + \frac{ig}{4c_w}Z^0_{\mu}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_w^2 - 1 - \gamma^5)e^{\lambda}) + (\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2 - 1$ $1 - \gamma^{5})u_{j}^{\lambda}) + (\bar{d}_{j}^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_{w}^{2} - \gamma^{5})d_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{+}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^$ $\gamma^{5}(\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_{e}^{\lambda}}{M}[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] - \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \bar{e}^{\lambda}(1-\gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \bar{e}^{\lambda}(1-\gamma^{5})e^{\lambda})] - \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda})$ $i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa}) - m_{d}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa}) - m_{d}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}) + m_{d}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa})$ $m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_i^{\kappa}] - \frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_i^{\lambda}) - \frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda}) + \frac{ig}{2}\frac{m_u^{\lambda}}{M}\phi^0(\bar{u}_j^{\lambda}\gamma^5u_j^{\lambda}) - \frac{ig}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{d}_j^{\lambda}\gamma^5d_j^{\lambda}) + \bar{X}^+(\partial^2 - \bar{U}_j^{\lambda}) + \bar{X}^$ $M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{c_{w}^{2}})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - \partial_{\mu}\bar{X}^{+}X^{0}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{-}) + igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z_{\mu}^{0}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{-}) + igc_{w}W_{\mu}^{-}(\partial_{\mu$ $igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{w}^{2}}{2c_{w}}igM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{\mu}\bar{X}^{-}A^{-}] + \frac{1}{2}gM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{\mu}\bar{X}^{-}A^{-}] + \frac{1}{2}gM[\bar{X}^{+}A^{-}\phi^{+}] + \frac{1}{2}gM[\bar{X}^{+}A^{-}\phi^{+}$ $\bar{X}^{-}X^{0}\phi^{-} + \frac{1}{2c}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

Standard Theory of Particle Physics

[http://cern.ch/go/dW6z]

 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{c}_{\mu}g^{a}_{\mu}g^{c}_{\mu}g^{a}_{\mu}g^{c}_{\mu}g^{a}_{\mu}g^{c}_{\mu}g^{a}_{\mu}g^{c}_{\mu}g^{a}_{\mu}g^{c}_{\mu}g^{a}_{\mu}g^{c}_{\mu$ $\partial_{\nu}W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2c^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\mu} - \frac{1}{2}\partial_{\mu}A$ $M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{w}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{q^{2}} + \frac{2M}{q}H + \frac{1}{2}(H^{2} + \phi^{0}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z^{0}_{\mu}(W^{+}_{\mu}W^{-}_{\nu} - \psi^{-}_{\mu})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z^{0}_{\mu}(W^{+}_{\mu}W^{-}_{\nu} - \psi^{-}_{\mu})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z^{0}_{\mu}(W^{+}_{\mu}W^{-}_{\nu} - \psi^{-}_{\mu})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{-})] + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{-})]$ $W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] -$ $A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{$ $g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - Z_{\mu}^{0}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_$ $W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-} + 4(\phi^{-})^{2}\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{-})^{2} + 4(\phi^{-})^{2}\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{-})^{2}\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{-})^{2} + 4(\phi^{-})^{2}\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{-})^{2}\phi^{+}\phi^{-}] - \frac{1$ $4H^{2}\phi^{+}\phi^{-} + 2(\phi^{0})^{2}H^{2}] - gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c_{\omega}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{-}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{-}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{$ $\frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{w}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{w}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{w}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{w}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0})) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0})) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^$ $W^-_\mu \phi^+) + igs_u$ Valid up to ~Planck scale ? $\frac{1}{4}g^2 W^+_{\mu} W^-_{\mu} [H$ $W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{2}Z^{0}H(W^{+}\phi^{-} - W^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W^{+}\phi^{-} + W^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\nu}H(W^{+}\phi^{-} - W^{-}\phi^{+}) - \frac{1}{2}ig^{2}s_{w}A_{\nu}H(W^{+}\phi^{-} - W^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\nu}H(W^{+}\phi^{-} - W^{-}\phi^{+}) - \frac{1}{2}ig^{2}s_{w}A_{\nu}H(W^{+}\phi^{-} - W^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\nu}H(W^{+}\phi^{-}$ $d_{j}^{\lambda} + \frac{1}{2}s_{w}^{2} - \frac{1}{2}s_{w}^{2}$ $g^2 \frac{s_w}{c_w} (2c_w^2 - 1) Z^0_\mu$ But: dark matter, matter-antimatter, etc. $igs_w A_\mu [-(\bar{e}^\lambda \gamma^\mu e$ $(1 - \gamma^{5})u_{j}^{\lambda}) + (\bar{d}_{j}^{\lambda}\gamma^{\mu}(1 - \frac{\sigma}{3}s_{w}^{z} - \gamma^{o})d_{j}^{\lambda})] + \frac{cg}{2\sqrt{2}}W_{\mu}^{+}[(\nu^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda}) + (u_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{o})C_{\lambda\kappa}d_{j}^{\kappa})] + \frac{cg}{2\sqrt{2}}W_{\mu}^{-}[(e^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda}) + (u_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda}) + (u_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda})] + \frac{cg}{2\sqrt{2}}W_{\mu}^{-}[(e^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda}) + (u_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda})] + \frac{cg}{2\sqrt{2}}W_{\mu}^{-}[(e^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda}) + (u_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda})] + \frac{cg}{2\sqrt{2}}W_{\mu}^{-}[(e^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda}) + (u_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda}) + (u_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda})] + \frac{cg}{2\sqrt{2}}W_{\mu}^{-}[(e^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda})] + \frac{cg}{2\sqrt{2}}W_{\mu}^{-}[(e^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda}) + (u_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda})] + \frac{cg}{2\sqrt{2}}W_{\mu}^{-}[(e^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda})] + \frac{cg}{$ $\gamma^5)\nu^{\lambda}) + (\bar{d}_j^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^5)u_j^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_e^{\lambda}}{M}[-\phi^+(\bar{\nu}^{\lambda}(1-\gamma^5)e^{\lambda}) + \phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})] - \frac{g}{2}\frac{m_e^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \bar{e}^{\lambda}(1-\gamma^5)e^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_e^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \bar{e}^{\lambda}(1-\gamma^5)e^{\lambda})] - \frac{g}{2}\frac{m_e^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_e^{\lambda}}{M}[H(\bar{e}$ $i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa}) - m_{d}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})u_{j}^{\kappa}) - m_{d}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})u_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})u_{j}^{\kappa}) + m_$ $m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_i^{\kappa}] - \frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_i^{\lambda}) - \frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda}) + \frac{ig}{2}\frac{m_u^{\lambda}}{M}\phi^0(\bar{u}_j^{\lambda}\gamma^5u_j^{\lambda}) - \frac{ig}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{d}_j^{\lambda}\gamma^5d_j^{\lambda}) + \bar{X}^+(\partial^2 - \bar{U}_j^{\lambda}) + \bar{X}^$ $M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{c_{w}^{2}})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - \partial_{\mu}\bar{X}^{+}X^{0}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{-}) + igc_{w}W^{-}_{\mu}(\partial_{\mu$ $igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{w}^{2}}{2c_{w}}igM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{\mu}\bar{X}^{-}A^{-}] + \frac{1}{2}gM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{\mu}\bar{X}^{-}A^{-}] + \frac{1}{2}gM[\bar{X}^{+}A^{-}\phi^{+}] + \frac{1}{2}gM[\bar{X}^{+}A^{-}\phi^{+}$ $\bar{X}^{-}X^{0}\phi^{-} + \frac{1}{2c}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

The Next Standard Model

[http://cern.ch/go/dW6z]

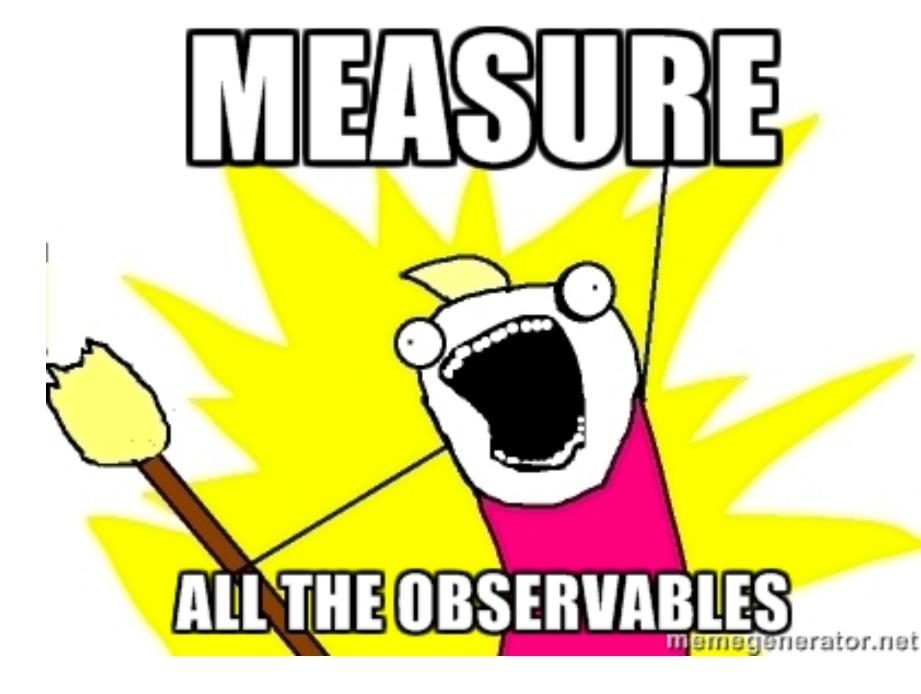
 ${}_{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abe}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - {}_{4}^{1}g^{2}_{s}f^{abe}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + {}_{2}^{1}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abe}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu}g^{a}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + {}_{2}^{1}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abe}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu}g^{a}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + {}_{2}^{1}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abe}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu}g^{a}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g^{e}_{\mu}g$ $\partial_{\nu} W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-} - M^{2} W_{\mu}^{+} W_{\mu}^{-} - \frac{1}{2} \partial_{\nu} Z_{\mu}^{0} \partial_{\nu} Z_{\mu}^{0} - \frac{1}{2e^{2}} M^{2} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - \frac{1}{2} \partial_{\mu} H \partial_{\mu} H - \frac{1}{2} m_{h}^{2} H^{2} - \partial_{\mu} \phi^{+} \partial_{\mu} \partial$ $M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2v^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{v^{2}} + \frac{2M}{v}H + \frac{1}{2}(H^{2} + \phi^{0}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{v^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z_{0}^{0}(W_{\nu}^{+}W_{\nu}^{-})] + \frac{2M^{2}}{v^{2}}(W_{\nu}^{+}W_{\nu}^{-}) + \frac{2M^{2}}{v^{2}}(W_{\nu}^{$ $W_{v}^{+}W_{v}^{-}) - Z_{v}^{0}(W_{v}^{+}\partial_{v}W_{v}^{-} - W_{v}^{-}\partial_{v}W_{v}^{+}) + Z_{v}^{0}(W_{v}^{+}\partial_{v}W_{v}^{-} - W_{v}^{-}\partial_{v}W_{v}^{+})] - iqs_{w}[\partial_{v}A_{v}(W_{v}^{+}W_{v}^{-} - W_{v}^{+}W_{v}^{-}) - iqs_{w}[\partial_{v}A_{v}(W_{v}^{+}W_{v}^{-} - W_{v}^{+}W_{v}^{-})] - iqs_{w}[\partial_{v}A_{v}(W_{v}^{+}W_{v}^{-} - W_{v}^{+}W_{v}^{-}) - iqs_{w}[\partial_{v}A_{v}(W_{v}^{+}W_{v}^{-} - W_{v}^{+}W_{v}^{-})] - iqs_{w}[\partial_{v}A_{v}(W_{v}^{+}W_{v}^{-} - W_{v}^{+}W_{v}^{-}] - iqs_{w}[\partial_{v}A_{v}(W_{v}^{+}W_{v}^{-} - W_{v}^{+}W_{v}^{-})] - iqs_{w}[\partial_{v}A_{v}(W_{v}^{+}W_{v}^{-} - W_{v}^{+}W_{v}^{-}] - iqs_{w}[\partial_{v}A_{v}(W_{v}^{+}W_{v}^{-} - W_{v}^{+}W_{v}^{-}]] - iqs_{w}[\partial_{v}A_{v}(W_{v}^{+}W_{v}^{-} - W_{v}^{+}W_{v}^{-}] - iqs_{w}[\partial_{v}A_{v}(W_{v}^{+}W_{v}^{-} - W_{v}^{+}W_{v}^{-}]] - iqs_{w}[\partial_$ $A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-}W_$ $g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - Z_{\mu}^{0}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}\dot{s}_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}\dot{W_{\nu}^{-}} - \ddot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}) + g^{2}s_{w}\ddot{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \dot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}) + g^{2}s_{w}\dot{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}\dot{W}_{\nu}^{-} - \dot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}) + g^{2}s_{w}\dot{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}\dot{W}_{\nu}^{-} - \dot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}) + g^{2}s_{w}\dot{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}\dot{W}_{\nu}^{-} - \dot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}] + g^{2}s_{w}\dot{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}\dot{W}_{\nu}^{-} - \dot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}] + g^{2}s_{w}\dot{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}\dot{W}_{\mu}^{-} - \dot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}] + g^{2}s_{w}\dot{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}\dot{W}_{\mu}^{-} - \dot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}] + g^{2}s_{w}\dot{c}_{w}[A_{\mu}Z_{\nu}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}] + g^{2}s_{w}\dot{c}_{w}[A_{\mu}Z_{\mu}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot{W}_{\mu}^{-}\dot$ $W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \frac{1}{3}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] - \frac{1}{3}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}]$ $4H^{2}\phi^{+}\phi^{-} + 2(\phi^{0})^{2}H^{2}] - gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}$ $\frac{1}{5}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{+}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{+}+\phi^{+}\partial_{\mu}H)]+\frac{1}{5}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{\mu}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}))$ $W_{\mu}^{-}\phi^{+}) + igs_w MA_{\mu}(W_{\mu}^{+}\phi^{-})$ $W^-_\mu \phi^+) - ig rac{1-2c_w^2}{2a_w} Z^0_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^-) + ig s_w (\phi$ $\frac{1}{3}g^2W_n^+W_n^-[H^2 + (\phi^0)^2 + 2\phi^+\phi^-] - \frac{1}{3}g^2\frac{1}{\omega^2}Z_n^0Z_n^0[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{3}g^2\frac{s_w^2}{\omega^2}Z_n^0\phi^0(W_n^+\phi^- + g^2)$ $W_{a}^{-}\phi^{+}) - \frac{1}{2}iq^{2}\tilde{s}_{a}^{*}Z_{0}^{0}H(W_{a}^{+}\phi^{-} - W_{a}^{-}\phi^{+}) + \frac{1}{2}q^{2}s_{w}A_{u}\phi^{0}(W_{a}^{+}\phi^{-} + W_{a}^{-}\phi^{+}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-} - W_{a}^{-}\phi^{+}) - \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-} - W_{a}^{-}\phi^{+}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-}) + \frac{1}{2}iq^{2}s_{w}A_{u}$ $g^{2} \frac{s_{w}}{s_{w}} (2c_{w}^{2}-1) Z_{u}^{a} A_{\mu} \phi^{+} \phi^{-} - g^{1} s_{w}^{2} A_{u} A_{\mu} \phi^{+} \phi^{-} - \bar{e}^{\lambda} (\gamma \partial + m_{k}^{2}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}_{\lambda}^{\lambda} (\gamma \partial + m_{k}^{\lambda}) u_{\lambda}^{\lambda} - \bar{d}_{\lambda}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{\lambda}^{\lambda} + g^{2} \bar{u}_{\lambda}^{\lambda} + g^{2} \bar{$ $igs_wA_{\mu}\left[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda})+\frac{2}{3}(\bar{a}^{\lambda}\gamma^{\mu}u^{\lambda}_{\lambda})-\frac{1}{3}(\bar{d}^{\lambda}\gamma^{\mu}d^{\lambda}_{\lambda})\right]+\frac{i}{4\pi}Z_{\mu}^{0}\left[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3$ $1 - \gamma^5)u_j^{\lambda}) + (\bar{d}_j^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_w^2 - \gamma^5)d_j^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^+[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)c^{\lambda}) + (\bar{u}_j^{\lambda}\gamma^{\mu}(1 + \gamma^5)C_{\lambda\kappa}d_j^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^-[(\bar{c}^{\lambda}\gamma^{\mu}(1 + \gamma^5)c^{\lambda}) + (\bar{c}^{\lambda}\gamma^{\mu}(1 + \gamma^5)c^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^-[(\bar{c}^{\lambda}\gamma^{\mu}(1 + \gamma^5)$ $\gamma^5)\nu^{\lambda}) + (\bar{d}_j^s C^{\dagger}_{\lambda\kappa}\gamma^{\mu}(1+\gamma^5)u^{\lambda}_j)] + \frac{ig}{2\sqrt{2}} \frac{m_c^{\lambda}}{M} [-\phi^{\pm}(\bar{\nu}^{\lambda}(1-\gamma^5)e^{\lambda}) + \phi^{\pm}(\bar{c}^{\lambda}(1+\gamma^5)\nu^{\lambda})] - \frac{g}{2} \frac{m_c^{\lambda}}{M} [H(\bar{c}^{\lambda}e^{\lambda}) + \phi^{\pm}(\bar{c}^{\lambda}(1+\gamma^5)\nu^{\lambda})] - \frac{g}{2} \frac{g}{M} [H(\bar{c}^{\lambda}e^{\lambda}) + \phi^{\pm}(\bar{c}^{\lambda}(1+\gamma^5)\nu^{\lambda})] - \frac{g}{2} \frac{g}{M} [H(\bar{c}^{\lambda}e^{\lambda}) + \phi^{\pm}(\bar{c}^{\lambda}(1+\gamma^5)\nu^{\lambda})] - \frac{g}{2} \frac{g}{M} [H(\bar{c}^{\lambda}e^{\lambda}) + \phi^{\pm}(\bar{c}^{\lambda}e^{\lambda})] - \frac{g}{2} \frac{g}{M} [H(\bar{c}^{\lambda}e^{\lambda})$ $[i\phi^0(\bar{e}^\lambda\gamma^5 e^\lambda)] + \frac{ig}{2M_\lambda^2}\phi^+[-m_d^\kappa(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa) + m_u^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa)] + \frac{ig}{2M_\lambda^2}\phi^+[-m_d^\kappa(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa) + m_d^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa)] + \frac{ig}{2M_\lambda^2}\phi^+[-m_d^\kappa(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa) + m_d^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa)] + \frac{ig}{2M_\lambda^2}\phi^+[-m_d^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa)] + \frac{ig}{2M_\lambda^2}\phi^+[-m_d^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa) + m_d^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa)] + \frac{ig}{2M_\lambda^2}\phi^+[-m_d^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa) + m_d^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa)] + \frac{ig}{2M_\lambda^2}\phi^+[-m_d^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa)] + \frac{ig}{2M_\lambda^2}\phi^+[-m_d^\lambda(\bar{u}$ $\gamma^{5} d_{i}^{\kappa}] + \frac{ig \sqrt{q}}{2 M_{N/2}} \phi^{-} [m_{d}^{\lambda} (\bar{d}_{i}^{\lambda} C_{\lambda \kappa}^{\dagger} (1 + \gamma^{5}) u_{i}^{\kappa}) +$ $m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{i}^{\kappa}] - \frac{g}{2}\frac{m_{\lambda}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{i}^{\lambda}) - \frac{g}{2}\frac{m_{\lambda}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda}) + \frac{ig}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{u}_{j}^{\lambda}\gamma^{5}u_{j}^{\lambda}) - \frac{igm_{\lambda}^{\lambda}}{2}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) + \bar{X}^{+}(\partial^{2} - \partial^{2})\frac{g}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) + \bar{X}^{+}(\partial^{2} - \partial^{2})\frac{g}{2}\frac{g}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) + \bar{X}^{+}(\partial^{2} - \partial^{2})\frac{g}{2}\frac{g}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) + \bar{X}^{+}(\partial^{2} - \partial^{2})\frac{g}{2}\frac{g}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) + \bar{X}^{+}(\partial^{2} - \partial^{2})\frac{g}{2}\frac{g}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) + \bar{X}^{+}(\partial^{2} - \partial^{2})\frac{g}{2}\frac{g}{2}\frac{g}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) + \bar{X}^{+}(\partial^{2} - \partial^{2})\frac{g}{2}\frac{g}{2}$ $M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{z^{2}})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W_{u}^{+}(\partial_{\mu}\bar{X}^{0}X^{-} - \partial_{\mu}\bar{X}^{+}X^{0}) + igs_{w}W_{u}^{+}(\partial_{\mu}\bar{Y}X^{-})X^{0} + igs_{$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z_{\mu}^{0}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igc_{\mu}\bar{X}^{0}X^{+})$ $igs_{w}A_{\mu}(\partial_{a}\bar{X}^{+}X^{+} - \partial_{a}\bar{X}^{-}X^{-}) - \frac{1}{3}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{4\pi^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{w}^{2}}{4}igM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{a}\bar{X}^{-}X^{-}] + \frac{1}{3}gM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{a}\bar{X}^{-}X^{0}\phi^{+}] + \frac{1}{3}gM[\bar{X}^{+}X^{0}\phi^{+}] + \frac{1$ $\bar{X}^{-}X^{0}\phi^{-}] + \frac{1}{2w}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{iw}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

64

The Next Standard Model

[http://cern.ch/go/dW6z]

 $\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{adc}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{c}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu}g^{c}_{\nu}$ $\partial_{\nu} W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-} - M^{2} W_{\mu}^{+} W_{\mu}^{-} - \frac{1}{2} \partial_{\nu} Z_{\mu}^{0} \partial_{\nu} Z_{\mu}^{0} - \frac{1}{2e^{2}} M^{2} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - \frac{1}{2} \partial_{\mu} H \partial_{\mu} H - \frac{1}{2} m_{h}^{2} H^{2} - \partial_{\mu} \phi^{+} \partial_{\mu} \partial_{\mu} \phi^{+} \partial_{\mu} \phi$ $M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2v^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{v^{2}} + \frac{2M}{v}H + \frac{1}{2}(H^{2} + \phi^{0}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{v^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z_{0}^{0}(W_{\nu}^{+}W_{\nu}^{-})] + \frac{2M^{2}}{v^{2}}(W_{\nu}^{+}W_{\nu}^{-}) + \frac{2M^{2}}{v^{2}}(W_{\nu}^{$ $W_{v}^{+}W_{v}^{-}) - Z_{v}^{0}(W_{v}^{+}\partial_{\nu}W_{v}^{\infty} - W_{v}^{-}\partial_{\nu}W_{v}^{+}) + Z_{v}^{0}(\tilde{W}_{v}^{+}\partial_{\nu}W_{v}^{-} - W_{v}^{-}\partial_{\nu}W_{v}^{+})] - igs_{w}[\tilde{\partial}_{\nu}A_{y}(W_{v}^{+}W_{v}^{-} - W_{v}^{+}W_{v}^{-}) - W_{v}^{+}W_{v}^{-})] - igs_{w}[\tilde{\partial}_{\nu}A_{y}(W_{v}^{+}W_{v}^{-} - W_{v}^{+}W_{v}^{-})] - igs_{w}[\tilde{\partial}_{\nu}A_{y}(W_{v}^{-} - W_{v}^{+}W_{v}^{-})] - igs_{w}[\tilde{\partial}_{\nu}A_{v}(W_{v}^{-} - W_{v}^{+}W_{v}^{-})] - igs_{w}[\tilde{\partial}_{\nu}A_{v}(W_{v}^{-} - W_{v}^{+}W_{v}^{-})] - igs_{w}[\tilde{\partial}_{\nu}A_{v}(W_{v}^{-} - W_{v}^{+}W_{v}^{-})] - igs_{w}[\tilde{\partial}_{\nu}A_{v}(W_{v}^{-} - W_{v}^{+}$ $A_{\nu}(W_{\mu}^{'}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}$ $-g^{2}c_{w}^{2'}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - Z_{\mu}^{0}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}^{2'}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{-}] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{-}] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{-}] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-}] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\mu}^{-}] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\mu}^{-}] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\mu}^{-}] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\mu}^{-}] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\mu}^{-}] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-}] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-}] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-}] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-}] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-}] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{-}W_{\mu}^{-}] +$ $W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \frac{1}{3}g^{2}\alpha_{b}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] - \frac{1}{3}g^{2}\alpha_{b}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}]$ $4H^{2}\phi^{+}\phi^{-} + 2(\phi^{0})^{2}H^{2}] - gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}$ $\frac{1}{5}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)]+\frac{1}{5}g\frac{1}{2}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{\mu}}{2}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-\phi^{-}\partial_{\mu}H)]$ Something $-W_{\mu}^{-}\phi^{+}) - ig \frac{1-2c_{w}^{2}}{2c_{w}}$ $W_{\mu}^{-}\phi^{+}) + igs_w MA_{\mu}(W_{\mu}^{+}\phi^{-}$ $-\phi^-\partial_\mu\phi^+)+igs_wA_\mu(\phi^+\partial_\mu\phi^-+\phi^-\partial_\mu\phi^+) \frac{1}{4}g^2W_a^+W_a^-[H^2 + (\phi^0)^2 + 2\phi^+\phi^-] - \frac{1}{4}g^2\frac{1}{\omega^2}Z_a^0Z_a^0[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{4}g^2\frac{1}{\omega^2}Z_a^0Z_a^0[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-]$ $\frac{1}{2}g^2 \frac{s_0}{s} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- +$ $W_{a}^{-}\phi^{+}) - \frac{1}{2}iq^{2}\tilde{z}_{a}^{*}Z_{0}^{0}H(W_{a}^{+}\phi^{-} - W_{a}^{-}\phi^{+}) + \frac{1}{2}q^{2}s_{w}A_{u}\phi^{0}(W_{a}^{+}\phi^{-} + W_{a}^{-}\phi^{+}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-} - W_{a}^{-}\phi^{+}) - \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-} - W_{a}^{-}\phi^{+}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-})$ $g^{2} \frac{s_{w}}{s_{w}} (2c_{w}^{2}-1) Z_{u}^{a} A_{\mu} \phi^{+} \phi^{-} - g^{1} s_{w}^{2} A_{u} A_{\mu} \phi^{+} \phi^{-} - \bar{e}^{\lambda} (\gamma \partial + m_{k}^{2}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}_{\lambda}^{\lambda} (\gamma \partial + m_{k}^{\lambda}) u_{\lambda}^{\lambda} - \bar{d}_{\lambda}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{\lambda}^{\lambda} + g^{2} \bar{u}_{\lambda}^{\lambda} + g^{2} \bar{$ else $igs_w A_{\mu} \left[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_{\cdot}^{\lambda}\gamma^{\mu}u_{\cdot}^{\lambda}) - \frac{1}{3}(\bar{d}_{\cdot}^{\lambda}\gamma^{\mu}d_{\cdot}^{\lambda}) \right] + \frac{iw}{iw} Z_{0}^{0} \left[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2}-1-\gamma^{5})e^{\lambda}) + (\bar{u}_{\cdot}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda}) + (\bar{u}_{\cdot}^{\lambda}\gamma^{\mu}(\frac{4}{3}$ $(1 - \gamma^5)u_j^{\lambda}) + (\bar{d}_j^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}\frac{2}{w} - \gamma^5)d_j^{\lambda}) + \frac{ig}{2\sqrt{2}}W_{\mu}^{+}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda}) + (\bar{u}_j^{\lambda}\gamma^{\mu}(1 + \gamma^5)C_{\lambda\kappa}d_j^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda}) + (\bar{u}_j^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda}) + (\bar{u}_j^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1$ $\gamma^{5})\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_{\kappa}^{\lambda}}{M}[-\phi^{\pm}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{\pm}(\bar{\sigma}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] - \frac{g}{2}\frac{m_{\kappa}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \bar{e}^{\lambda}(1-\gamma^{5})e^{\lambda}] + \phi^{\pm}(\bar{\sigma}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] + \phi^{\pm}(\bar{\sigma}^{\lambda}(1+\gamma^{5})\nu^{\lambda}) + \phi^{\pm}(\bar{\sigma}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] + \phi^{\pm}(\bar{\sigma}^{\lambda}(1+\gamma^{5})\nu^{\lambda}) + \phi^{\pm}(\bar{\sigma}^{\lambda}(1+\gamma^{5})\nu^{\lambda}) + \phi^{\pm}(\bar{\sigma}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] + \phi^{\pm}(\bar{\sigma}^{\lambda}(1+\gamma^{5})\nu^{\lambda}) + \phi^{\pm}($ $i\phi^0(\bar{e}^{\lambda}\gamma^5 e^{\lambda})] + \frac{ig}{2M_{\lambda}/2}\phi^+[-m_d^{\kappa}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) + m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa})] + \frac{ig}{2M_{\lambda}/2}\phi^+[-m_d^{\kappa}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) + m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa})] + \frac{ig}{2M_{\lambda}/2}\phi^+[-m_d^{\kappa}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) + m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa})] + \frac{ig}{2M_{\lambda}/2}\phi^+[-m_d^{\kappa}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) + m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa})] + \frac{ig}{2M_{\lambda}/2}\phi^+[-m_d^{\kappa}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) + m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) + m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa})] + \frac{ig}{2M_{\lambda}/2}\phi^+[-m_d^{\kappa}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) + m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) + m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa})] + \frac{ig}{2M_{\lambda}/2}\phi^+[-m_d^{\kappa}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) + m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) + m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa$ $\gamma^5)d_i^\kappa] + rac{ig}{2\lambda\kappa/2}\phi^-[m_d^\lambda(\bar{d}_i^\lambda C_{\lambda\kappa}^\dagger(1+\gamma^5)u_i^\kappa)$ $m_u^{\kappa}(\bar{d}_i^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_i^{\kappa}] - \frac{g\,m_{\lambda}^{\kappa}}{2\,M}H(\bar{u}_i^{\lambda}u_i^{\lambda}) - \frac{g\,m_{\lambda}^{\kappa}}{2\,M}H(\bar{d}_i^{\lambda}d_i^{\lambda}) + \frac{ig\,m_{\lambda}^{\kappa}}{2\,M}\phi^0(\bar{u}_i^{\lambda}\gamma^5 u_i^{\lambda}) - \frac{ig\,m_{\lambda}^{\kappa}}{2\,M}\phi^0(\bar{d}_i^{\lambda}\gamma^5 d_i^{\lambda}) + \bar{X}^+(\partial^2 - u_i^{\kappa}) + \frac{g\,m_{\lambda}^{\kappa}}{2\,M}(\bar{d}_i^{\lambda}) + \frac{g\,m_{\lambda}^{\kappa}}{2\,M}(\bar{d}$ $M^{2}X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{c^{4}})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W^{+}_{u}(\partial_{\mu}\bar{X}^{0}X^{-} - \partial_{\mu}\bar{X}^{+}X^{0}) + igs_{w}W^{+}_{u}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{X}^{-})$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z_{\mu}^{0}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igc_{\mu}\bar{X}^{-}X^{0})$ $igs_{w}A_{\mu}(\partial_{a}\bar{X}^{+}X^{+} - \partial_{a}\bar{X}^{-}X^{-}) - \frac{1}{3}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{4\pi^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{w}^{2}}{4}igM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{a}\bar{X}^{-}X^{-}] + \frac{1}{3}gM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{a}\bar{X}^{-}X^{0}\phi^{+}] + \frac{1}{3}gM[\bar{X}^{+}X^{0}\phi^{+}] + \frac{1$ $\bar{X}^{-}X^{0}\phi^{-}] + \frac{1}{2w}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{iw}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$


65

measuring.higgs@cern.ch HiggsTools School - June 2015

agenerator.net

ITEORDERS

Deviations of H(125)

Heavy New Physics

- Concern of LHC HXSWG WG2
- Decoupling of heavy d.o.f.
- Indirect effects, loops, dim-6 operators, etc.

Light New Physics

- Benchmarks from LHC HXSWG WG3
- Other states, degenerate states, etc.

Handles on deviations

Mass

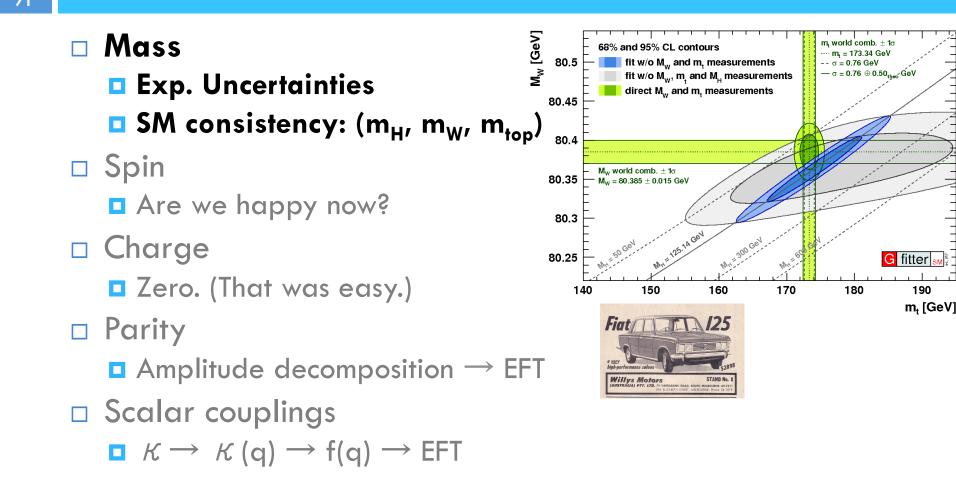
- Exp. Uncertainties
- **SM** consistency: (m_H, m_W, m_{top})

Spin

Are we happy now?

Charge

Zero. (That was easy.)


Parity

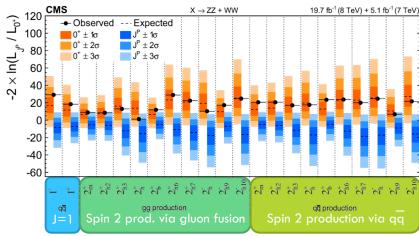
Amplitude decomposition \rightarrow EFT

Scalar couplings

 $\square \ \mathcal{K} \longrightarrow \ \mathcal{K} \ (q) \longrightarrow f(q) \longrightarrow EFT$

An actual measurement

Handles on deviations


Mass

- Exp. Uncertainties
- SM consistency: (m_H, m_W, m_{top})

🗆 Spin

Are we happy now?

- □ Charge
 - Zero. (That was easy.)
- Parity
 - Amplitude decomposition \rightarrow EFT
- Scalar couplings
 - $\blacksquare \ \mathcal{K} \longrightarrow \ \mathcal{K} \ (q) \longrightarrow f(q) \longrightarrow EFT$

Handles on deviations

Mass

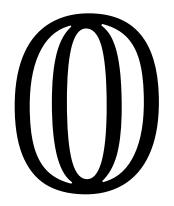
Exp. Uncertainties

• SM consistency: $(m_{H'}, m_{W'}, m_{top})$

□ Spin

Are we happy now?

Charge


Zero. (That was easy.)

Parity

Amplitude decomposition \rightarrow EFT

Scalar couplings

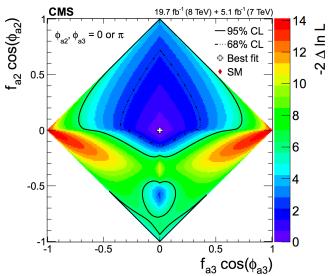
 $\square \ \mathcal{K} \longrightarrow \ \mathcal{K} (q) \longrightarrow f(q) \longrightarrow EFT$

Handles on deviations

Mass

- Exp. Uncertainties
- **S**M consistency: $(m_{H'}, m_{W'}, m_{top})$

□ Spin


- Are we happy now?
- Charge
 - Zero. (That was easy.)
- Parity

• Amplitude decomposition \rightarrow EFT

Scalar couplings

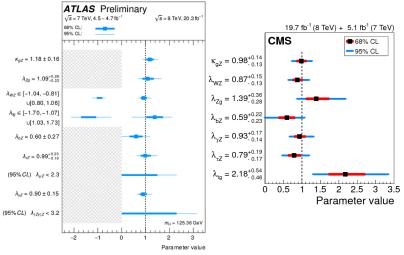
 $\blacksquare \ \mathcal{K} \longrightarrow \ \mathcal{K} (q) \longrightarrow f(q) \longrightarrow EFT$

$$\begin{split} A(X_{J=0} \to V_1 V_2) &\sim v^{-1} \left(\left[a_1 - e^{i\phi_{\Lambda_1}} \frac{q_{Z_1}^2 + q_{Z_2}^2}{(\Lambda_1)^2} \right] m_z^2 \epsilon_{Z_1}^* \epsilon_{Z_2}^* \right. \\ &+ a_2 f_{\mu\nu}^{*(Z_1)} f^{*(Z_2),\mu\nu} + a_3 f_{\mu\nu}^{*(Z_1)} \tilde{f}^{*(Z_2),\mu\nu} \\ &+ a_2^{Z\gamma} f_{\mu\nu}^{*(Z)} f^{*(\gamma),\mu\nu} + a_3^{Z\gamma} f_{\mu\nu}^{*(Z)} \tilde{f}^{*(\gamma),\mu\nu} \\ &+ a_2^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_1)} f^{*(\gamma_2),\mu\nu} + a_3^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_1)} \tilde{f}^{*(\gamma_2),\mu\nu} \right) \end{split}$$

measuring.higgs@cern.ch

Handles on deviations

Mass


- Exp. Uncertainties
- SM consistency: $(m_{H'}, m_{W'}, m_{top})$

□ Spin

- Are we happy now?
- Charge
 - Zero. (That was easy.)
- Parity

Amplitude decomposition \rightarrow EFT

- Scalar couplings
 - $\square \ \mathcal{K} \longrightarrow \ \mathcal{K} \ (\mathbf{q}) \longrightarrow \mathbf{f}(\mathbf{q}) \longrightarrow \mathsf{EFT}$

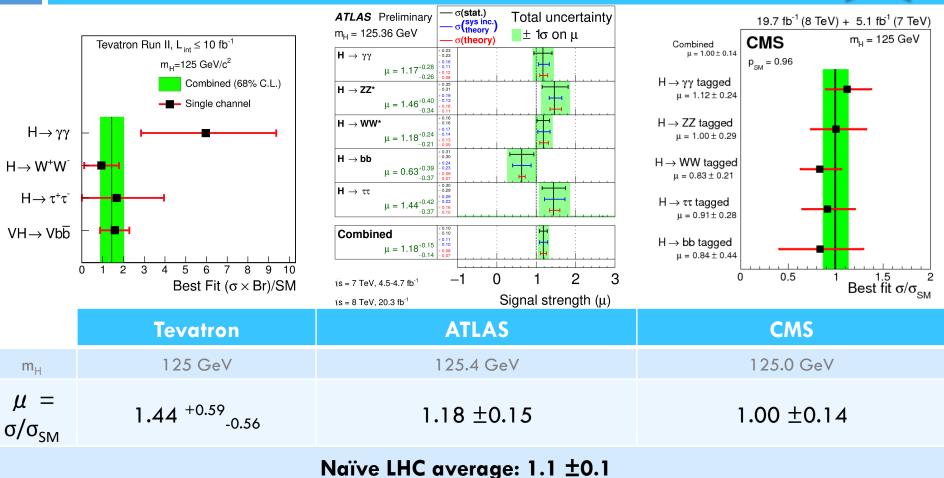
measuring.higgs@cern.ch

Oversimplified big picture

T - Tevatron; A - ATLAS; C - CMS	; combination drivers in red.
----------------------------------	-------------------------------

★ "seen" ★ "tried" ·"impossible"	н	→b	b	$H \rightarrow \tau \tau$		$H \rightarrow T T$		$H \rightarrow T T$		$H \rightarrow T T$		$H \rightarrow \tau \tau$		$H \rightarrow \tau \tau$		$H \rightarrow \tau \tau$		$H \rightarrow \tau \tau$		$H \rightarrow \tau \tau$		$H \rightarrow \tau \tau$		$H \rightarrow \tau \tau$		$H \rightarrow \tau \tau$		$H \rightarrow \tau \tau$		$H \rightarrow \tau \tau$		$H \rightarrow \tau \tau$		$H \rightarrow \tau \ au$		→W	w	н	→Z	Z	H-	$ ightarrow \gamma$	γ	H	→Z	r	H	→in	١٧.	H-	$ ightarrow \mu$	μ		∣→c →H																	
	т	А	С	т	А	С	Т	А	С	Т	А	С	т	А	С	Т	А	С	т	А	С	Т	А	С	т	А	С																																												
ggH	-	-	-	☆	*	*	☆	*	*	☆	*	*	☆	*	*	-	☆	☆				-	☆	☆	-																																														
VBF			☆	☆	*	*		*	*		*	☆		*	☆	-		☆			☆	-		☆	-																																														
VH	*	☆	*	☆		☆	☆	☆	☆		☆	☆		☆	☆	-				☆	☆	-			-																																														
ttH		☆	☆	☆		☆	☆							☆	☆	-						-			-																																														

□ Still much to explore on the rarer ends.


(to the right and to the bottom) (and outside this picture 🗮)

Relative signal strengths

77

[arXiv:1303.6346][ATLAS-CONF-2015-007][arXiv:1412.8662]

So small that you need a pipette

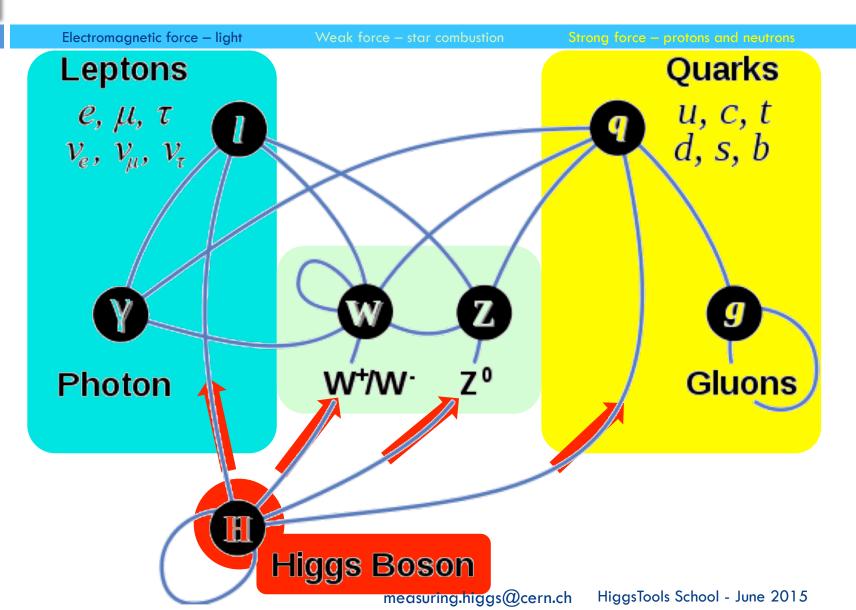
Particles smaller than the Higgs boson exist?

By PTI | 23 Mar, 2014, 01.52PM IST

1 comments | Post a Comment

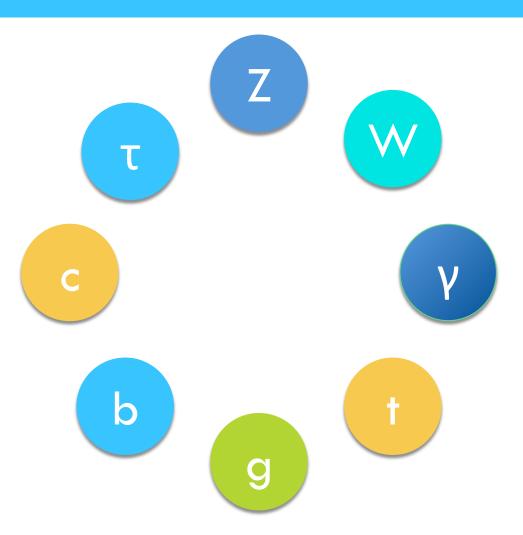
READ MORE ON » settlement option | net worth | Insurability

LONDON: There are unknown particles floating around the universe that may be even smaller than the Higgs boson, the 'God particle' discovered in 2012, scientists say.


The so-called techni-quarks can be the yet unseen particles, smaller than the Higgs particle that will form a natural extension of the Standard Model which includes three generations of quarks and leptons.

These particles together with the

Ryttov referred to the theories that have been put forward over the last five years for the existence of particles in the universe that are smaller than the Higgs particle.

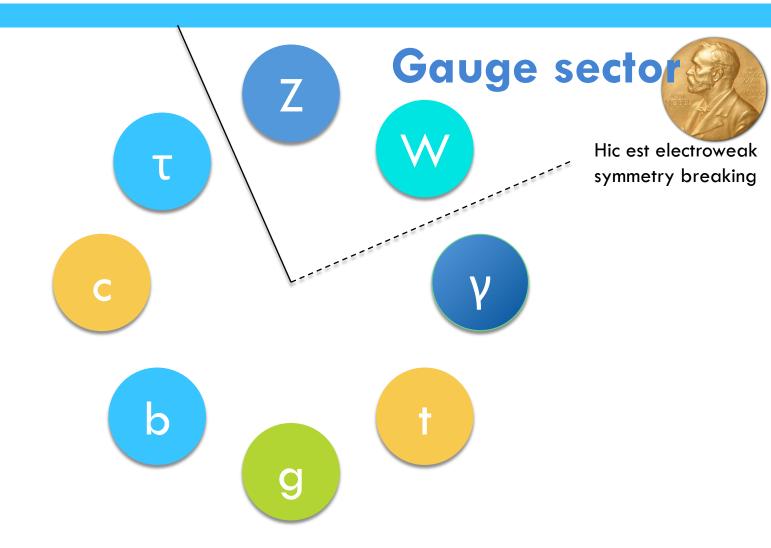

The Standard Model of Particle Physics

79

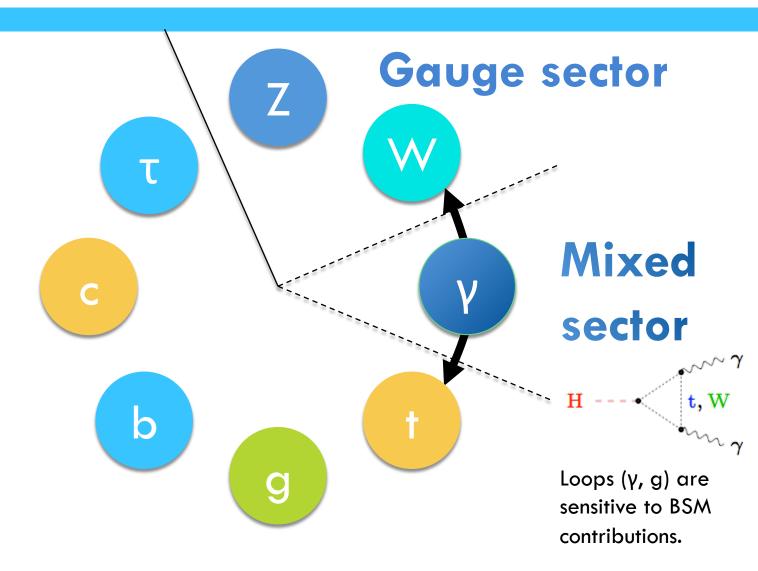
CERN

Scalar coupling structure

measuring.higgs@cern.ch HiggsTools School - June 2015

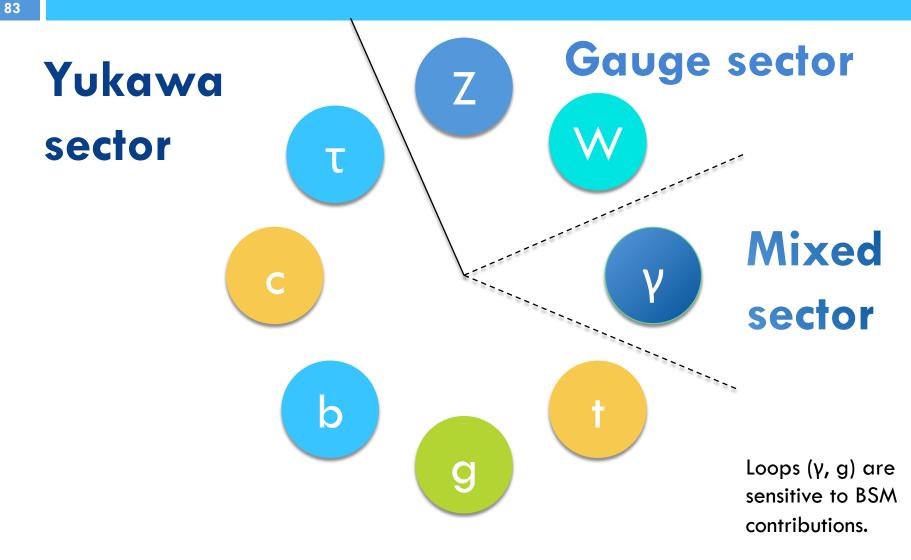

80

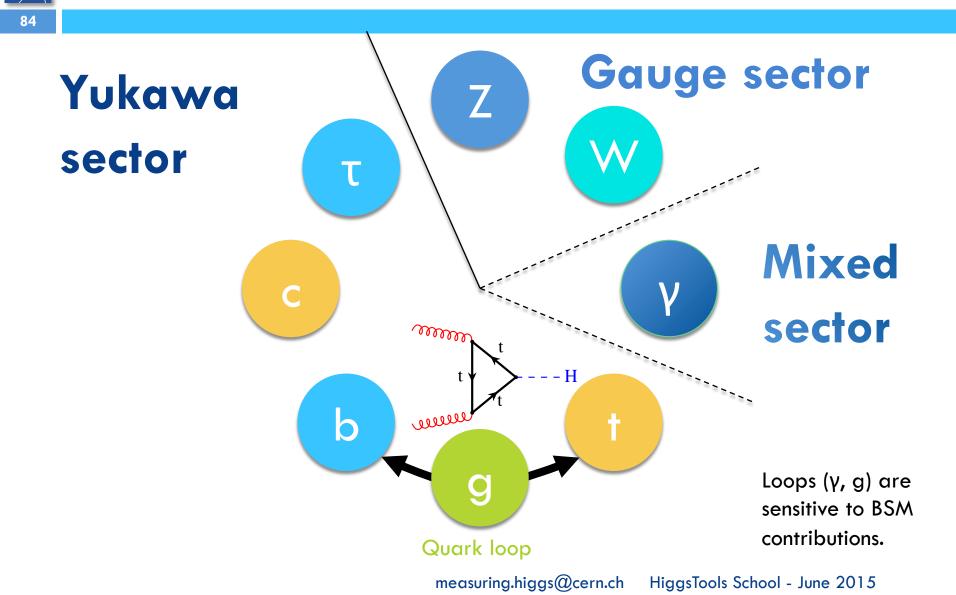
CERN


Scalar coupling structure

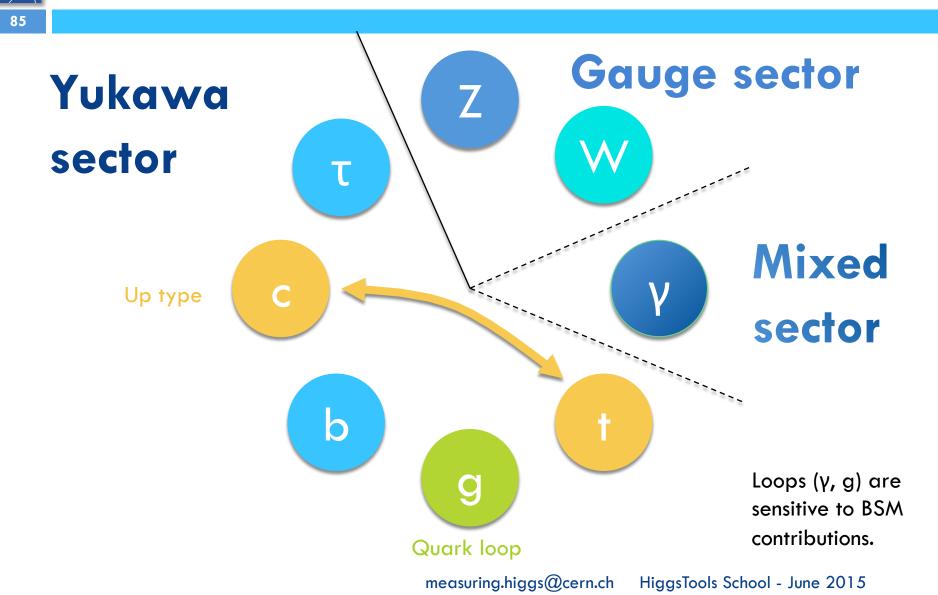
CERN

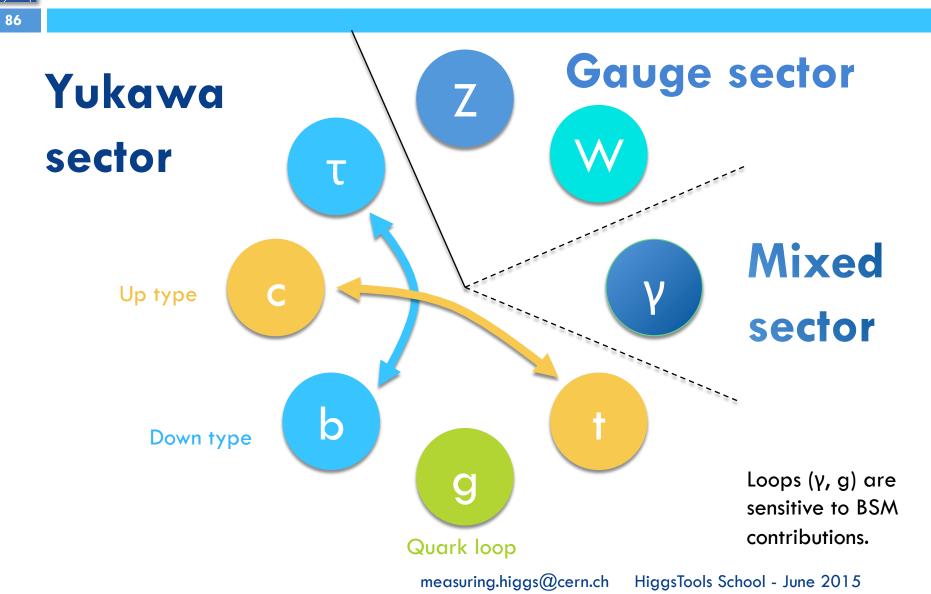
81

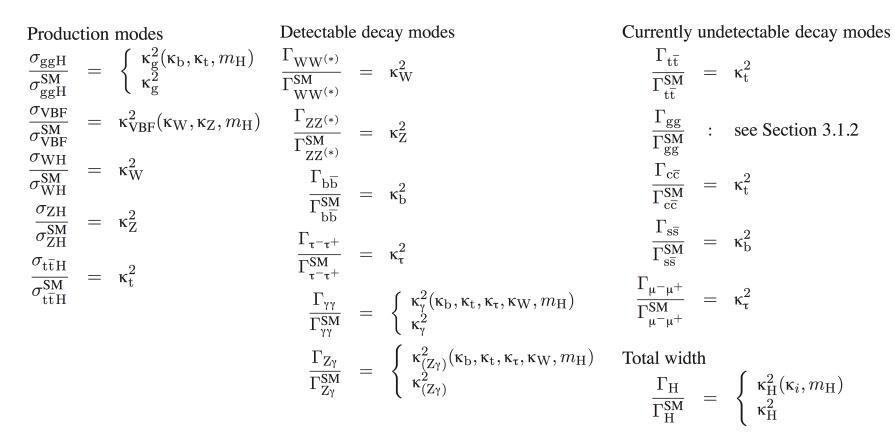

Scalar coupling structure


measuring.higgs@cern.ch HiggsTools School - June 2015

CERN

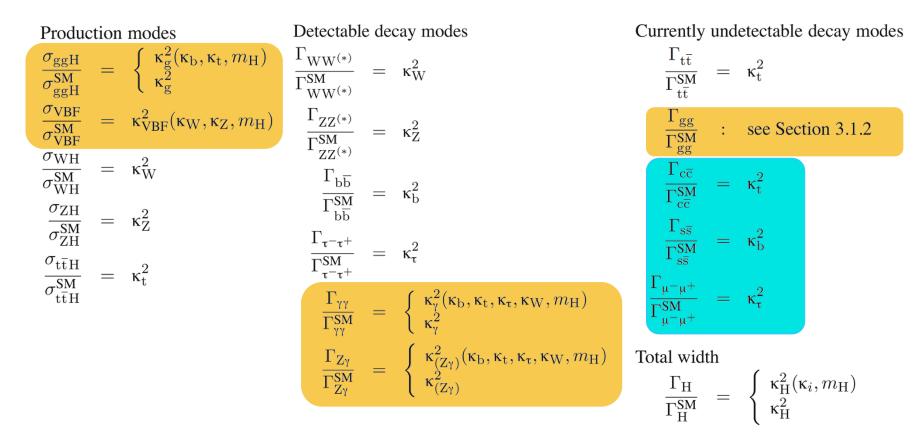






Scalar coupling deviations framework

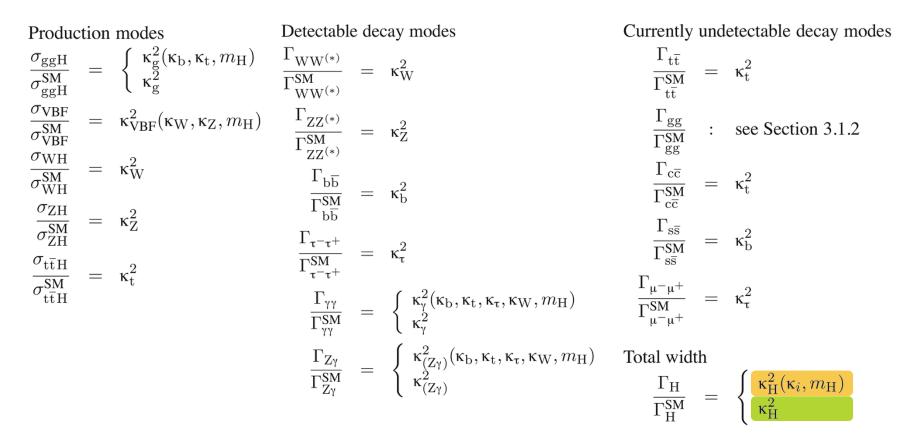
[arXiv:1307.1347]


87

- Single state, spin 0, and CP-even.
- Narrow-width approximation: ($\sigma \times BR$) = $\sigma \cdot \Gamma / \Gamma_{\mu}$

Scalar coupling deviations framework

[arXiv:1307.1347]


Loops resolved at NLO QCD and LO EWK accuracy.
 Peg the as-of-yet unmeasured to "closest of kin".

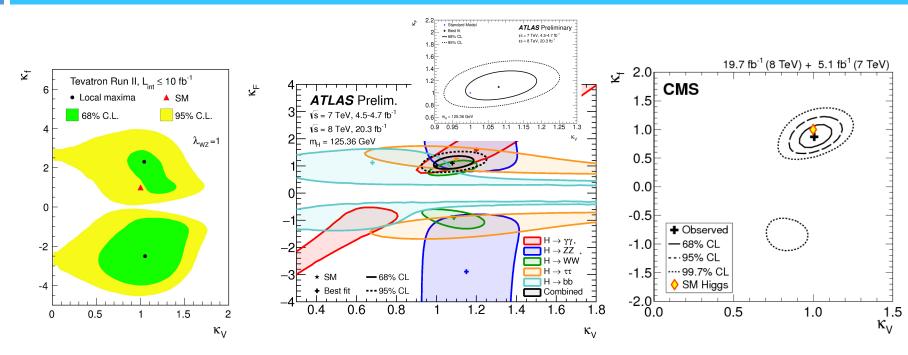
measuring.higgs@cern.ch HiggsTools School - June 2015

88

Scalar coupling deviations framework

[arXiv:1307.1347]

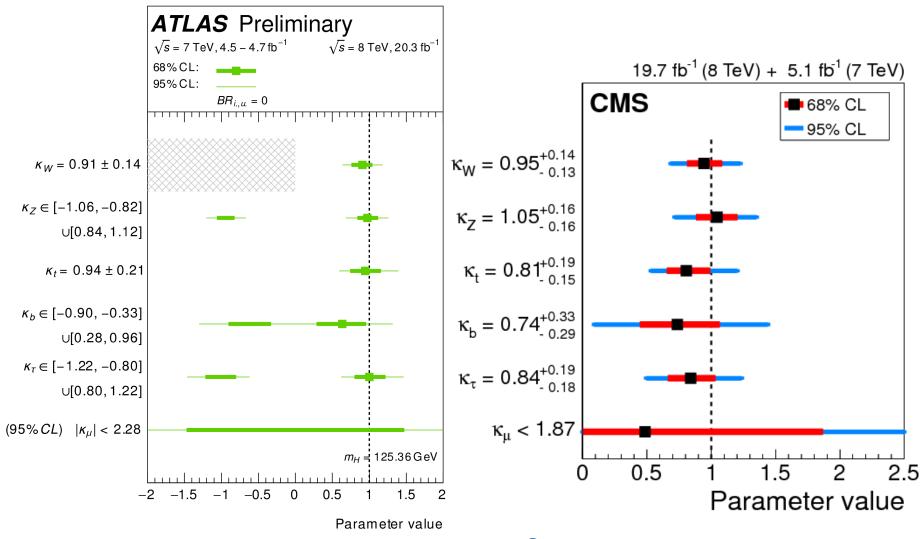
Total width as dependent function of all K_i.
 Total width scaled as free parameter: K_H.


measuring.higgs@cern.ch HiggsTools School - June 2015

89

Weak bosons and fermions

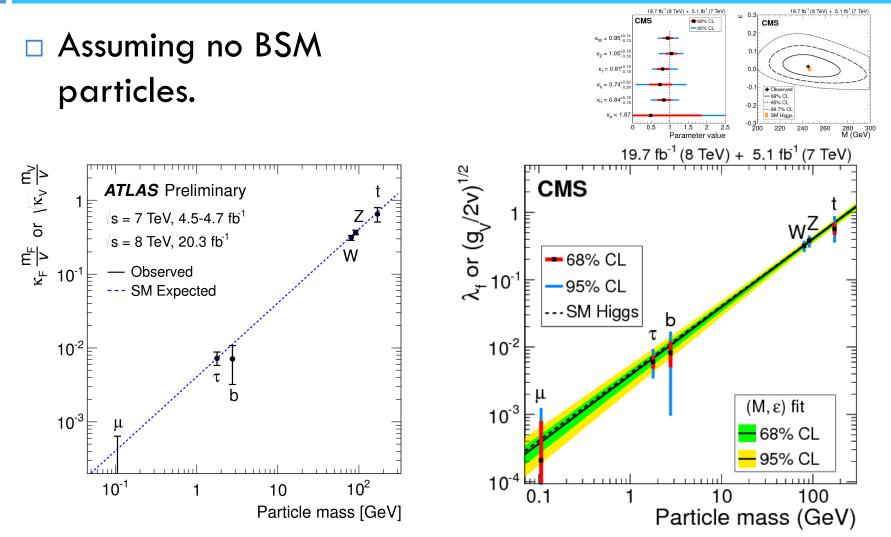
90


[arXiv:1303.6346][ATLAS-CONF-2015-007][arXiv:1412.8662]

	Tevatron	ATLAS	CMS
p(SM)	-	41%	< 1 <i>o</i>

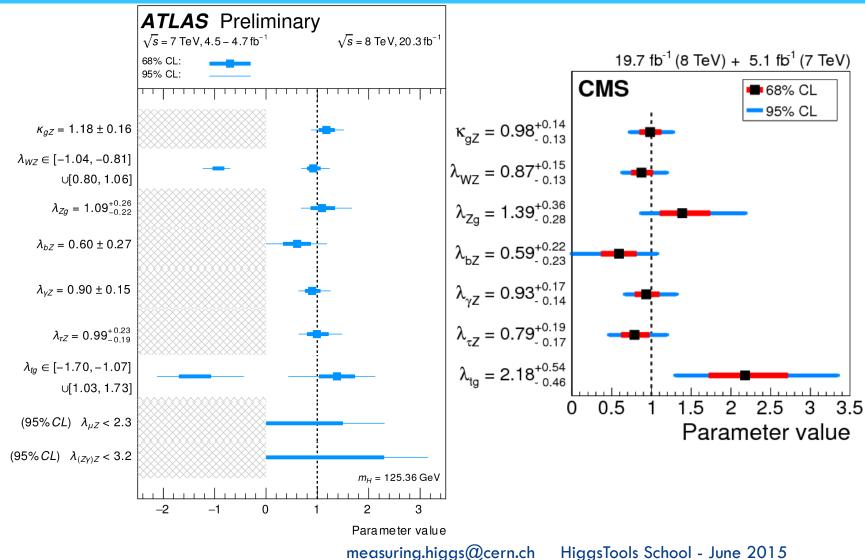
Resolving SM contributions

[ATLAS-CONF-2015-007][arXiv:1412.8662]



measuring.higgs@cern.ch HiggsToo

Coupling deviations summaries


[ATLAS-CONF-2015-007][arXiv:1412.8662][arxiv:1207.1693][arxiv:1303.3570]

measuring.higgs@cern.ch

The deviations that we do not (yet) see

ATLAS-CONF-2015-007][arXiv:1412.8662]

A very long way to go...

CÉRN 94

Decay Modes

	Mode	Fraction (Γ_i / Γ) C	Scale Factor/ Confidence .evel	P (MeV/c)			
	$H^0 \rightarrow WW^*$	seen					
2	$H^0 \rightarrow ZZ^*$	seen					
3	$H^0 o \gamma\gamma$	seen					
4	$H^0 ightarrow b\overline{b}$	possibly seen					
5	$H^0 o au^+ au^-$	possibly seen					
ombine	STRENGTHS IN DIFFERENT ed Final States	1.07 ±0.26				1	
ombine	ed Final States	1.07 ± 0.26	(S = 1.4)			1	
/ <i>W</i> * Fi	nal State	0.88 ± 0.33	(S = 1.1)				
Z^* Fin	al State	$0.89 \substack{+0.30 \\ -0.25}$					
γ Final	State	1.65 ± 0.33					
$\frac{b}{b}$ Final		$0.5 \stackrel{-}{}^{+0.8}_{-0.7}$	Decay Mode	S			
	inal State	0.1 ± 0.7	Γ_i	Mode	Fraction (Γ_i / Γ)	Scale Factor/ Confidence Level	P (MeV
			Γ_1	$Z \rightarrow e^+e^-$	3.363 ±0.004 %		4559
			Γ_2 Γ_3	$\begin{array}{c} Z \rightarrow \mu^+ \mu^- \\ Z \rightarrow \tau^+ \tau^- \end{array}$	3.366 ±0.007 % 3.370 ±0.008 %		4559 4555
			Γ_{4}	$\frac{Z \to \ell^+ \ell}{Z \to \ell^+ \ell^-}$	3.3658 ±0.0023 %		4000
			Γ_5	$Z \to \ell^+ \ell^- \ell^+ \ell^-$	$(4.2 + 0.9)_{-0.8} \times 10^{-6}$		4559
			Γ_6	Z ightarrow invisible	$(2.000 \pm .006) \times 10^{-1}$		
			Γ ₇	$Z \rightarrow$ hadrons	$(6.991 \pm .006) \times 10^{-1}$		
			Γ_8	$Z \rightarrow (u\overline{u} + c\overline{c})/2$.116 ±.006		
			Γ_9	$Z \rightarrow (d\overline{d} + s\overline{s} + b\overline{b})/3$	$.156 \pm .004$		
			Γ_{10}	$Z \rightarrow c\overline{c}$	$(1.203 \pm .021)$ ×10 ⁻¹		
			Γ_{11}	$Z \rightarrow b\overline{b}$	$(1.512 \pm .005) \times 10^{-1}$		
			F				

 Γ_{12}

measuring.higgs@cern.ch HiggsTools School - June 2015

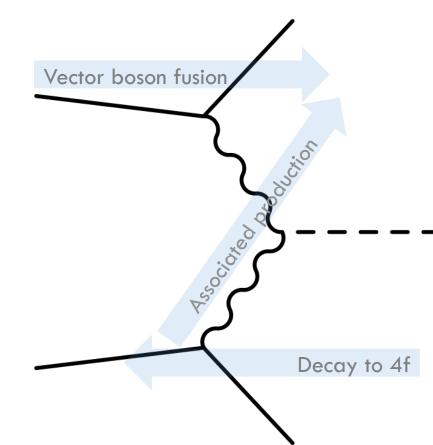
 $(3.6 \pm 1.3) \times 10^{-4}$

 $Z \rightarrow b\overline{b}b\overline{b}$

The future

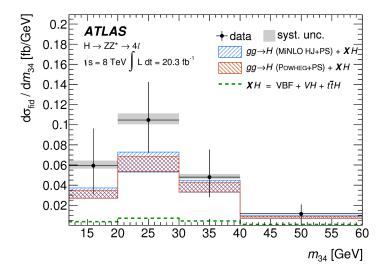
["Lawrence of Arabia" idea from C. Grojean]

- □ We must examine this Higgs to the fullest extent !
 - It may be the only clue to leave the SM oasis and cross the desert.



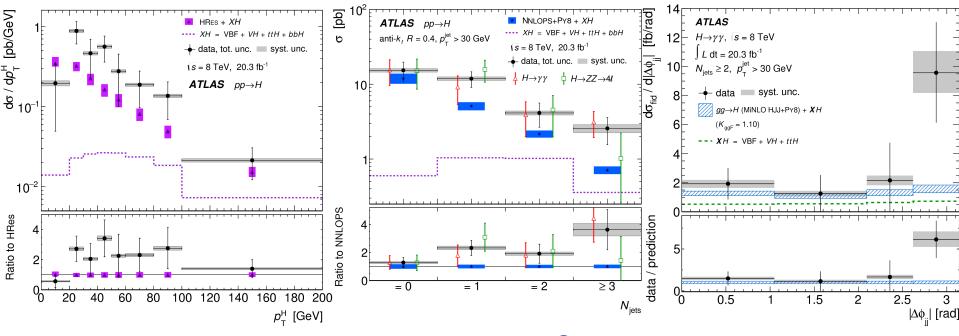
Prato dei Miracoli scalare

[http://goo.gl/K8Lqmu]


The many facets of HVV

CERN

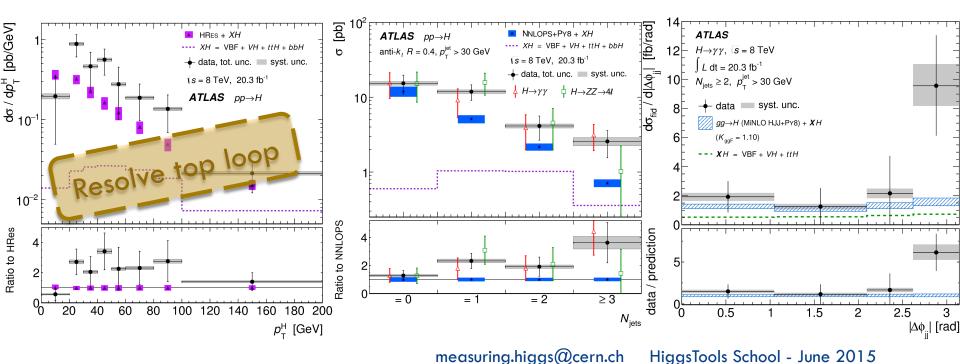
97


Decay	γ	γ*/Z*	Z
γ	1	1	1
γ*/Z*		? (∨BF)	✔ (VH)
Z			✓ (H*)

CÈRN

[arXiv:1407.4222][arXiv:1408.3226][arXiv:1504.05833]

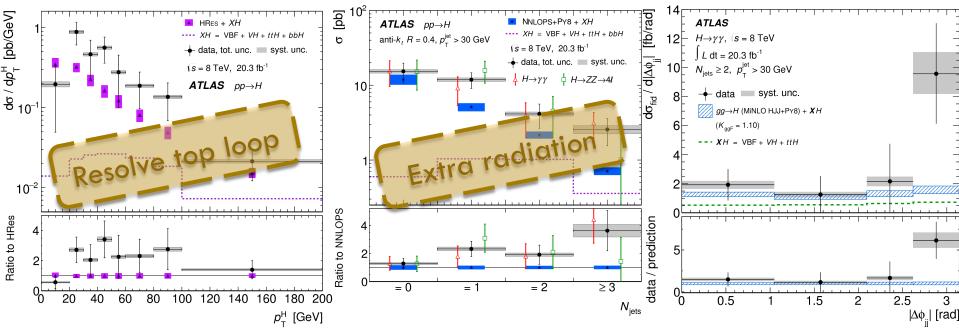
- Differential picture directly touches fundamental aspects:
 - The loop structure where new particles may be running (p_T shape).
 - The QCD structure of the calculations (N_{iets}).
- □ ATLAS H→γγ and ZZ results and the adventure of unfolding.
 □ Illustrates the power of having more statistics (signal-like excess).



measuring.higgs@cern.ch

CÉRN

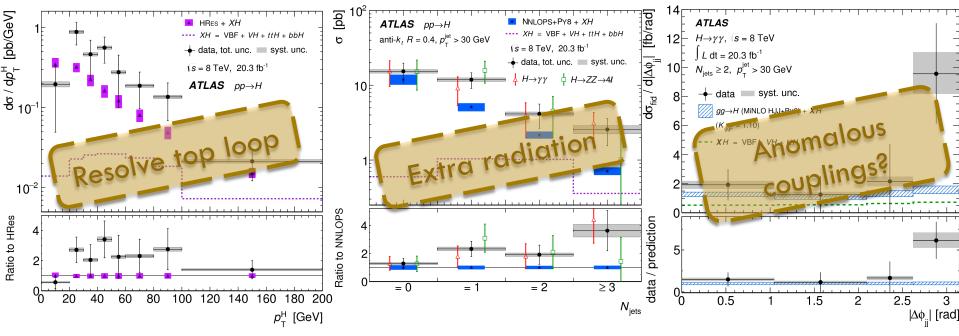
[arXiv:1407.4222][arXiv:1408.3226][arXiv:1504.05833]


- Differential picture directly touches fundamental aspects:
 - The loop structure where new particles may be running (p_T shape).
 - The QCD structure of the calculations (N_{iets}).
- □ ATLAS H→γγ and ZZ results and the adventure of unfolding.
 □ Illustrates the power of having more statistics (signal-like excess).

100

[arXiv:1407.4222][arXiv:1408.3226][arXiv:1504.05833]

- Differential picture directly touches fundamental aspects:
 - The loop structure where new particles may be running (p_T shape).
 - The QCD structure of the calculations (N_{iets}).
- □ ATLAS H→γγ and ZZ results and the adventure of unfolding.
 □ Illustrates the power of having more statistics (signal-like excess).



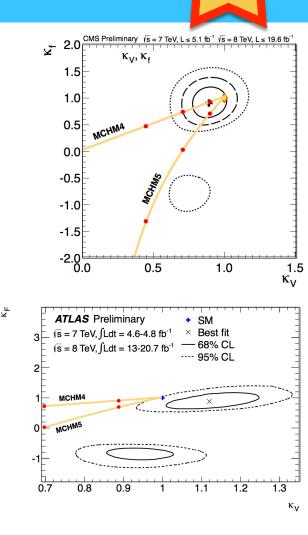
measuring.higgs@cern.ch H

101

[arXiv:1407.4222][arXiv:1408.3226][arXiv:1504.05833]

- Differential picture directly touches fundamental aspects:
 - The loop structure where new particles may be running (p_T shape).
 - The QCD structure of the calculations (N_{iets}).
- □ ATLAS H→γγ and ZZ results and the adventure of unfolding.
 □ Illustrates the power of having more statistics (signal-like excess).

measuring.higgs@cern.ch Hi

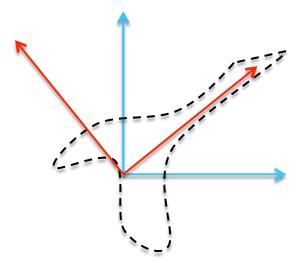


102

From deviations to EFTs

- Today we talk about deviations from the SMH.
 - arXiv:1209.0040 or equivalent.
 - Draw/exclude your own theory. →
- One (single) nice feature: K =1
 recovers best SMH calculations.
 - But that's it: we can find deviations, but only roughly fathom their meaning.

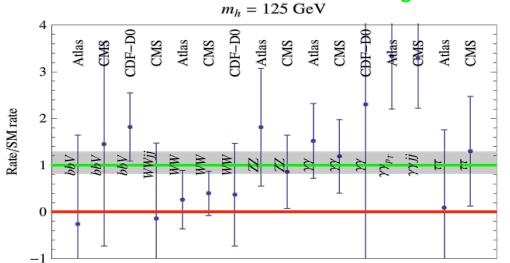
Deviations are on a diet



[NPB 268 (1986) 621]

104

- Instead of just using experimentallydriven parameters interpret with basis of QFT operators that may encode the fingerprint of BSM physics.
- EFT allows for accurate calculations.
 - NLO EWK effects, etc.
 - More sensitive interpretation.
- 2499 dim-6 operators mapped out in 1986.
 - Which operators to keep?
 - What about dim-8?
 - What about loop processes?
- Where is the interface between experiment and theory?
 - How to quote results?

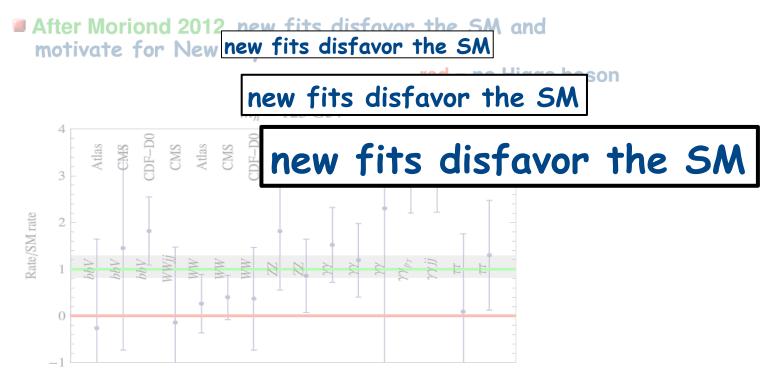


In 2012 some theorists speculated...

105 [http://goo.gl/CVm6s]

After Moriond 2012, new fits disfavor the SM and motivate for New Physics

> red = no Higgs boson green = SM

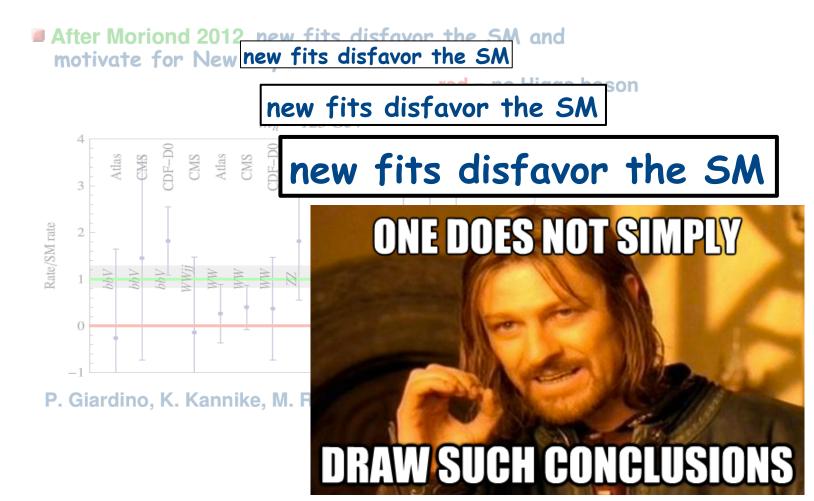


P. Giardino, K. Kannike, M. Raidal, A. Strumia, 1203.4254

CERN

In 2012 some theorists speculated...

106 [http://goo.gl/CVm6s]



P. Giardino, K. Kannike, M. Raidal, A. Strumia, 1203.4254

CERN

In 2012 some theorists speculated...

107 [http://goo.gl/CVm6s]

Prato dei Miracoli scalare

108 [http://goo.gl/K8Lqmu]["Scalar meadow"]

H⁰

Hº Hº Hº

Boson discovery & first measurements

H^o

measuring.higgs@cern.ch HiggsTools School - June 2015

Prec

Search

dev

measurements

109

Outlook

- LHC13: last chance before "direct BSM desert".
 - Tevatron: Run I → top discovery, Run II → SM precision.
 - □ LHC 2010: early SUSY and EXO exclusions.

Higgs, one way out of the "SM oasis":

- From O(10%) to differential.
- From "seen" to O(%) measurements.
- From limits on rare things to observations.
- From conjectures on weird things, to putting limits on them.
- From ad-hoc κ fits to global EWK/flavour EFT fits.
- We have a long way to go. All it takes is ⊚n⊛ deviation.

Prato dei Miracoli scalare

110 [http://goo.gl/K8Lqmu]["Scalar meadow"]

H⁰

Hº Hº Hº

Boson discovery & first measurements

H^o

measuring.higgs@cern.ch HiggsTools School - June 2015

Prec

Search

dev

measurements

Prato dei Miracoli scalare

[http://goo.gl/K8Lqmu]["Scalar meadow"]

199 years of patient construction

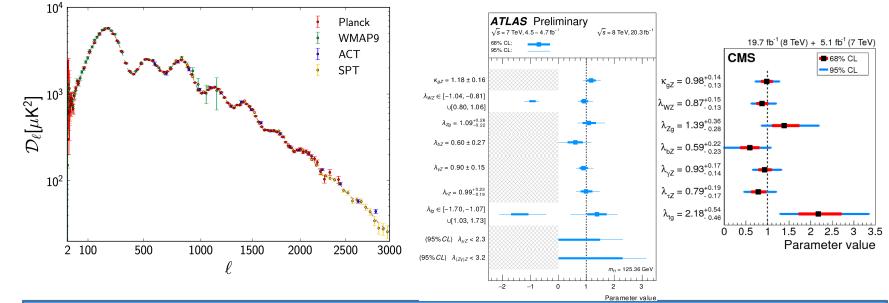
Prato dei Miracoli scalare

[http://goo.gl/K8Lqmu]["Scalar meadow"]

199 years of patient construction

... and 44 years of modern stabilisation work

Prec measurements Searche devidti



The beautiful boring Universe today

113

arXiv:1303.5062][ATLAS-CONF-NOTE-2015-007][arXiv:1412.8662]

□ Up above: "Simple sixparameter ∧ CDM". Down below: (Not-as-simple)
 ~20-parameter Standard Model of Particle Physics.

Looking forward to LHC combination and surprises at higher energy: PeV neutrinos, LHC 13 TeV, ...

"...and references therein."

- Experiments' pages on Higgs results:
 - ATLAS: <u>http://cern.ch/go/7IDT</u>
 - □ CMS: <u>http://cern.ch/go/6qmZ</u>
 - Tevatron: <u>http://cern.ch/go/h9jX</u>
 - CDF: <u>http://cern.ch/go/q8NV</u>
 - D0: <u>http://cern.ch/go/9Djq</u>
- Partial list of conferences and workshops:
 - Higgs Days 2013: <u>http://cern.ch/go/6zBp</u>
 - ECFA HL-LHC workshop: <u>http://cern.ch/go/SFW6</u>
 - Higgs EFT 2013: <u>http://cern.ch/go/bR7w</u>
 - Higgs Couplings 2013: <u>http://cern.ch/go/THp9</u>
 - □ Moriond 2014: <u>http://cern.ch/go/k8FP</u>
 - Bernasque 2014: <u>http://cern.ch/go/Pz7I</u>
 - ICHEP 2014: <u>http://cern.ch/go/8Btf</u>
 - Rencontres du Vietnam 2014: <u>http://cern.ch/go/9ZJJ</u>
 - Zuoz Summer School 2014: <u>http://cern.ch/go/9SHw</u>
 - Higgs Days 2014: <u>http://cern.ch/go/lfP6</u>
 - Higgs Couplings 2014: <u>http://cern.ch/go/HMm6</u>

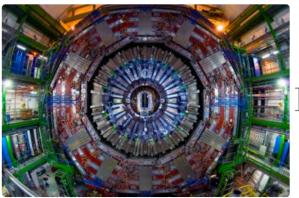
Menu of discussion topics

- 1. EFT and pseudo-observables.
- 2. What's in a signal strength?
- 3. CMS H→γγ analysis.
- 4. The maximum entropy coincidence.
- 5. What's inside the CMS combination?
- 6. Concrete BSM model searches.
- 7. Tensor structure: spin/CP.
- 8. More on the $m_{\rm H}$ combination.
- 9. Going off-shell.
- 10. HL-LHC extrapolations.
- 11. Kappa: BSM interpretations.
- 12. Statistics primer.

Menu of discussion topics

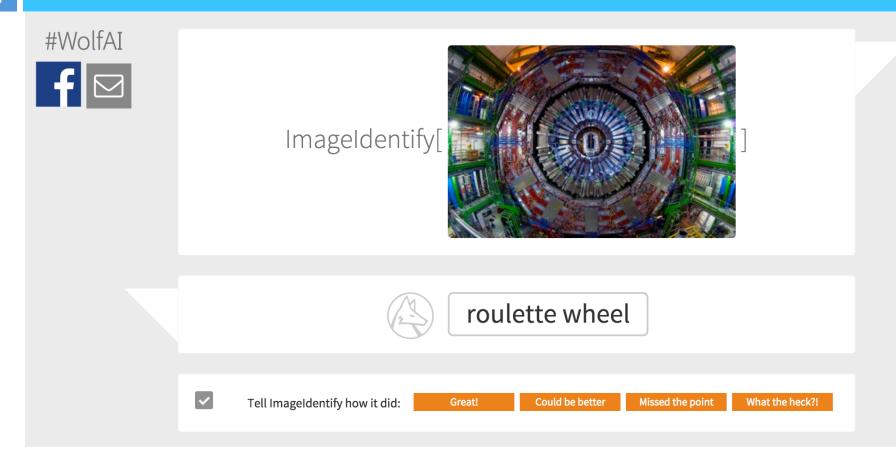
In my biased preferred order:

- 1. EFT and pseudo-observables.
- 2. What's in a signal strength?
- 3. CMS H→γγ analysis.
- 4. The maximum entropy coincidence.
- 5. What's inside the CMS combination?
- 6. Concrete BSM model searches.
- 7. Tensor structure: spin/CP.
- 8. More on the m_H combination.
- 9. Going off-shell.
- 10. HL-LHC extrapolations.
- 11. Kappa: BSM interpretations.
- 12. Statistics primer.

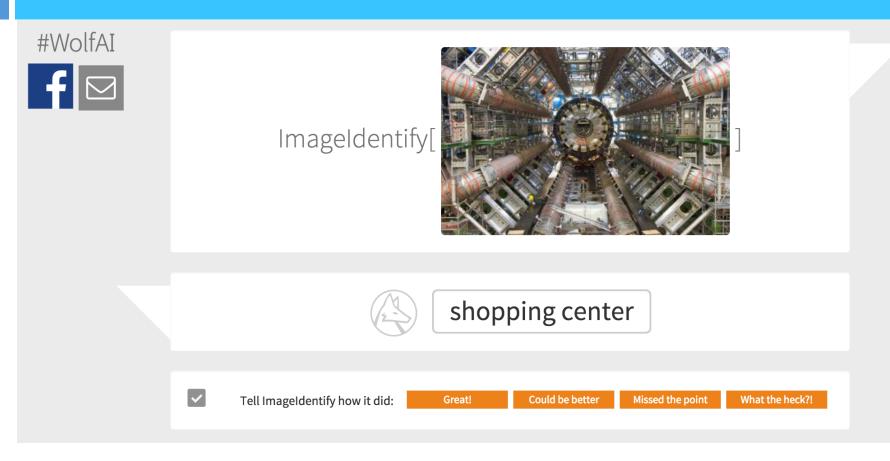


119

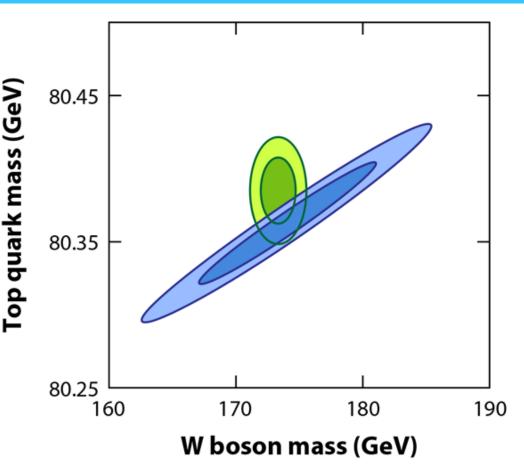
#WolfAI


ImageIdentify[

#WolfAI


Imageldentify[

123


ATLAS+CMS m_H in PRL

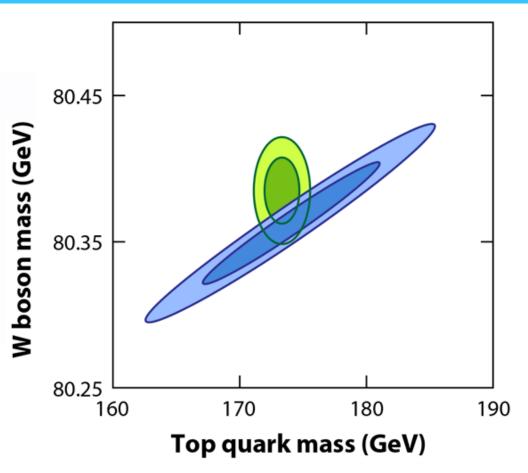
[PRL 114 (2015) 191803][http://physics.aps.org/articles/v8/45]

First ATLAS+CMS publication.

• 0.2% precision.

 PRL Viewpoint by Chris Quigg: "With LHC Run 2 [we] can look forward to a new round of exploration, searches for new phenomena, and refined measurements. Combined analyses [...], such as the measurement of the Higgs boson mass discussed here, will help make the most of the data. We still have much to learn about the Higgs boson, the electroweak theory, and beyond."

124


ATLAS+CMS m_H in PRL

[PRL 114 (2015) 191803][http://physics.aps.org/articles/v8/45]

First ATLAS+CMS publication.

• 0.2% precision.

PRL Viewpoint by Chris Quigg: "With LHC Run 2 [we] can look forward to a new round of exploration, searches for new phenomena, and refined measurements. Combined analyses [...], such as the measurement of the Higgs boson mass discussed here, will help make the most of the data. We still have much to learn about the Higgs boson, the electroweak theory, and beyond."

¹²⁶ What's in a signal strength

¹²⁷ EFT and pseudo-observables

Some things are convention

128

US markets will be affected by 'leap second' | New York ... New York Post - Jun 27, 2015 Comment(required). June 27, 2015 | 11:10pm ... This "leap second" will occur as the clock strikes 8 p.m. in New York. The last time this happened was in 2012, ...

Leap second on June 30 will be 'mini-Y2K'

USA TODAY - Jun 22, 2015

Short on time? Don't worry. This month you'll get an extra second. "leap second" will be added on June 30 at midnight Coordinated Universal ...

Will the **leap second** on June 30 break the Internet? In-Depth - Daily Times - Jun 21, 2015

Explore in depth (11 more articles)

A **leap second** will be added to time next week but watch ... The Independent - Jun 24, 2015 Thursday 25 June **2015** ... When the last **leap second** kicked in, on a Saturday night in June 2012, websites including Reddit and LinkedIn faltered as servers got ...

What does the **leap second** mean for government IT? GCN.com - Jun 25, 2015

Explore in depth (8 more articles)

Leap Second 2015: Why This Tuesday Will Be Longer T

Chinatopix - 47 minutes ago Leap Second 2015 — Experts recently announced that Tuesday, June 30, will be longer than usual. Why? Because leap second wil occur.

Will the 'leap second' break the internet?

SBS - Jun 23, 2015

Leap seconds are adjustments to international time that take the slowing of Earth's rotation into account, which changes slightly from day to day.

Leap second: What is the extra second you will get on 30 June? International Business Times UK - Jun 23, 2015

Explore in depth (3 more articles)

Is the Leap Second 2015 a danger like Y2K?

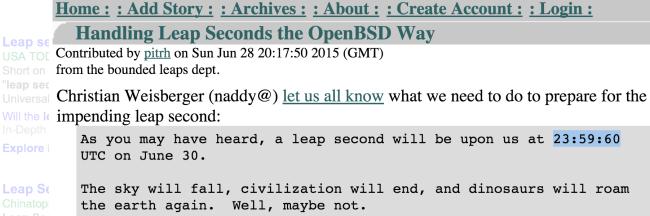
TWCN Tech News (blog) - Jun 14, 2015 Many IT companies are dreading over the **leap second 2015**. Most of these companies are considering the leap second as another Y2Klike ...

measuring.higgs@cern.ch

HiggsTools School - June 2015

Some things are convention

CERN


129

Neither the OpenBSD kernel nor OpenNTPD handle leap seconds in any way. So what will happen?

After the leap second, your OpenBSD system's time will be off by, well, one second. Gasp, shock. Let's say you synchronize your clock with ntpd against a server that does have the correct time. At the next poll, i.e. within about half an hour, ntpd will notice the offset and correct it, which will take a few minutes. That's it. (I expect ntpd will drop down to a short poll interval and the frequency correction will fishtail a bit since it's a differentiator reacting to a jump.) tt week but watch ..

second kicked in, on a g Reddit and LinkedIn

nent IT?

```
I time that take the changes slightly from
```

ill get on 30 June?

```
Y2K?
```

second 2015. Most of ond as another Y2K-

Unless you obsessively watch your ntpd, you won't notice a thing.

Some things are convention

CERN

130

US markets will be affected by 'leap second' | New York … New York Post - Jun 27, 2015 Comment(required). June 27, 2015 | 11:10pm ... This "leap second" will occur as the clock strikes 8 p.m. in New York. The last time this happened was in 2012, ...

Leap second on June 30 will be 'mini-Y2K'

How does Google handle this event?

We have a clever way of handling leap seconds that we <u>posted</u> about back in 2011. Instead of repeating a second, we "smear" away the extra second. During a 20-hour "smear window" centered on the leap second, we slightly slow all our servers' system clocks (by approximately 14 parts per million). At the end of the smear window, the entire leap second has been added, and we are back in sync with civil time. (This method is a little simpler than the leap second handling we posted back in 2011. The outcome is the same: no time discontinuities.) Twenty hours later, the entire leap second has been added and we are back in sync with non-smeared time.

Leap second: What is the extra second you will get on 30 June? International Business Times UK - Jun 23, 2015 Explore in depth (3 more articles)

Is the Leap Second 2015 a danger like Y2K? TWCN Tech News (blog) - Jun 14, 2015 Many IT companies are dreading over the leap second 2015. Most or these companies are considering the leap second as another Y2Klike ...

measuring.higgs@cern.ch

HiggsTools School - June 2015

Some things are not convention

Something is going to happen on June 30th that hasn't happened in over 2,000 years

Sunday, June 28, 2015 14:41



131

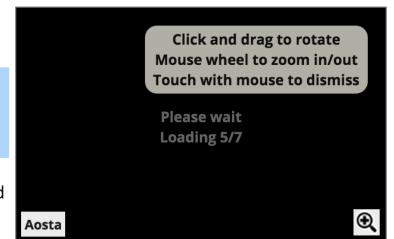
(Before It's News)

Sunday, June 28, 2015

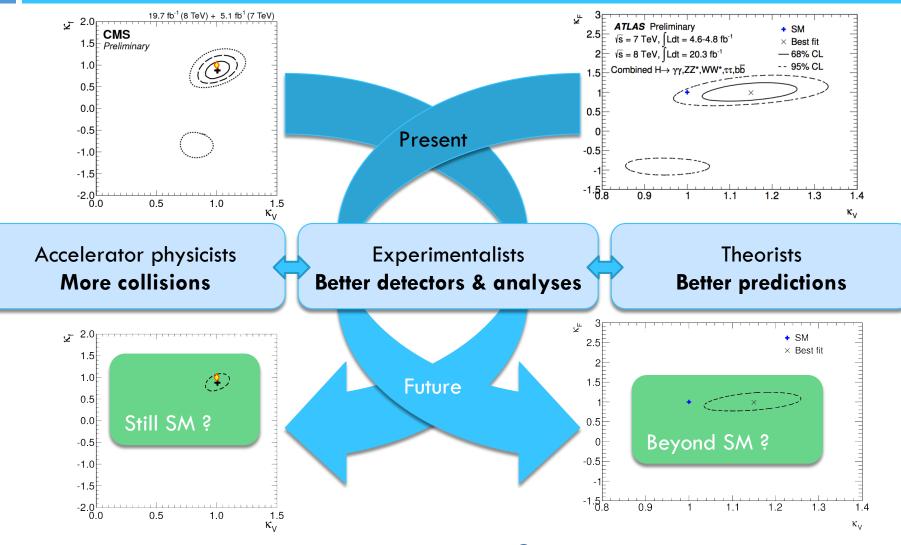
Something is going to happen on June 30th that hasn't happened in over 2,000 years

Some things are not convention

Conjunction between Venus and Jupiter

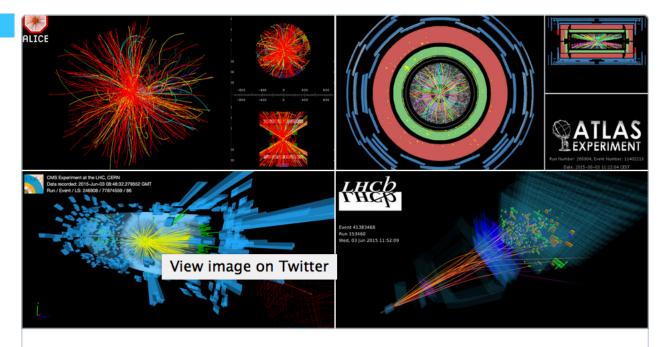

Wed, 01 Jul 2015 at 06:02 CEST (Tomorrow) 04:02 UTC

Dominic Ford, Editor From the Conjunctions feed


Venus and Jupiter will make a close approach, passing within 0°20' of each other.

From Aosta (click to change), the pair will be difficult to observe as they will appear no higher than 18° above the horizon. They will become visible at around 21:45 (CEST) as the dusk sky fades, 18° above your western horizon. They will then sink towards the horizon, setting 2 hours and 17 minutes after the Sun at 23:37.

The future is in precision and accuracy

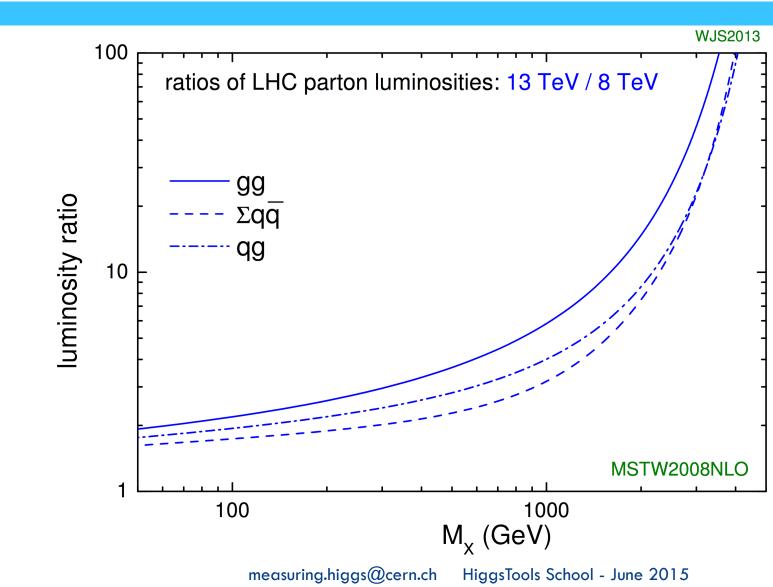

measuring.higgs@cern.ch HiggsTod

HiggsTools School - June 2015

Back to the #13TeV future

CERN

135



The LHC experiments are back in business with record energy collisions of #13TeV: cern.ch/go/D7z6

12:41 PM - 3 Jun 2015

🛧 🔁 853 ★ 558

Back to the #13TeV future

 BBC
 Sign in
 News
 Sport
 Weather
 Shop
 Earth
 Trave

 NEWS

 Home
 Video
 World
 UK
 Business
 Tech
 Science
 Magazine
 Entertainment & Arts

 Science & Environment

Large Hadron Collider turns on 'data tap'

By Paul Rincon Science editor, BBC News website

() 3 June 2015 | Science & Environment

The CMS experiment team celebrated when the first collisions occurred

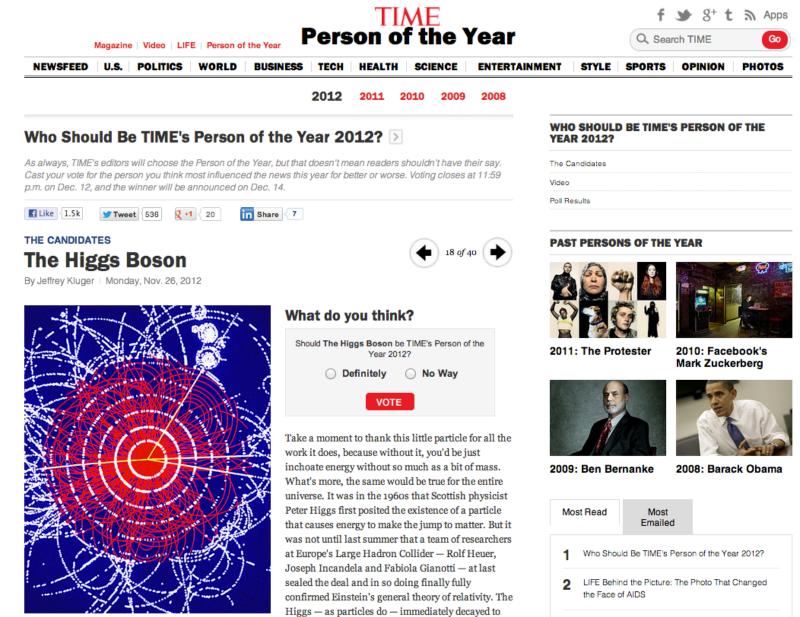
Lunch – Waldorf-Astoria style

139 [http://cern.ch/go/Ns8X]

"Two waiters serve two steel workers lunch, on a girder high above New York City, 1930. (Photo by Keystone/Getty Images)"

4-box summary

Fiducial crosssections are a lot of bins. Kappas cannot describe many SM deformations.


> Need to extend kappas to something between the other two.

Wilson coefficients deeply rooted in TH.

Standard Model of Particle Physics

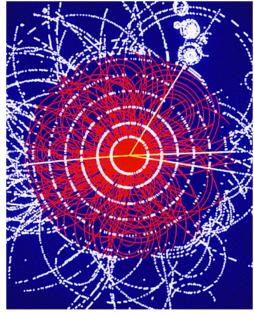
[http://cern.ch/go/dW6z]

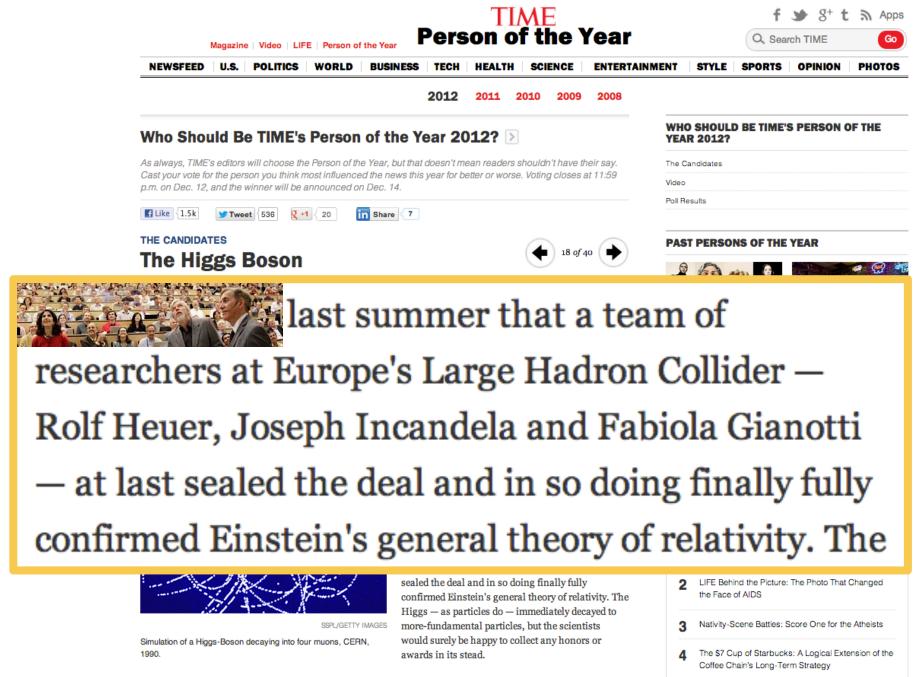
 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu$ $M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{w}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{q^{2}} + \frac{2M}{q}H + \frac{1}{2}(H^{2} + \phi^{0}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \psi^{0})] + \frac{2M^{4}}{q}M_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-}) + \frac{2M^{4}}{q}M_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-}) + \frac{$ $W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs$ $A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+$ $g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - Z_{\mu}^{b}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] + \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] + \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{2} + 4(\phi^{+}\phi^{-})^{2}\phi^{+}\phi^{-}] + \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{2} + 4(\phi^{+}\phi^{-})^{2}\phi^{+}\phi^{$ $4H^{2}\phi^{+}\phi^{-} + 2(\phi^{0})^{2}H^{2}] - gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c_{w}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{$ $\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W^{-}_{\mu}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s^{2}_{w}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s^{2}_{w}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^$ $W_{\mu}^{-}\phi^{+}) + igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - ig\frac{1-2c_{w}^{2}}{2c_{w}}Z_{\mu}^{0}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) + igs_{w}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) - ig\frac{1-2c_{w}^{2}}{2c_{w}}Z_{\mu}^{0}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) - ig\frac{1-2c_{w}^{2}}{2c_{w}}Z_{\mu}^{0}(\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) - ig\frac{1-2c_{w}^{2}}{2$ $\frac{1}{4}g^2W^+_{\mu}W^-_{\mu}[H^2 + (\phi^0)^2 + 2\phi^+\phi^-] - \frac{1}{4}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + \phi^-)] - \frac{1}{4}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + \phi^-)] - \frac{1}{4}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + \phi^-)] - \frac{1}{4}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + \phi^-)] - \frac{1}{4}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + \phi^-)]$ $W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} + W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig$ $g^{2} \frac{s_{w}}{c_{w}} (2c_{w}^{2}-1) Z_{\mu}^{0} \bar{A}_{\mu} \phi^{+} \phi^{-} - g^{1} s_{w}^{2} A_{\mu} A_{\mu} \phi^{+} \phi^{-} - \bar{e}^{\lambda} (\gamma \partial + m_{e}^{\lambda}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} - \bar{u}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{d}^{$ $igs_wA_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_j^{\lambda}\gamma^{\mu}u_j^{\lambda}) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma^{\mu}d_j^{\lambda})] + \frac{ig}{4c_w}Z^0_{\mu}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_w^2 - 1 - \gamma^5)e^{\lambda}) + (\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2 - 1 - \gamma$ $1 - \gamma^{5})u_{j}^{\lambda}) + (\bar{d}_{j}^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_{w}^{2} - \gamma^{5})d_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{+}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[($ $\gamma^{5}(\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_{e}^{\lambda}}{M}[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] - \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \bar{e}^{\lambda}(1-\gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \bar{e}^{\lambda}(1-\gamma^{5})e^{\lambda})] - \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda})$ $i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})u_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda$ $m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}] - \frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda}) - \frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda}) + \frac{ig}{2}\frac{m_u^{\lambda}}{M}\phi^0(\bar{u}_i^{\lambda}\gamma^5u_j^{\lambda}) - \frac{ig}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{d}_j^{\lambda}\gamma^5d_j^{\lambda}) + \bar{X}^+(\partial^2 - \bar{U}_j^{\lambda}) + \bar{X}^$ $M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{c_{w}^{2}})\bar{X}^{0} + \bar{Y}\partial^{2}\bar{Y} + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}\bar{X}^{-} - \partial_{\mu}\bar{X}^{+}X^{0}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{X}^{+}\bar{X}^{0}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{X}^{-}\bar{X}^{0}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{X}$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) \\ + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) \\ + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{-}) + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{-}) \\ + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{-})$ $igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{w}^{2}}{2c_{w}}igM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{\mu}\bar{X}^{-}A^{-}] - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{w}^{2}}{2c_{w}}igM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{\mu}\bar{X}^{-}A^{-}] - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{w}^{2}}{2c_{w}}igM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{\mu}\bar{X}^{-}A^{-}] - \frac{1}{2}gM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{\mu}\bar{X}^{-}] - \frac{1}{2}gM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{\mu}\bar{X}^{-}] - \frac{1}{2}gM[\bar{X}^{+}X^$ $\bar{X}^{-}X^{0}\phi^{-}] + \frac{1}{2c_{w}}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}ig\tilde{M}[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

SSPL/GETTY IMAGES

Simulation of a Higgs-Boson decaying into four muons, CERN, 1990.

Photos: Step inside the Large Hadron Collider.


more-fundamental particles, but the scientists


would surely be happy to collect any honors or

measuring.higgs@cern.ch HiggsTools School - June 2015

awards in its stead.

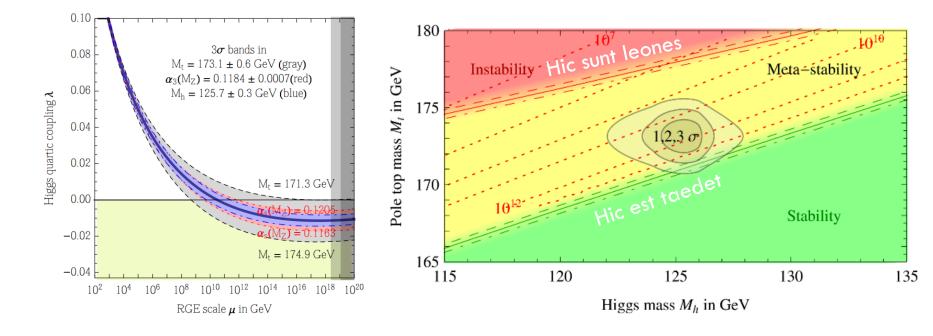
Nativity-Scene Battles: Score One for the Atheists 3 The \$7 Cup of Starbucks: A Logical Extension of the Δ Coffee Chain's Long-Term Strategy

Photos: Step inside the Large Hadron Collider.

measuring.higgs@cern.ch

HiggsTools School - June 2015

Standard **Theory** of Particle Physics


[http://cern.ch/go/dW6z]

 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{c}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{a}$ $\partial_{\nu}W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2c^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{b}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\mu} - \frac{1}{2$ $M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{w}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{q^{2}} + \frac{2M}{q}H + \frac{1}{2}(H^{2} + \phi^{0}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \psi^{0})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-} - \psi^{0})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\mu}Z_{\mu}^{0}(W_{\mu}^{-}W_{\mu}^{-} - \psi^{0})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\mu}Z_{\mu}^{0}(W_{\mu}^{-}W_{\mu}^{-} - \psi^{0})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\mu}Z_{\mu}^{-}W_{\mu}^{-} - \psi^{0})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\mu}Z_{\mu}^{-}W_{\mu}^{-} - \psi^{0})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\mu}Z_{\mu}^{-}W_{\mu}^{-}W_{\mu}^{-} - \psi^{0})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial$ $W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-}] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^$ $W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} +$ $A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-}-W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+})+A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-})$ $g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-}-Z_{\mu}^{0}Z_{\nu}^{0}W_{\nu}^{+}W_{\nu}^{-})$ $+ q^2 s_w^2 (A_\mu W_\mu^+ A_\nu W_\mu^- - A_\mu A_\mu W_\mu^+ W^-) + g^2 s_w c_w [A_\mu Z_\nu^0 (W_\mu^+ W_\mu^- - A_\mu A_\mu W_\mu^+ W_\mu^- - A_\mu A_\mu W_\mu^+ W_\mu^- - A_\mu A_\mu W_\mu^+ W_\mu^-)]$ $W^+_{\nu}W^-_{\mu}) - 2A_{\mu}Z^0_{\mu}W^+_{\nu}W^-_{\nu}] - q\alpha[H^{\dagger}]$ $\alpha_h [H^4 + (\phi^0)^4 + 4(\phi^+\phi^-)^2 + 4(\phi^0)^2 \phi^+ \phi^- +$ $4H^2\phi^+\phi^-+2(\phi^0)^2H^2]-gMV$ $-\phi \ \partial_{\mu}\phi^{0}) - W^{-}_{\mu}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] +$ $-\phi^0\partial_\mu H) - ig \frac{s_w}{c} M Z^0_\mu (W^+_\mu \phi^- () + igs_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - \phi^- \partial_\mu \phi^+) - \phi^- \partial_\mu \phi^+) - \phi^- \partial_\mu \phi^+$ $[\phi^{0}]^{2} + 2(2s_{u}^{2}-1)^{2}\phi^{+}\phi^{-}] - \frac{1}{2}g^{2}\frac{s_{w}^{2}}{c}Z_{\mu}^{0}\phi^{0}(W_{\mu}^{+}\phi^{-}) +$ $-W_{-}\phi^{+}) - d_i^{\lambda} (\gamma \partial + m_d^{\lambda}) d_i^{\lambda} +$ $-1-\gamma^{5})e^{\lambda})+(\bar{u}_{i}^{\lambda}\gamma^{\mu}(rac{4}{3}s_{w}^{2} {}^{\mu}(1+\gamma^5)e^{\lambda}) + (\bar{u}_j^{\lambda}\gamma^{\mu}(1+\gamma^5)C_{\lambda\kappa}d_j^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^5)C_{\lambda\kappa}d_j^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{\mu})C_{\lambda\kappa}d_j^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1+\gamma^{\mu})C_{\lambda\kappa}d_j^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{$ $\frac{ig}{2\sqrt{2}}\frac{m_e^{\lambda}}{M}\left[-\phi^+(\bar{\nu}^{\lambda}(1-\gamma^5)e^{\lambda})+\phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})\right]-\frac{g}{2}\frac{m_e^{\lambda}}{M}\left[H(\bar{e}^{\lambda}e^{\lambda})+\right]$ $\frac{ig}{2M\sqrt{2}}\phi^{+}[-\overline{m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa})} + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})u_{j}^{\kappa})] + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})u_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})u_{j}^{\kappa})$ $m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_j^{\kappa}] - \frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda}) - \frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda}) + \frac{ig}{2}\frac{m_u^{\lambda}}{M}\phi^0(\bar{u}_j^{\lambda}\gamma^5u_j^{\lambda}) - \frac{ig}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{d}_j^{\lambda}\gamma^5d_j^{\lambda}) + \bar{X}^+(\partial^2 - ig_j^{\lambda}) + \bar{X}^+(\partial^2 - i$ $M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{c_{w}^{2}})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - \partial_{\mu}\bar{X}^{+}X^{0}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{-}) + igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z_{\mu}^{0}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{-}) + igc_{w}W_{\mu}^{-}(\partial_{\mu$ $igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{w}^{2}}{2c_{w}}igM[\bar{X}^{+}X^{0}\phi^{+} - \frac{1}{2}gM[\bar{X}^{+}X^{0}\phi^{+}] + \frac{1}{c^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{w}^{2}}{2c_{w}}igM[\bar{X}^{+}X^{0}\phi^{+}] + \frac{1}{c^{2}}\bar{X}^{0}X^{0}H] + \frac{1}{c^{2}}\bar{X}^{0}X^{$ $\bar{X}^{-}X^{0}\phi^{-} + \frac{1}{2c}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{\bar{0}}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

The fate/character of the Universe

[JHEP 1208 (2012) 098]

145

Standard Theory seems self-consistent up to large scales.
 ...though the Universe might decay.

Standard Theory of Particle Physics

46 [http://cern.ch/go/dW6z]

 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{s}g^{a}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{a}_{\mu}g^{c}$ $M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{w}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{q^{2}} + \frac{2M}{q}H + \frac{1}{2}(H^{2} + \phi^{0}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z^{0}_{\mu}(W^{+}_{\mu}W^{-}_{\nu} - \psi^{-}_{\mu})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z^{0}_{\mu}(W^{+}_{\mu}W^{-}_{\nu} - \psi^{-}_{\mu})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z^{0}_{\mu}(W^{+}_{\mu}W^{-}_{\nu} - \psi^{-}_{\mu})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{-})] + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{-})]$ $W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-}] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{$ $A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{$ $g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - Z_{\mu}^{0}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}]] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A$ $W_{\nu}^{+}W_{\mu}^{-}) - 2\dot{A}_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{2}\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^$ $4H^{2}\phi^{+}\phi^{-} + 2(\phi^{0})^{2}H^{2}] - gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c_{\omega}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{-}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{-}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac$ $\frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{w}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{w}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{w}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{w}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0})) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0})) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^$ $W^-_\mu \phi^+) + igs_u$ Valid up to ~Planck scale ? $\frac{1}{4}g^2 W^+_{\mu} W^-_{\mu} [H$ $W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} + W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}s_{w}A_{\mu}W(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}W(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}W(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}s_{w}A_{\mu}W(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}W(W_{\mu}^{+}\phi^{-}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}W(W_{\mu}^{+}\phi^{-}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}W(W_{\mu}^{+}\phi^{-}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}W(W_{\mu}^{+}\phi^{-}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}W(W_{\mu}^{+$ $g^{2} \frac{s_{w}}{c_{w}} (2c_{w}^{2}-1) Z_{\mu}^{0} \bar{A}_{\mu} \phi^{+} \phi^{-} - g^{1} s_{w}^{2} A_{\mu} A_{\mu} \phi^{+} \phi^{-} - \bar{e}^{\lambda} (\gamma \partial + m_{e}^{\lambda}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{d}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{d}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{d}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{d}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{d}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{d}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{d}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{d}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{j}^{\lambda} - \bar{u}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{j}^{\lambda} - \bar{u}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{j}^{\lambda} - \bar{u}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{j}^{\lambda} - \bar{v}_{j}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{j}^{\lambda} + \bar{v}_{j}^{\lambda} (\gamma \partial + m_{d}^{$ $igs_w^{\sim}A_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_j^{\lambda}\gamma^{\mu}u_j^{\lambda}) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma^{\mu}d_j^{\lambda})] + \frac{ig}{4c_w}Z^0_{\mu}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_w^2 - 1 - \gamma^5)e^{\lambda}) + (\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2 - 1$ $1 - \gamma^{5})u_{j}^{\lambda}) + (\bar{d}_{j}^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_{w}^{2} - \gamma^{5})d_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{+}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^$ $\gamma^{5}(\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_{e}^{\lambda}}{M}[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] - \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \bar{e}^{\lambda}(1-\gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \bar{e}^{\lambda}(1-\gamma^{5})e^{\lambda})] - \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda})$ $i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa}) - m_{d}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})u_{j}^{\kappa}) - m_{d}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})u_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})u_{j}^{\kappa}) + m_$ $m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_i^{\kappa}] - \frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_i^{\lambda}) - \frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda}) + \frac{ig}{2}\frac{m_u^{\lambda}}{M}\phi^0(\bar{u}_j^{\lambda}\gamma^5u_j^{\lambda}) - \frac{ig}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{d}_j^{\lambda}\gamma^5d_j^{\lambda}) + \bar{X}^+(\partial^2 - \bar{U}_j^{\lambda}) + \bar{X}^$ $M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{c_{w}^{2}})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - \partial_{\mu}\bar{X}^{+}X^{0}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{-}) + igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z_{\mu}^{0}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{-}) + igc_{w}W_{\mu}^{-}(\partial_{\mu$ $igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{w}^{2}}{2c_{w}}igM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{\mu}\bar{X}^{-}A^{-}] + \frac{1}{2}gM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{\mu}\bar{X}^{-}A^{-}] + \frac{1}{2}gM[\bar{X}^{+}A^{-}\phi^{+}] + \frac{1}{2}gM[\bar{X}^{+}A^{-}\phi^{+}$ $\bar{X}^{-}X^{0}\phi^{-} + \frac{1}{2c}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

Standard Theory of Particle Physics

[http://cern.ch/go/dW6z]

 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu}g^{d}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\nu}g^{d}_{\mu}g^{e}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\mu}g^{d}_{\mu}g^{e}$ $M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{w}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{q^{2}} + \frac{2M}{q}H + \frac{1}{2}(H^{2} + \phi^{0}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z^{0}_{\mu}(W^{+}_{\mu}W^{-}_{\nu} - \psi^{-}_{\mu})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z^{0}_{\mu}(W^{+}_{\mu}W^{-}_{\nu} - \psi^{-}_{\mu})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z^{0}_{\mu}(W^{+}_{\mu}W^{-}_{\nu} - \psi^{-}_{\mu})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{-})] + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{-})]$ $W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-}] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{$ $A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{$ $g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - Z_{\mu}^{0}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}]] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})] + g^{2}s_{w}c_{w}[A$ $W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-} + 4(\phi^{-})^{2}\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{-})^{2} + 4(\phi^{-})^{2}\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{-})^{2}\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{-})^{2} + 4(\phi^{-})^{2}\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{-})^{2}\phi^{+}\phi^{-}] - \frac{1$ $4H^{2}\phi^{+}\phi^{-} + 2(\phi^{0})^{2}H^{2}] - gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c_{\omega}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{-}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{-}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{$ $\frac{1}{2}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{w}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{w}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{w}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{w}^{2}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0})) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0})) + \frac{1}{2}g\frac{1}{c}(Z_{\mu}^$ $W^-_\mu \phi^+) + igs_u$ Valid up to ~Planck scale ? $\frac{1}{4}g^2 W^+_{\mu} W^-_{\mu} [H$ $W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{2}Z^{0}H(W^{+}\phi^{-} - W^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W^{+}\phi^{-} + W^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\nu}H(W^{+}\phi^{-} - W^{-}\phi^{+}) - \frac{1}{2}ig^{2}s_{w}A_{\nu}H(W^{+}\phi^{-} - W^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\nu}H(W^{+}\phi^{-}$ $g^2 \frac{s_w}{c_w} (2c_w^2 - 1) Z^0_\mu$ $d_{j}^{\lambda} + \frac{1}{2}s_{w}^{2} - \frac{1}{2}s_{w}^{2}$ But: dark matter, matter-antimatter, etc. $igs_w A_\mu [-(\bar{e}^\lambda \gamma^\mu e$ $(1 - \gamma^{5})u_{j}^{\lambda}) + (\bar{d}_{j}^{\lambda}\gamma^{\mu}(1 - \frac{\sigma}{3}s_{w}^{z} - \gamma^{o})d_{j}^{\lambda})] + \frac{cg}{2\sqrt{2}}W_{\mu}^{+}[(\nu^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda}) + (u_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{o})C_{\lambda\kappa}d_{j}^{\kappa})] + \frac{cg}{2\sqrt{2}}W_{\mu}^{-}[(e^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda}) + (u_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda}) + (u_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda})] + \frac{cg}{2\sqrt{2}}W_{\mu}^{-}[(e^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda}) + (u_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda})] + \frac{cg}{2\sqrt{2}}W_{\mu}^{-}[(e^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda}) + (u_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda})] + \frac{cg}{2\sqrt{2}}W_{\mu}^{-}[(e^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda}) + (u_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda}) + (u_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda})] + \frac{cg}{2\sqrt{2}}W_{\mu}^{-}[(e^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda})] + \frac{cg}{2\sqrt{2}}W_{\mu}^{-}[(e^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda}) + (u_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda})] + \frac{cg}{2\sqrt{2}}W_{\mu}^{-}[(e^{\lambda}\gamma^{\mu}(1 + \gamma^{o})e^{\lambda})] + \frac{cg}{$ $\gamma^5)\nu^{\lambda}) + (\bar{d}_j^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^5)u_j^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_e^{\lambda}}{M}[-\phi^+(\bar{\nu}^{\lambda}(1-\gamma^5)e^{\lambda}) + \phi^-(\bar{e}^{\lambda}(1+\gamma^5)\nu^{\lambda})] - \frac{g}{2}\frac{m_e^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \bar{e}^{\lambda}(1-\gamma^5)e^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_e^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \bar{e}^{\lambda}(1-\gamma^5)e^{\lambda})] - \frac{g}{2}\frac{m_e^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_e^{\lambda}}{M}[H(\bar{e}$ $i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa}) - m_{d}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda$ $m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_i^{\kappa}] - \frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_i^{\lambda}) - \frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda}) + \frac{ig}{2}\frac{m_u^{\lambda}}{M}\phi^0(\bar{u}_j^{\lambda}\gamma^5u_j^{\lambda}) - \frac{ig}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{d}_j^{\lambda}\gamma^5d_j^{\lambda}) + \bar{X}^+(\partial^2 - \bar{U}_j^{\lambda}) + \bar{X}^$ $M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{c_{w}^{2}})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - \partial_{\mu}\bar{X}^{+}X^{0}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{-}) + igc_{w}W^{-}_{\mu}(\partial_{\mu$ $igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c_{w}^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{w}^{2}}{2c_{w}}igM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{\mu}\bar{X}^{-}A^{-}] + \frac{1}{2}gM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{\mu}\bar{X}^{-}A^{-}] + \frac{1}{2}gM[\bar{X}^{+}A^{-}\phi^{+}] + \frac{1}{2}gM[\bar{X}^{+}A^{-}\phi^{+}$ $\bar{X}^{-}X^{0}\phi^{-} + \frac{1}{2c}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

The Next Standard Model

[http://cern.ch/go/dW6z]

 $\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abe}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abe}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abe}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu}g^{a}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{\nu}g^{d}_{$ $\partial_{\nu} W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-} - M^{2} W_{\mu}^{+} W_{\mu}^{-} - \frac{1}{2} \partial_{\nu} Z_{\mu}^{0} \partial_{\nu} Z_{\mu}^{0} - \frac{1}{2e^{2}} M^{2} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - \frac{1}{2} \partial_{\mu} H \partial_{\mu} H - \frac{1}{2} m_{h}^{2} H^{2} - \partial_{\mu} \phi^{+} \partial_{\mu} \partial$ $M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2v^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{v^{2}} + \frac{2M}{v}H + \frac{1}{2}(H^{2} + \phi^{0}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{v^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z_{0}^{0}(W_{\nu}^{+}W_{\nu}^{-})] + \frac{2M^{2}}{v^{2}}(W_{\nu}^{+}W_{\nu}^{-}) + \frac{2M^{2}}{v^{2}}(W_{\nu}^{$ $W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_$ $A_{\nu}(W_{n}^{+}\partial_{\nu}W_{n}^{-} - W_{n}^{-}\partial_{\nu}W_{n}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{n}^{-} - W_{\nu}^{-}\partial_{\nu}W_{n}^{+})] - \frac{1}{3}g^{2}W_{n}^{+}W_{n}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{3}g^{2}W_{n}^{+}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{3}g^{2}W_{n}^{+}W_{\nu}^{-}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{3}g^{2}W_{n}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{3}g^{2}W_{n}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{3}g^{2}W_{n}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{3}g^{2}W_{n}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{3}g^{2}W_{n}^{+}W_{\nu}^{-}W_{\nu}^{-} + \frac{1}{3}g^{2}W_{n}^{+}W_{\nu}^{-} + \frac{1}{3}g^{2}W_{n}^{+} +$ $g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - Z_{\mu}^{0}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}\dot{s}_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}\dot{W_{\nu}^{-}} - \ddot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}) + g^{2}s_{w}\ddot{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \dot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}) + g^{2}s_{w}\dot{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \dot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}) + g^{2}s_{w}\dot{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \dot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}) + g^{2}s_{w}\dot{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \dot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}) + g^{2}s_{w}\dot{c}_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \dot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}) + g^{2}s_{w}\dot{c}_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \dot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}) + g^{2}s_{w}\dot{c}_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \dot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}) + g^{2}s_{w}\dot{c}_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \dot{A}_{\mu}A_{\mu}\dot{W}_{\nu}^{+}\dot{W}_{\nu}^{-}) + g^{2}s_{w}\dot{c}_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-}) + g^{2}s_{w}\dot{c}_{w}(A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\mu}^{-}) + g^{2}s_{w}\dot{c}_{w}(A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})) + g^{2}s_{w}\dot{c}_{w}(A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-})) + g^{2}s_{w}\dot{c}_{w}(A_{\mu}Z_{\mu}^{0}(W_{\mu}^{-})) +$ $W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \frac{1}{3}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] - \frac{1}{3}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}]$ $4H^{2}\phi^{+}\phi^{-} + 2(\phi^{0})^{2}H^{2}] - gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}$ $\frac{1}{5}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{+}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{+}+\phi^{+}\partial_{\mu}H)]+\frac{1}{5}g\frac{1}{c}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{\mu}}{c}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}))$ $W_{\mu}^{-}\phi^{+}) + i g s_w M A_{\mu} (W_{\mu}^{+}\phi^{-})$ $W^-_\mu \phi^+) - ig rac{1-2c_w^2}{2a_w} Z^0_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) - ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w A_\mu (\phi^+ \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^+) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^- - \phi^- \partial_\mu \phi^-) + ig s_w (\phi^- \partial_\mu \phi^-) + ig s_w (\phi$ $\frac{1}{3}g^2W_n^+W_n^-[H^2 + (\phi^0)^2 + 2\phi^+\phi^-] - \frac{1}{3}g^2\frac{1}{\omega^2}Z_n^0Z_n^0[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{3}g^2\frac{s_w^2}{\omega^2}Z_n^0\phi^0(W_n^+\phi^- + g^2)$ $W_{a}^{-}\phi^{+}) - \frac{1}{2}iq^{2}\tilde{s}_{a}^{*}Z_{0}^{0}H(W_{a}^{+}\phi^{-} - W_{a}^{-}\phi^{+}) + \frac{1}{2}q^{2}s_{w}A_{u}\phi^{0}(W_{a}^{+}\phi^{-} + W_{a}^{-}\phi^{+}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-} - W_{a}^{-}\phi^{+}) - \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-} - W_{a}^{-}\phi^{+}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-}) + \frac{1}{2}iq^{2}s_{w}A_{u}$ $g^{2} \frac{s_{w}}{s_{w}} (2c_{w}^{2}-1) Z_{u}^{a} A_{\mu} \phi^{+} \phi^{-} - g^{1} s_{w}^{2} A_{u} A_{\mu} \phi^{+} \phi^{-} - \bar{e}^{\lambda} (\gamma \partial + m_{k}^{2}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}_{\lambda}^{\lambda} (\gamma \partial + m_{k}^{\lambda}) u_{\lambda}^{\lambda} - \bar{d}_{\lambda}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{\lambda}^{\lambda} + g^{2} \bar{u}_{\lambda}^{\lambda} + g^{2} \bar{$ $igs_{w}A_{\mu}\left[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda})+\frac{2}{3}(\bar{a}^{\lambda}\gamma^{\mu}u^{\lambda}_{\lambda})-\frac{1}{3}(\bar{d}^{\lambda}\gamma^{\mu}d^{\lambda}_{\lambda})\right]+\frac{i}{4\pi}Z_{\mu}^{0}\left[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda})+(\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda})+(\bar{u}^{\lambda}\gamma^{\mu}(\frac{4}$ $1 - \gamma^5)u_j^{\lambda}) + (\bar{d}_j^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_w^2 - \gamma^5)d_j^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^+[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)c^{\lambda}) + (\bar{u}_j^{\lambda}\gamma^{\mu}(1 + \gamma^5)C_{\lambda\kappa}d_j^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^-[(\bar{c}^{\lambda}\gamma^{\mu}(1 + \gamma^5)c^{\lambda}) + (\bar{c}^{\lambda}\gamma^{\mu}(1 + \gamma^5)c^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^-[(\bar{c}^{\lambda}\gamma^{\mu}(1 + \gamma^5)$ $\gamma^5)\nu^{\lambda}) + (\bar{d}_j^s C^{\dagger}_{\lambda\kappa}\gamma^{\mu}(1+\gamma^5)u^{\lambda}_j)] + \frac{ig}{2\sqrt{2}} \frac{m_c^{\lambda}}{M} [-\phi^{\pm}(\bar{\nu}^{\lambda}(1-\gamma^5)e^{\lambda}) + \phi^{\pm}(\bar{c}^{\lambda}(1+\gamma^5)\nu^{\lambda})] - \frac{g}{2} \frac{m_c^{\lambda}}{M} [H(\bar{c}^{\lambda}e^{\lambda}) + \phi^{\pm}(\bar{c}^{\lambda}(1+\gamma^5)\nu^{\lambda})] - \frac{g}{2} \frac{g}{M} [H(\bar{c}^{\lambda}e^{\lambda}) + \phi^{\pm}(\bar{c}^{\lambda}(1+\gamma^5)\nu^{\lambda})] - \frac{g}{2} \frac{g}{M} [H(\bar{c}^{\lambda}e^{\lambda}) + \phi^{\pm}(\bar{c}^{\lambda}(1+\gamma^5)\nu^{\lambda})] - \frac{g}{2} \frac{g}{M} [H(\bar{c}^{\lambda}e^{\lambda}) + \phi^{\pm}(\bar{c}^{\lambda}e^{\lambda})] - \frac{g}{2} \frac{g}{M} [H(\bar{c}^{\lambda}e^{\lambda})$ $[i\phi^0(\bar{e}^\lambda\gamma^5 e^\lambda)] + \frac{ig}{2M_\lambda^2}\phi^+[-m_d^\kappa(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa) + m_u^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa)] + \frac{ig}{2M_\lambda^2}\phi^+[-m_d^\kappa(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa) + m_d^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa)] + \frac{ig}{2M_\lambda^2}\phi^+[-m_d^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa)] + \frac{ig}{2M_\lambda^2}\phi^+[-m_d^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa) + m_d^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa)] + \frac{ig}{2M_\lambda^2}\phi^+[-m_d^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa) + m_d^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa)] + \frac{ig}{2M_\lambda^2}\phi^+[-m_d^\lambda(\bar{u}_j^\lambda C_{\lambda\kappa}(1+\gamma^5)d_j^\kappa)] + \frac{ig}{2M_\lambda^2}\phi^+[-m_d^\lambda(\bar{u}$ $\gamma^{5} d_{i}^{\kappa}] + \frac{ig \sqrt{q}}{2 M_{N/2}} \phi^{-} [m_{d}^{\lambda} (\bar{d}_{i}^{\lambda} C_{\lambda \kappa}^{\dagger} (1 + \gamma^{5}) u_{i}^{\kappa}) +$ $m_{u}^{\kappa}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^{5})u_{i}^{\kappa}] - \frac{g}{2}\frac{m_{\lambda}^{\lambda}}{M}H(\bar{u}_{j}^{\lambda}u_{i}^{\lambda}) - \frac{g}{2}\frac{m_{\lambda}^{\lambda}}{M}H(\bar{d}_{j}^{\lambda}d_{j}^{\lambda}) + \frac{ig}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{u}_{j}^{\lambda}\gamma^{5}u_{j}^{\lambda}) - \frac{igm_{\lambda}^{\lambda}}{2}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) + \bar{X}^{+}(\partial^{2} - \partial^{2})\frac{g}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) + \bar{X}^{+}(\partial^{2} - \partial^{2})\frac{g}{2}\frac{g}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) + \bar{X}^{+}(\partial^{2} - \partial^{2})\frac{g}{2}\frac{g}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) + \bar{X}^{+}(\partial^{2} - \partial^{2})\frac{g}{2}\frac{g}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) + \bar{X}^{+}(\partial^{2} - \partial^{2})\frac{g}{2}\frac{g}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) + \bar{X}^{+}(\partial^{2} - \partial^{2})\frac{g}{2}\frac{g}{2}\frac{g}{2}\frac{m_{\lambda}^{\lambda}}{M}\phi^{0}(\bar{d}_{j}^{\lambda}\gamma^{5}d_{j}^{\lambda}) + \bar{X}^{+}(\partial^{2} - \partial^{2})\frac{g}{2}\frac{g}{2}$ $M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{z^{2}})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W_{u}^{+}(\partial_{\mu}\bar{X}^{0}X^{-} - \partial_{\mu}\bar{X}^{+}X^{0}) + igs_{w}W_{u}^{+}(\partial_{\mu}\bar{Y}X^{-})X^{0} + igs_{$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z_{\mu}^{0}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igc_{\mu}\bar{X}^{0}X^{+})$ $igs_{w}A_{\mu}(\partial_{a}\bar{X}^{+}X^{+} - \partial_{a}\bar{X}^{-}X^{-}) - \frac{1}{3}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{4\pi^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{w}^{2}}{4}igM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{a}\bar{X}^{-}X^{-}] + \frac{1}{3}gM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{a}\bar{X}^{-}X^{0}\phi^{+}] + \frac{1}{3}gM[\bar{X}^{+}X^{0}\phi^{+}] + \frac{1$ $\bar{X}^{-}X^{0}\phi^{-}] + \frac{1}{2w}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{iw}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

The Next Standard Model

[http://cern.ch/go/dW6z]

 $\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{adc}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{c}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu}g^{c}_{\nu}g^{c}_{\mu}g^{c}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu}g^{c}_{\nu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\nu}g^{c}_{\mu}g^{c}_{\mu}g^{c}_{\nu}g^{c}_{\mu}g$ $\partial_{\nu} W_{\mu}^{+} \partial_{\nu} W_{\mu}^{-} - M^{2} W_{\mu}^{+} W_{\mu}^{-} - \frac{1}{2} \partial_{\nu} Z_{\mu}^{0} \partial_{\nu} Z_{\mu}^{0} - \frac{1}{2c^{2}} M^{2} Z_{\mu}^{0} Z_{\mu}^{0} - \frac{1}{2} \partial_{\mu} A_{\nu} \partial_{\mu} A_{\nu} - \frac{1}{2} \partial_{\mu} H \partial_{\mu} H - \frac{1}{2} m_{h}^{2} H^{2} - \partial_{\mu} \phi^{+} \partial_{\mu} \partial_{\mu} \phi^{+} \partial_{\mu} \phi$ $M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2v^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{v^{2}} + \frac{2M}{v}H + \frac{1}{2}(H^{2} + \phi^{0}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{v^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z_{0}^{0}(W_{\nu}^{+}W_{\nu}^{-})] + \frac{2M^{2}}{v^{2}}(W_{\nu}^{+}W_{\nu}^{-}) + \frac{2M^{2}}{v^{2}}(W_{\nu}^{$ $W_{v}^{+}W_{v}^{-}) - Z_{v}^{0}(W_{v}^{+}\partial_{\nu}W_{v}^{\infty} - W_{v}^{-}\partial_{\nu}W_{v}^{+}) + Z_{v}^{0}(\tilde{W}_{v}^{+}\partial_{\nu}W_{v}^{-} - W_{v}^{-}\partial_{\nu}W_{v}^{+})] - igs_{w}[\tilde{\partial}_{\nu}A_{y}(W_{v}^{+}W_{v}^{-} - W_{v}^{+}W_{v}^{-}) - W_{v}^{+}W_{v}^{-})] - igs_{w}[\tilde{\partial}_{\nu}A_{y}(W_{v}^{+}W_{v}^{-} - W_{v}^{+}W_{v}^{-})] - igs_{w}[\tilde{\partial}_{\nu}A_{y}(W_{v}^{-} - W_{v}^{+}W_{v}^{-})] - igs_{w}[\tilde{\partial}_{\nu}A_{v}(W_{v}^{-} - W_{v}^{+}W_{v}^{-})] - igs_{w}[\tilde{\partial}_{\nu}A_{v}(W_{v}^{-} - W_{v}^{+}$ $A_{\nu}(W_{\mu}^{'}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}$ $g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - Z_{\mu}^{0}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}\tilde{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}] + g^{2}s_{w}\tilde{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}] + g^{2}s_{w}\tilde{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}] + g^{2}s_{w}\tilde{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-}] + g^{2}s_{w}\tilde{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}] + g^{2}s_{w}\tilde{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}] + g^{2}s_{w}\tilde{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}] + g^{2}s_{w}\tilde{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\mu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}] + g^{2}s_{w}\tilde{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\mu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{-}]] + g^{2}s_{w}\tilde{c}_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-} - A_{\mu}A_{\mu}W_{\mu}^{-}] + g^{2}s_{w}\tilde{c}_{w}[A_{\mu}Z_{\mu}^{0}(W_{\mu}^{-} - A_{\mu}A_{\mu}W_{\mu}^{-}]] + g^{2$ $W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \frac{1}{3}g^{2}\alpha_{b}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] - \frac{1}{3}g^{2}\alpha_{b}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}]$ $4H^{2}\phi^{+}\phi^{-} + 2(\phi^{0})^{2}H^{2}] - gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{-}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}$ $\frac{1}{5}g[W_{\mu}^{+}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W_{\mu}^{-}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)]+\frac{1}{5}g\frac{1}{2}(Z_{\mu}^{0}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s_{\mu}}{2}MZ_{\mu}^{0}(W_{\mu}^{+}\phi^{-}-\phi^{-}\partial_{\mu}H)]$ $W_{\mu}^{-}\phi^{+}) - ig \frac{1-2c_{w}^{2}}{2c_{w}}$ $W_{\mu}^{-}\phi^{+}) + igs_w MA_{\mu}(W_{\mu}^{+}\phi^{-}$ $-\phi^-\partial_\mu\phi^+)+igs_wA_\mu(\phi^+\partial_\mu\phi^-+\phi^-\partial_\mu\phi^+) \frac{1}{4}g^2W_a^+W_a^-[H^2 + (\phi^0)^2 + 2\phi^+\phi^-] - \frac{1}{4}g^2\frac{1}{\omega^2}Z_a^0Z_a^0[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{4}g^2\frac{1}{\omega^2}Z_a^0Z_a^0[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-]$ $\frac{1}{2}g^2 \frac{s_0}{s} Z^0_{\mu} \phi^0 (W^+_{\mu} \phi^- +$ $W_{a}^{-}\phi^{+}) - \frac{1}{2}iq^{2}\tilde{z}_{a}^{*}Z_{0}^{0}H(W_{a}^{+}\phi^{-} - W_{a}^{-}\phi^{+}) + \frac{1}{2}q^{2}s_{w}A_{u}\phi^{0}(W_{a}^{+}\phi^{-} + W_{a}^{-}\phi^{+}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-} - W_{a}^{-}\phi^{+}) - \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-} - W_{a}^{-}\phi^{+}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-}) + \frac{1}{2}iq^{2}s_{w}A_{u}H(W_{a}^{+}\phi^{-})$ $g^{2} \frac{s_{w}}{s_{w}} (2c_{w}^{2}-1) Z_{u}^{a} A_{\mu} \phi^{+} \phi^{-} - g^{1} s_{w}^{2} A_{u} A_{\mu} \phi^{+} \phi^{-} - \bar{e}^{\lambda} (\gamma \partial + m_{k}^{2}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}_{\lambda}^{\lambda} (\gamma \partial + m_{k}^{\lambda}) u_{\lambda}^{\lambda} - \bar{d}_{\lambda}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{\lambda}^{\lambda} + g^{2} \bar{u}_{\lambda}^{\lambda} + g^{2} \bar{$ $igs_w A_{\mu} \left[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_{\cdot}^{\lambda}\gamma^{\mu}u_{\cdot}^{\lambda}) - \frac{1}{3}(\bar{d}_{\cdot}^{\lambda}\gamma^{\mu}d_{\cdot}^{\lambda}) \right] + \frac{iw}{iw} Z_{0}^{0} \left[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^{5})\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_{w}^{2}-1-\gamma^{5})e^{\lambda}) + (\bar{u}_{\cdot}^{\lambda}\gamma^{\mu}(\frac{4}{3}s_{w}^{2}-1-\gamma^{5})e^{\lambda}) + (\bar{u}_{\cdot}^{\lambda}\gamma^{\mu}(\frac{4}{3}$ $(1 - \gamma^5)u_j^{\lambda}) + (\bar{d}_j^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}\frac{2}{w} - \gamma^5)d_j^{\lambda}) + \frac{ig}{2\sqrt{2}}W_{\mu}^{+}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda}) + (\bar{u}_j^{\lambda}\gamma^{\mu}(1 + \gamma^5)C_{\lambda\kappa}d_j^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda}) + (\bar{u}_j^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda}) + (\bar{u}_j^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^5)e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1$ $\gamma^{5})\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_{\kappa}^{\lambda}}{M}[-\phi^{\pm}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{\pm}(\bar{\sigma}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] - \frac{g}{2}\frac{m_{\kappa}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \bar{e}^{\lambda}(1-\gamma^{5})e^{\lambda}] + \phi^{\pm}(\bar{\sigma}^{\lambda}(1+\gamma^{5})v^{\lambda})] + \phi^{\pm}(\bar{\sigma}^{\lambda}(1+\gamma^{5})v^{\lambda}) + \phi^{\pm}(\bar{\sigma}^{\lambda}(1+\gamma^{5})v^{\lambda})] + \phi^{\pm}(\bar{\sigma}^{\lambda}(1+\gamma^{5})v^{\lambda}) + \phi^{\pm}(\bar{\sigma}^{\lambda}(1+\gamma^{5})v^{\lambda}) + \phi^{\pm}(\bar{\sigma}^{\lambda}(1+\gamma^{5})v^{\lambda})] + \phi^{\pm}(\bar{\sigma}^{\lambda}(1+\gamma^{5})v^{\lambda}) + \phi^{\pm}($ $i\phi^0(\bar{e}^{\lambda}\gamma^5 e^{\lambda})] + \frac{ig}{2M_{\lambda}/2}\phi^+[-m_d^{\kappa}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) + m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa})] + \frac{ig}{2M_{\lambda}/2}\phi^+[-m_d^{\kappa}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) + m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa})] + \frac{ig}{2M_{\lambda}/2}\phi^+[-m_d^{\kappa}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) + m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa})] + \frac{ig}{2M_{\lambda}/2}\phi^+[-m_d^{\kappa}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) + m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa})] + \frac{ig}{2M_{\lambda}/2}\phi^+[-m_d^{\kappa}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) + m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) + m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa})] + \frac{ig}{2M_{\lambda}/2}\phi^+[-m_d^{\kappa}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) + m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) + m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa})] + \frac{ig}{2M_{\lambda}/2}\phi^+[-m_d^{\kappa}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) + m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa}(1-\gamma^5)d_j^{\kappa}) + m_u^{\lambda}(\bar{u}_j^{\lambda}C_{\lambda\kappa$ $\gamma^5)d_i^\kappa] + rac{ig}{2\lambda\kappa/2}\phi^-[m_d^\lambda(\bar{d}_i^\lambda C_{\lambda\kappa}^\dagger(1+\gamma^5)u_i^\kappa)$ $m_u^{\kappa}(\bar{d}_i^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_i^{\kappa}] - \frac{g\,m_{\lambda}^{\kappa}}{2\,M}H(\bar{u}_i^{\lambda}u_i^{\lambda}) - \frac{g\,m_{\lambda}^{\kappa}}{2\,M}H(\bar{d}_i^{\lambda}d_i^{\lambda}) + \frac{ig\,m_{\lambda}^{\kappa}}{2\,M}\phi^0(\bar{u}_i^{\lambda}\gamma^5 u_i^{\lambda}) - \frac{ig\,m_{\lambda}^{\kappa}}{2\,M}\phi^0(\bar{d}_i^{\lambda}\gamma^5 d_i^{\lambda}) + \bar{X}^+(\partial^2 - ig\,M) + \frac{g\,m_{\lambda}^{\kappa}}{2\,M}(\bar{d}_i^{\lambda}) + \frac{g\,m_{\lambda}^{\kappa}}{2\,M}(\bar{d}_i^$ $M^{2}X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{c^{4}})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W^{+}_{u}(\partial_{\mu}\bar{X}^{0}X^{-} - \partial_{\mu}\bar{X}^{+}X^{0}) + igs_{w}W^{+}_{u}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{X}^{-})$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z_{\mu}^{0}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igc_{\mu}\bar{X}^{-}X^{0})$ $igs_{w}A_{\mu}(\partial_{a}\bar{X}^{+}X^{+} - \partial_{a}\bar{X}^{-}X^{-}) - \frac{1}{3}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{4\pi^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{w}^{2}}{4}igM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{a}\bar{X}^{-}X^{-}] + \frac{1}{3}gM[\bar{X}^{+}X^{0}\phi^{+} - \partial_{a}\bar{X}^{-}X^{0}\phi^{+}] + \frac{1}{3}gM[\bar{X}^{+}X^{0}\phi^{+}] + \frac{1$ $\bar{X}^{-}X^{0}\phi^{-}] + \frac{1}{2w}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{iw}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

Something else

H(125) – looking for "something else"

Mass

Exp. Uncertainties

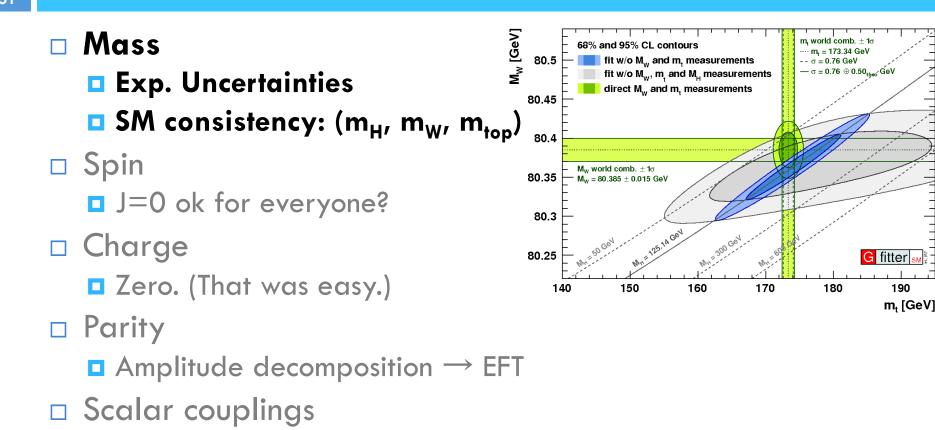
SM consistency: (m_H, m_W, m_{top})

Spin

J=0 ok for everyone?

Charge

Zero. (That was easy.)


Parity

Amplitude decomposition \rightarrow EFT

Scalar couplings

 $\square \ \mathcal{K} \longrightarrow \ \mathcal{K} \ (q) \longrightarrow f(q) \longrightarrow EFT$

 $\square \ \mathcal{K} \longrightarrow \ \mathcal{K} (q) \longrightarrow f(q) \longrightarrow EFT$

Mass

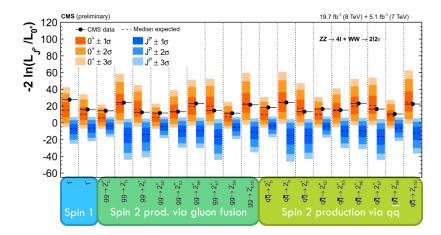
Exp. Uncertainties

SM consistency: (m_{H}, m_{V}, m_{top})

🗆 Spin

J=0 ok for everyone?

□ Charge


Zero. (That was easy.)

Parity

Amplitude decomposition \rightarrow EFT

Scalar couplings

 $\square \ \mathcal{K} \longrightarrow \ \mathcal{K} \ (q) \longrightarrow f(q) \longrightarrow EFT$

Mass

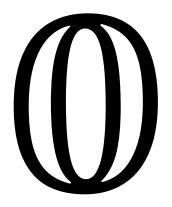
Exp. Uncertainties

• SM consistency: $(m_{H'}, m_{W'}, m_{top})$

□ Spin

■ J=0 ok for everyone?

Charge


Zero. (That was easy.)

Parity

Amplitude decomposition \rightarrow EFT

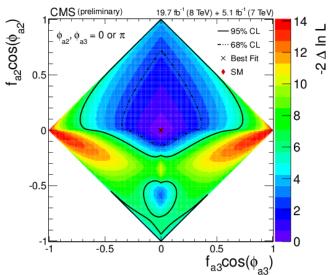
Scalar couplings

 $\square \ \mathcal{K} \longrightarrow \ \mathcal{K} (q) \longrightarrow f(q) \longrightarrow EFT$

Mass

- Exp. Uncertainties
- SM consistency: $(m_{H'}, m_{W'}, m_{top})$

□ Spin


- J=0 ok for everyone?
- Charge
 - Zero. (That was easy.)
- Parity

Amplitude decomposition \rightarrow EFT

Scalar couplings

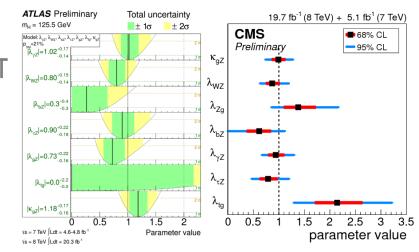
 $\blacksquare \ \mathcal{K} \longrightarrow \ \mathcal{K} (q) \longrightarrow f(q) \longrightarrow EFT$

$$\begin{split} A(X_{J=0} \to V_1 V_2) &\sim v^{-1} \left(\left[a_1 - e^{i\phi_{\Lambda_1}} \frac{q_{Z_1}^2 + q_{Z_2}^2}{(\Lambda_1)^2} \right] m_z^2 \epsilon_{Z_1}^* \epsilon_{Z_2}^* \right. \\ &+ a_2 f_{\mu\nu}^{*(Z_1)} f^{*(Z_2),\mu\nu} + a_3 f_{\mu\nu}^{*(Z_1)} \tilde{f}^{*(Z_2),\mu\nu} \\ &+ a_2^{Z\gamma} f_{\mu\nu}^{*(Z)} f^{*(\gamma),\mu\nu} + a_3^{Z\gamma} f_{\mu\nu}^{*(Z)} \tilde{f}^{*(\gamma),\mu\nu} \\ &+ a_2^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_1)} f^{*(\gamma_2),\mu\nu} + a_3^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_1)} \tilde{f}^{*(\gamma_2),\mu\nu} \right) \end{split}$$

measuring.higgs@cern.ch

HiggsTools School - June 2015

Mass

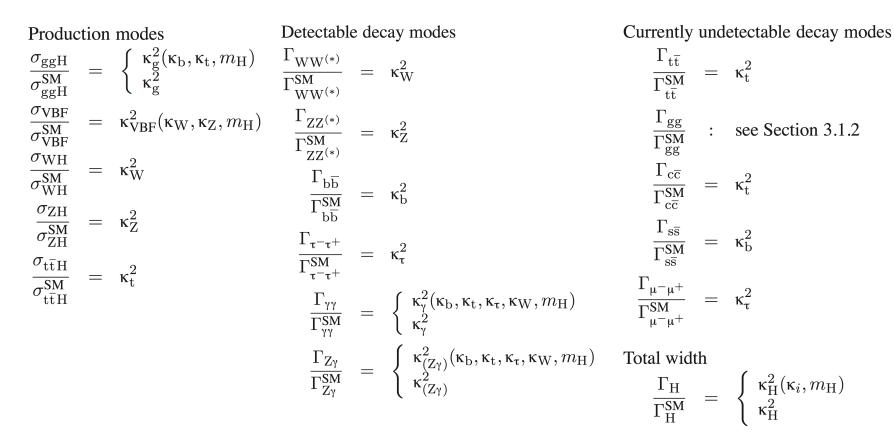

- Exp. Uncertainties
- SM consistency: $(m_{H'}, m_{W'}, m_{top})$

Spin

- J=0 ok for everyone?
- Charge
 - Zero. (That was easy.)
- Parity

Amplitude decomposition \rightarrow EFT

- Scalar couplings
 - $\square \ \mathcal{K} \longrightarrow \ \mathcal{K} \ (\mathbf{q}) \longrightarrow \mathbf{f}(\mathbf{q}) \longrightarrow \mathsf{EFT}$

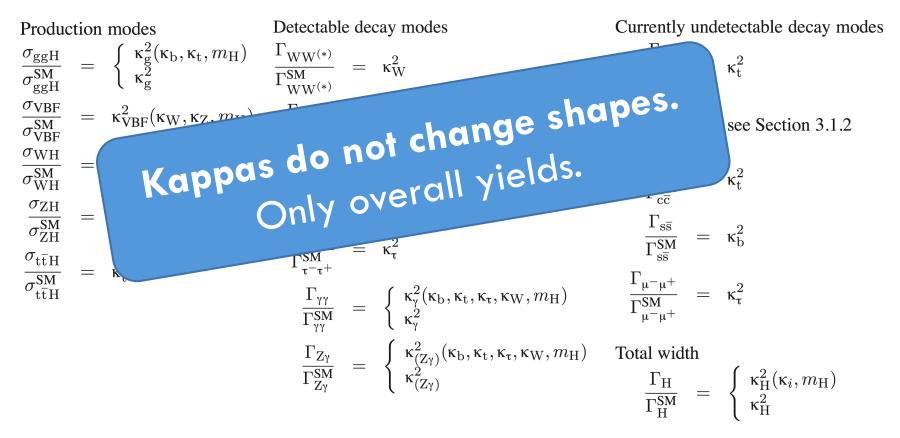

measuring.higgs@cern.ch

HiggsTools School - June 2015

Kappas: scalar coupling deviations

[arXiv:1307.1347

156

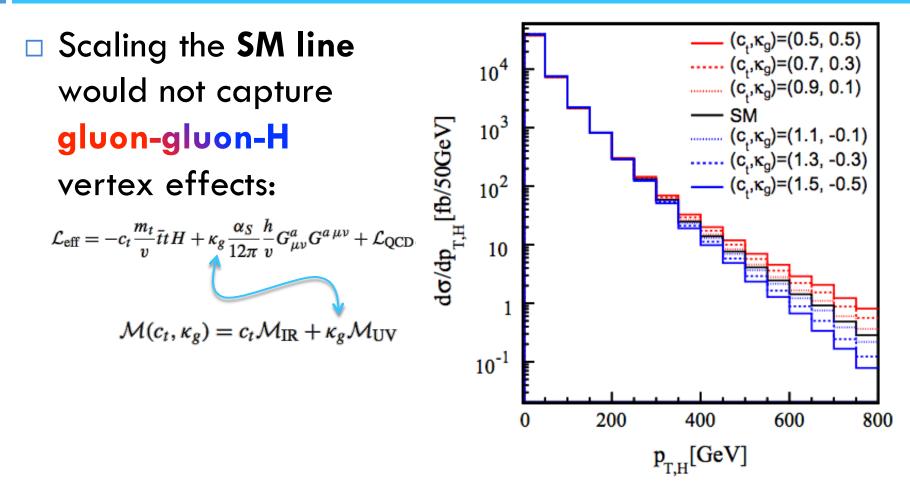


- Single state, spin 0, and CP-even.
- Narrow-width approximation: ($\sigma \times BR$) = $\sigma \cdot \Gamma / \Gamma_{\mu}$

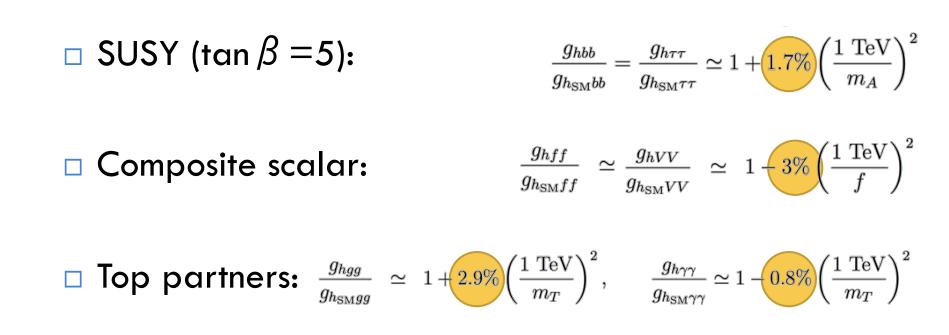
Kappas: scalar coupling deviations

arXiv:1307.1347

157

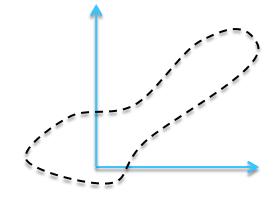


- Single state, spin 0, and CP-even.
- Narrow-width approximation: ($\sigma \times BR$) = $\sigma \cdot \Gamma / \Gamma_{H}$


[Spannowsky et al. arXiv:1405.4295]

158

Deviations are on a diet

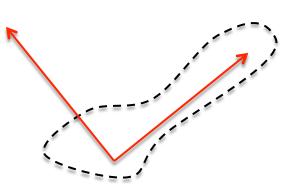


Effective field theory (EFT): the idea

[NPB 268 (1986) 621] [JHEP 10 (2010) 085]

160

- Experimentally-driven set of parameters vs. basis of QFT operators that may be better aligned with the Next SM features.
- EFT allows to perform accurate calculations:
 - NLO EWK effects, etc.
 - More sensitive interpretation.
- >59 dim-6 operators already mapped out in 1986.
 - Which operators to keep ?
 - What about dim-8 ?
 - What about loop processes ?

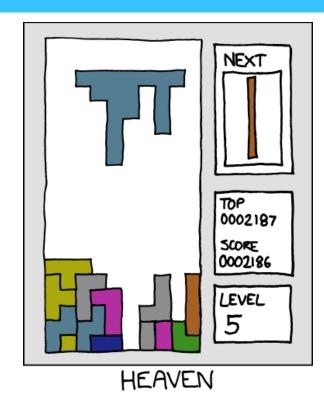


Effective field theory (EFT): the idea

[NPB 268 (1986) 621] [JHEP 10 (2010) 085]

161

- Experimentally-driven set of parameters vs. basis of QFT operators that may be better aligned with the Next SM features.
- EFT allows to perform accurate calculations:
 - NLO EWK effects, etc.
 - More sensitive interpretation.
- >59 dim-6 operators already mapped out in 1986.
 - Which operators to keep ?
 - What about dim-8 ?
 - What about loop processes ?



LHC Higgs Cross Section WG

[http://xkcd.com/888/]

- Experimentalists and theorists joined to produce the best pieces for a common puzzle.
- This talk draws heavily from discussions in and around WG2.
 - Special thanks to G. Passarino, G. Isidori, A. Falkowski, M. Duehrssen, M. Trott, F. Riva, F. Maltoni, and C. Grojean.
 - Inaccuracies are still my own.

Supplementing the Standard Theory

Concrete BSM

- SUSY: MSSM, NMSSM, etc.
- □ Possibly:
 - Light new physics.
 - Other states.
 - Non-decoupled.
- Specific benchmarks.LHC HXSWG WG3.

EFT expansion

- Add higher-dimensional operators.
- □ Assumes:
 - Heavy new physics.
 - Indirect effects, loops.
 - Decoupled.
- Generic interpretation.LHC HXSWG WG2.

Supplementing the Standard Theory

Concrete BSM

- SUSY: MSSM, NMSSM, etc.
- □ Possibly:
 - Light new physics.
 - Other states.
 - Non-decoupled.
- Specific benchmarks.
 LHC HXSWG WG3.

EFT expansion

- Add higher-dimensional operators.
- □ Assumes:
 - Heavy new physics.
 - Indirect effects, loops.
 - Decoupled.
- Generic interpretation.LHC HXSWG WG2.

Supplementing the Standard Theory

Concrete BSM

- SUSY: MSSM, NMSSM, etc.
- □ Possibly:
 - Light new physics.
 - Other states.
 - Non-decoupled.
- Specific benchmarks.LHC HXSWG WG3.

EFT expansion

- Add higher-dimensional operators.
- □ Assumes:
 - Heavy new physics.
 - Indirect effects, loops.
 - Decoupled.
- Generic interpretation.
 LHC HXSWG WG2.

Not all EFT are born the same

[http://cern.ch/go/L98Q]

Top-down EFT

- □ Full theory known:
 - Matching conditions bridge EFT and full theory.

Bottom-up EFT

- Full theory unknown:
 - Add operators as theory can calculate and data can discern.

Not all EFT are born the same

[http://cern.ch/go/L98Q]

Top-down EFT

 Full theory known:
 Matching conditions bridge EFT and full theory.

Bottom-up EFT

- Full theory unknown:
 - Add operators as theory can calculate and data can discern.

Not all EFT are born the same

[http://cern.ch/go/L98Q]

Top-down EFT

 Full theory known:
 Matching conditions bridge EFT and full theory.

Bottom-up EFT

- Full theory unknown:
 - Add operators as theory can calculate and data can discern.

A taxonomy of dim-6 operators

59 [Trott et al. JHEP 04 (2014) 159]

Class	$N_{ m op}$	CP-even			$CP ext{-odd}$		
		n_g	1	3	n_g	1	3
$1:X^3$	4	2	2	2	2	2	2
$2:H^6$	1	1	1	1	0	0	0
$3:H^4D^2$	2	2	2	2	0	0	0
$4: X^{2}H^{2}$	8	4	4	4	4	4	4
$5:\psi^2H^3+ ext{h.c.}$	· ·	$3n_g^2$	3	27	$3n_g^2$	3	27
$6:\psi^2 XH+ ext{h.c.}$	8	$8n_g^2$	8	72	$8n_g^2$	8	72
$7:\psi^2 H^2 D$	8	$\frac{1}{2}n_g(9n_g+7)$	8	51	$\frac{1}{2}n_g(9n_g-7)$	1	30
$8 : (\overline{L}L)(\overline{L}L)$	5	$\frac{1}{4}n_g^2(7n_g^2+13)$	5	171	$\frac{7}{4}n_g^2(n_g-1)(n_g+1)$	0	126
$8:(\overline{R}R)(\overline{R}R)$	7	$rac{1}{8}n_g(21n_g^3+2n_g^2+31n_g+2)$	7	255	$\frac{1}{8}n_g(21n_g+2)(n_g-1)(n_g+1)$	0	195
$8 : (\overline{L}L)(\overline{R}R)$	8	$4n_g^2(n_g^2+1)$	8	360	$4n_g^2(n_g-1)(n_g+1)$	0	288
$8 : (\overline{L}R)(\overline{R}L)$	1	n_g^4	1	81	n_g^4	1	81
$8 : (\overline{L}R)(\overline{L}R)$	4	$4n_g^4$	4	324	$4n_g^4$	4	324
8 : All	25	$rac{1}{8}n_g(107n_g^3+2n_g^2+89n_g+2)$	25	1191	$rac{1}{8}n_g(107n_g^3+2n_g^2-67n_g-2)$	5	1014
Total	59	$\frac{1}{8}(107n_g^4 + 2n_g^3 + 213n_g^2 + 30n_g + 72)$	53	1350	$\frac{1}{8}(107n_g^4 + 2n_g^3 + 57n_g^2 - 30n_g + 48)$) 23	1149

Table 2. Number of *CP*-even and *CP*-odd coefficients in $\mathcal{L}^{(6)}$ for n_g flavors. The total number of coefficients is $(107n_g^4 + 2n_g^3 + 135n_g^2 + 60)/4$, which is 76 for $n_g = 1$ and 2499 for $n_g = 3$.

169

 \square From 2499 dim-6 operators to ${\sim}60$ operators.

Symmetries guide the culling:

- Flavour, ~custodial, CP.
- Each assumption needs testing measurements/observables.

□ But to go down from \sim 60:

- Guidance from **experimental sensitivity**.
- Use complementary information:
 - LEP, Tevatron, etc experimental constraints.
 - aTGC/aQGC, top quark, EDM searches, etc.

Working out the details

171 [http://cern.ch/go/6xk9]

"A construction worker crouches over the end of a girder high above the streets of New York. (Photo by General Photographic Agency/Getty Images). Circa 1930"

- \Box | dim-4 + dim-6 + dim-8 + ... |² =
 - $= d4^{2} + d4 \times d6 (+ d6^{2} + d4 \times d8) (+ d6 \times d8 + d8^{2}) + \dots$

Weeding of the negligible, keeping of the sizable.

- Delicate choices because of:
 - Tails of large Q² values where dim-8 may not be so small.
 - Where there is no dim-6 tree contribution, dim-8 is leading.
- And let's not forget interferences.
 - Signals and backgrounds are physics processes all alike.

Delicate choices

[Passarino http://cern.ch/go/nT7n]

173

Delicate choices

174 [Passarino http://cern.ch/go/nT7n]

$$|\dim 4 + \dim 6 + \dim 8 + \dots|^2 = d4^2 + d4 \times d6 (+ d6^2 + d4 \times d8) (+ d6 \times d8 + d8^2) + \dots$$

1 Λ^{-2} Λ^{-4} Λ^{-4} Λ^{-6} Λ^{-8}

Delicate choices

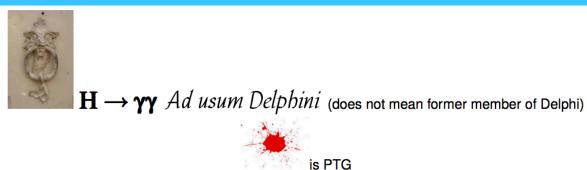
175 [http://cern.ch/go/Ks9T]

$\Box |\dim 4 + \dim 6 + \dim 8 + \dots |^2 =$

 $= d4^{2} + d4 \times d6 (+ d6^{2} + d4 \times d8) (+ d6 \times d8 + d8^{2}) + \dots$

1 Λ^{-2} Λ^{-4} Λ^{-4} Λ^{-6} Λ^{-8}

LO: g_{d4} NLO: g_{d4}³ NNLO: g_{d4}⁵


VH, VBF, Hij can probe very large Q^2 , where d4 ~ 0. Work in progress. Many ideas.

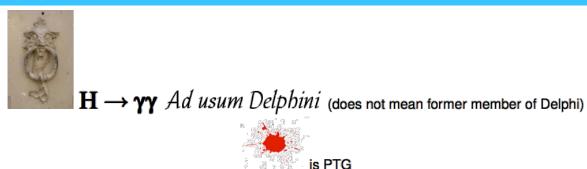
Towards a conventional basis

[LHCHXSWG-INT-2015-001] [Falkowski http://cern.ch/go/Ks9T]

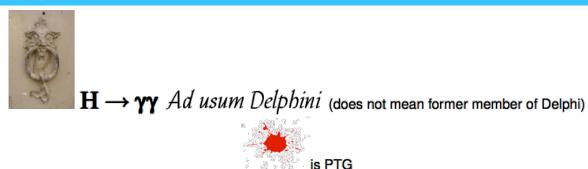
- Effort in the LHC HXSWG WG2 to standardize the dim-6 operator language.
 - Incorporate constraints from LEP precision data.
 - Link to **aTGC/aQGC** LHC EWWG.
 - Basically, any data fit using dim-6 EFT can be "rotated in".
- Design choice: align tree-level dim-6 effect with straightforward H(125) experimental observables.
 - Beyond tree-level, not that simple.

177 [Passarino http://cern.ch/go/nT7n]

$$\Delta \kappa^{\gamma \gamma} = -\frac{1}{2 s_{\theta}^2} \left(a_{\phi D} - 4 s_{\theta}^2 a_{\phi \Box} \right)$$
$$\Delta \kappa^{\gamma \gamma}_{W} = \Delta \kappa \quad \Delta \kappa^{\gamma \gamma}_{t} = \Delta \kappa^{\gamma \gamma} + a_{t\phi} \quad \Delta \kappa^{\gamma \gamma}_{b} = \Delta \kappa^{\gamma \gamma} + a_{b\phi}$$


178 [Passarino http://cern.ch/go/nT7n]

$$\begin{split} \Delta \kappa^{\gamma \gamma} &= -\frac{1}{2 s_{\theta}^2} \left(a_{\phi D} - 4 \, s_{\theta}^2 \, a_{\phi \Box} \right) \\ \Delta \kappa_{W}^{\gamma \gamma} &= \Delta \kappa \ \Delta \kappa_{t}^{\gamma \gamma} &= \Delta \kappa^{\gamma \gamma} + a_{t\phi} \ \Delta \kappa_{b}^{\gamma \gamma} = \Delta \kappa^{\gamma \gamma} + a_{b\phi} \\ \mathscr{A} \left(\mathbf{H} \to \gamma \gamma \right) &= \kappa^{\gamma \gamma} \, \mathscr{A}^{(4)} + \kappa_{t}^{\gamma \gamma} \, \mathscr{A}_{t}^{(4)} + \kappa_{b}^{\gamma \gamma} \, \mathscr{A}_{b}^{(4)} + 2 \, i \, gg_{6} \, \frac{M_{H}^2}{M_{W}} \, a_{AA} \end{split}$$


179 [Passarino http://cern.ch/go/nT7n]

CÉRN

$$\begin{split} \Delta \kappa^{\gamma \gamma} &= -\frac{1}{2 s_{\theta}^2} \left(a_{\phi D} - 4 s_{\theta}^2 a_{\phi \Box} \right) \\ \Delta \kappa_{W}^{\gamma \gamma} &= \Delta \kappa \ \Delta \kappa_{t}^{\gamma \gamma} &= \Delta \kappa^{\gamma \gamma} + a_{t\phi} \ \Delta \kappa_{b}^{\gamma \gamma} = \Delta \kappa^{\gamma \gamma} + a_{b\phi} \\ \mathscr{A} \left(\mathbf{H} \to \gamma \gamma \right) &= \mathbf{\kappa}^{\gamma \gamma} \mathscr{A}^{(4)} + \mathbf{\kappa}_{t}^{\gamma \gamma} \mathscr{A}^{(4)}_{t} + \mathbf{\kappa}_{b}^{\gamma \gamma} \mathscr{A}^{(4)}_{b} + 2 i gg_{6} \frac{M_{H}^2}{M_{W}} a_{AA} \end{split}$$

180 [Passarino http://cern.ch/go/nT7n]

$$\begin{aligned} \Delta \kappa^{\gamma \gamma} &= -\frac{1}{2 s_{\theta}^2} \left(a_{\phi D} - 4 s_{\theta}^2 a_{\phi \Box} \right) \\ \Delta \kappa_{W}^{\gamma \gamma} &= \Delta \kappa \ \Delta \kappa_{t}^{\gamma \gamma} &= \Delta \kappa^{\gamma \gamma} + a_{t\phi} \ \Delta \kappa_{b}^{\gamma \gamma} = \Delta \kappa^{\gamma \gamma} + a_{b\phi} \\ \mathscr{A} \left(\mathbf{H} \to \gamma \gamma \right) &= \kappa^{\gamma \gamma} \mathscr{A}^{(4)} + \kappa_{t}^{\gamma \gamma} \mathscr{A}^{(4)}_{t} + \kappa_{b}^{\gamma \gamma} \mathscr{A}^{(4)}_{b} + 2 i gg_{6} \frac{M_{H}^2}{M_{W}} a_{AA} \end{aligned}$$

LHC season 2 premieres next week

 BBC
 News
 Sport
 Weather
 Earth
 Future
 Shop
 TV
 Radio
 More...
 Search
 Q

 NEWS
 SCIENCE & ENVIRONMENT
 Image: Science & Env

5 March 2015 Last updated at 00:15 GMT

< Share 🛛 🚹 💟 🖹

LHC restart: 'We want to break physics'

By Jonathan Webb Science reporter, BBC News

LHC season 2 premieres next week

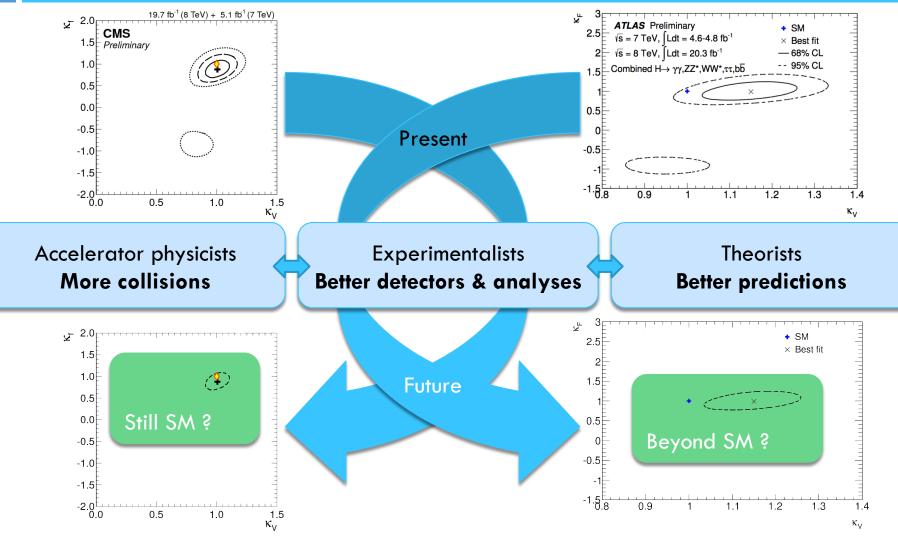
 BBC
 News
 Sport
 Weather
 Earth
 Future
 Shop
 TV
 Radio
 More...
 Search
 Q

 NEWS
 SCIENCE & ENVIRONMENT
 Image: Science & Env

5 March 2015 Last updated at 00:15 GMT

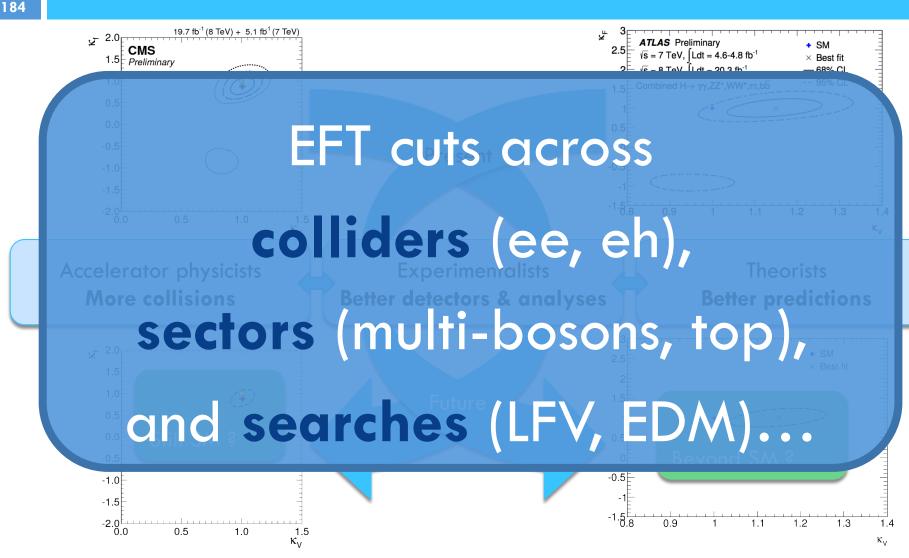
< Share 📑 💆 🖹

LHC restart: 'We want to break physics'


By Jonathan Webb Science reporter, BBC News

182

The future is in precision and accuracy



measuring.higgs@cern.ch HiggsToc

HiggsTools School - June 2015

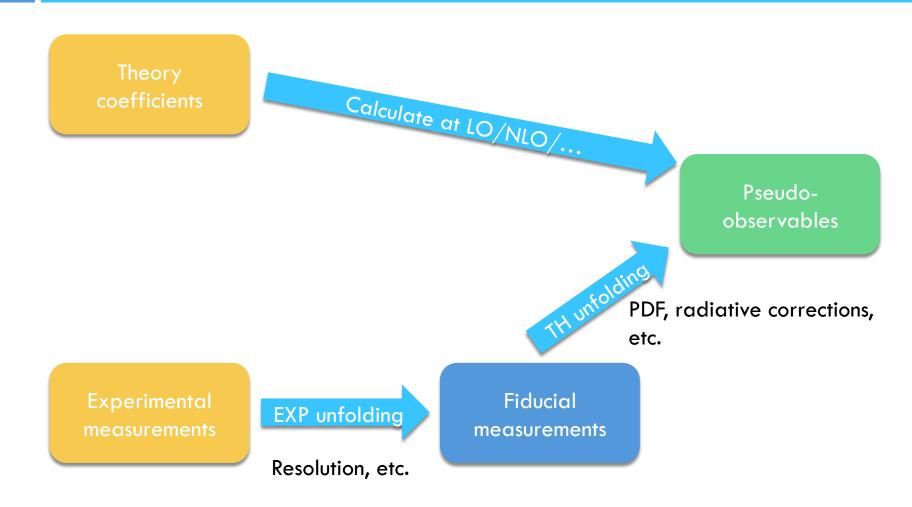
The future is in precision and accuracy

Looking for the middle way

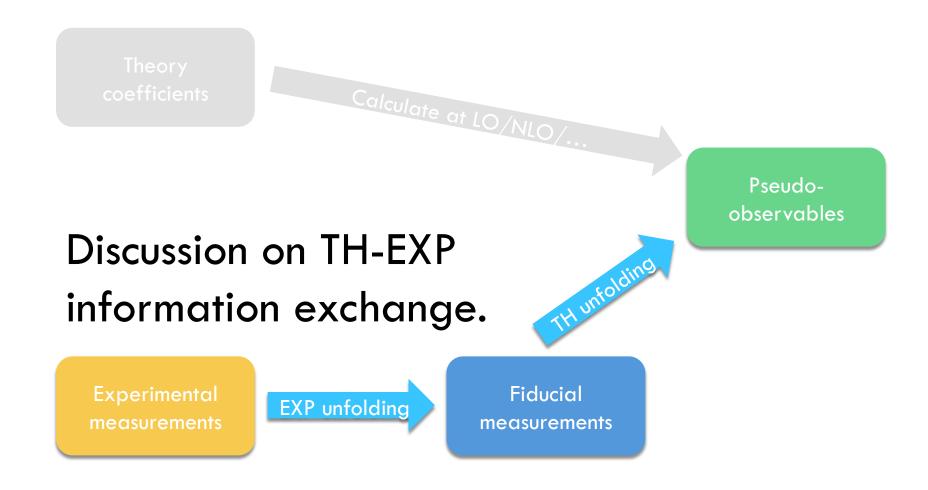
185 [http://cern.ch/go/6xk9]

"The eleventh most dangerous occupation in America is that of the rivet tosser. Insurance companies will not issue life or accident insurance cover to these people. (Photo by Evans/Three Lions/Getty Images). Circa 1950"

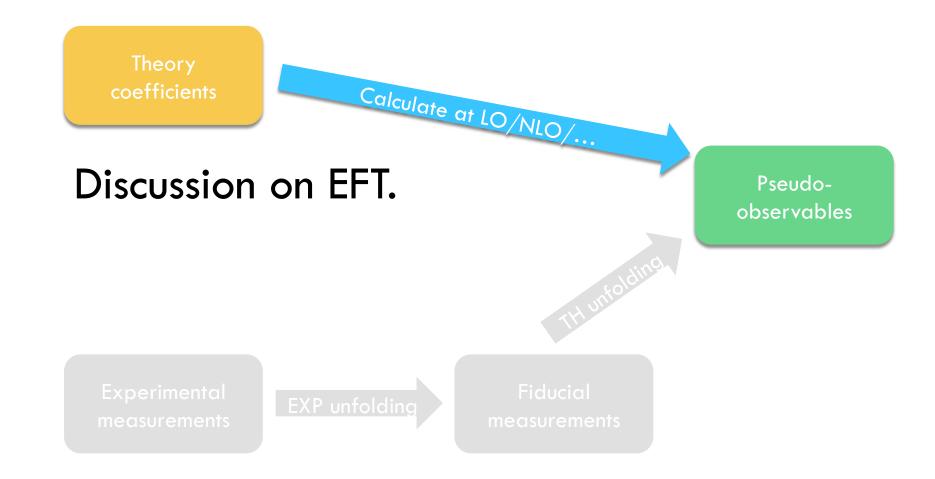
The need for the middle way

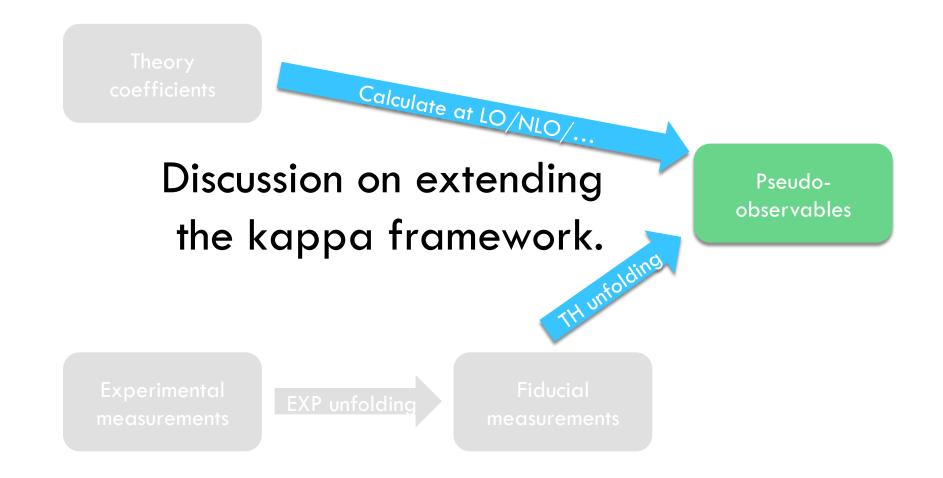

186

- **EFT** is all-encompassing, calculable, and evolving.
 - But too costly to redo all analyses if/when higher order calculations become available.
- Fiducial cross-section could be produced differentially for many quantities.
 - **But** no physical interpretation of every single bin by itself.


The middle way: pseudo-observables (PO).

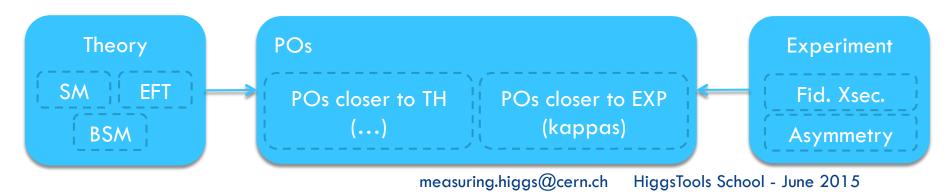
LEP-inspired scheme where theory and experiment intersect at clearly-defined points.





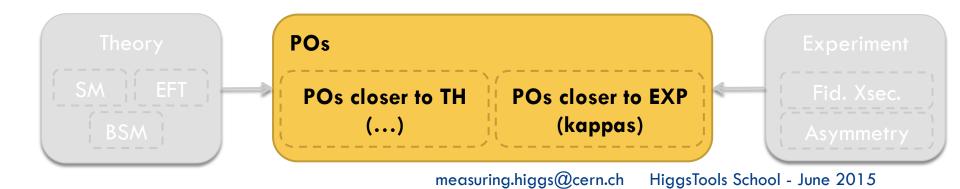
CERN

From kappas that fit little stuff...


...to kappas that fit more stuff.

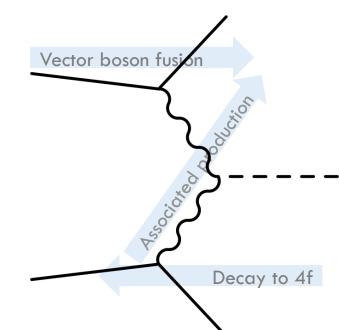
Kappas might have been our first POs

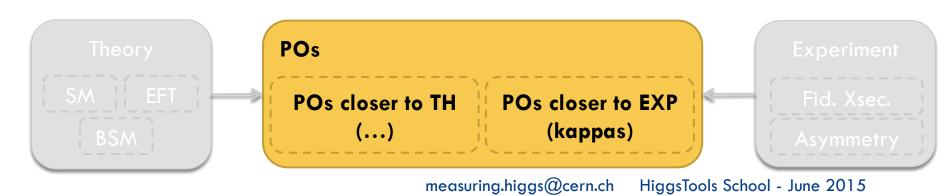
- Kappas must be extended to:
 - Differential quantities.
 - Remove some assumptions.
 - Cover smooth deviations from the SM.
- With better/more POs, kappas may remain as part of the PO framework:



Inspiration for building PO

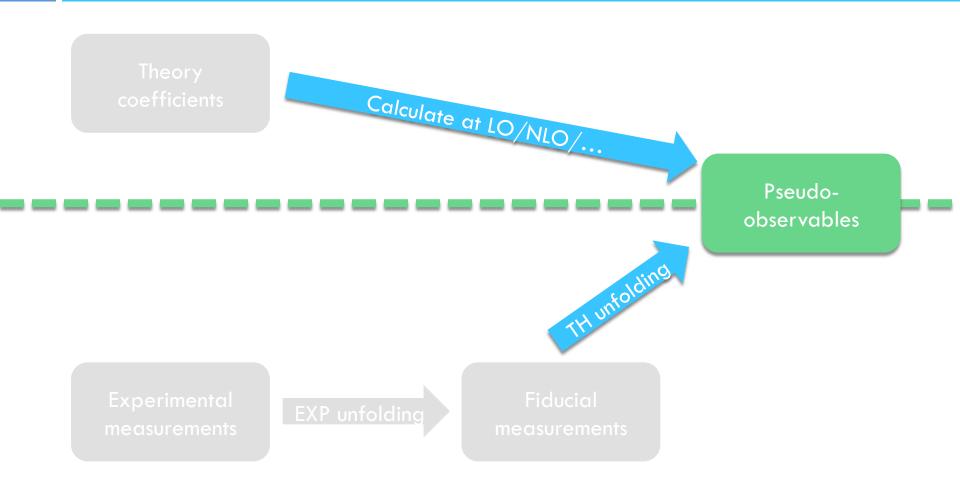
If we assume that:
Next SM ~ | dim-4 + dim-6 + dim-8 + ... |²

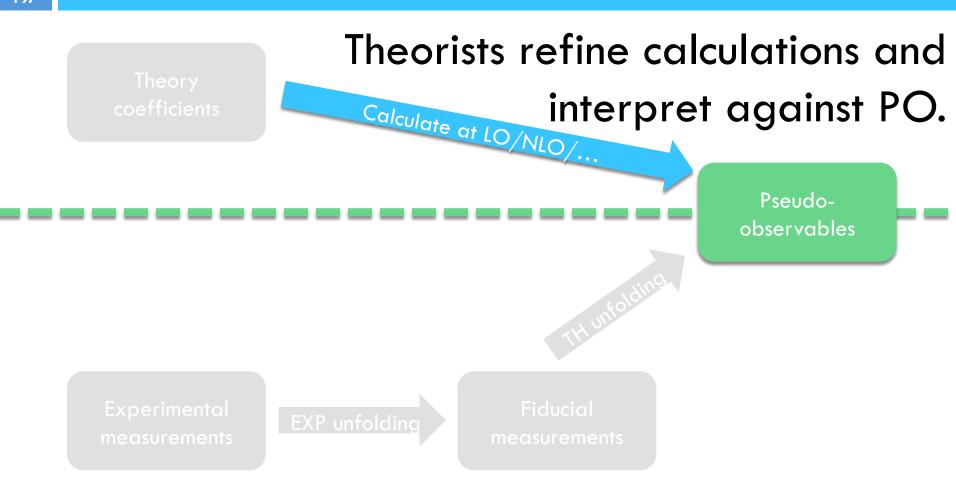

Then POs can be motivated to parametrize: δ(PO_i) ~ (Data – d4²) = d4×d6 + d6² + d4×d8 +



CERN 195

Inspiration for building PO

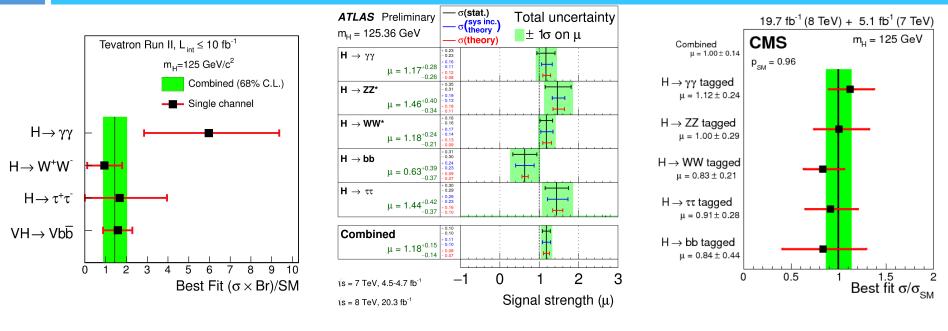

- Many practical issues to be solved.
- Many conceptual issues to be tackled.
- Many discussions to be held.



The middle way in action

The middle way in action

The middle way in action

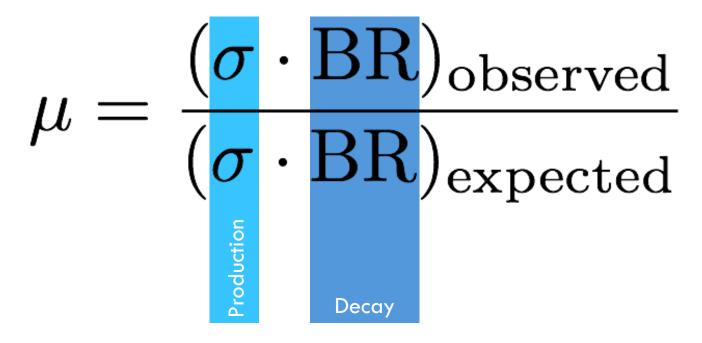


Relative signal strengths

200 arXiv:1303.6346][ATLAS-CONF-2015-007][arXiv:1412.8662]

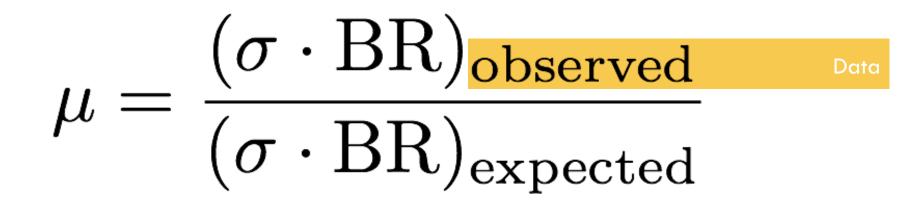
What's in a "signal strength"?

measuring.higgs@cern.ch


HiggsTools School - June 2015

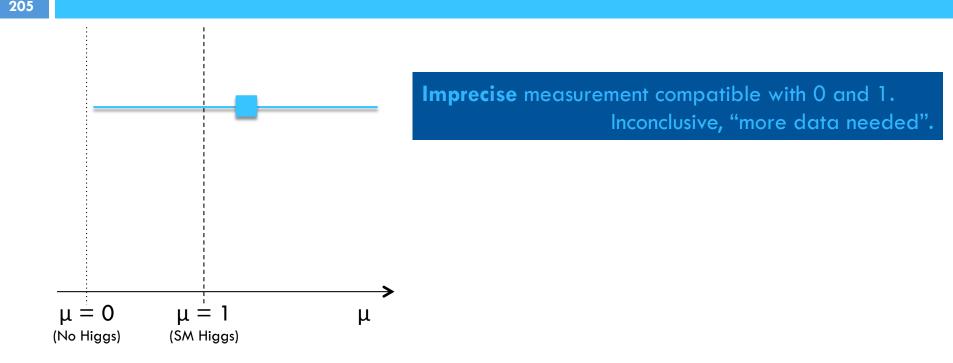
$\mu = \frac{(\sigma \cdot BR)_{\text{observed}}}{(\sigma \cdot BR)_{\text{expected}}}$

 Deviations are searched relative to SM expectation.
 Conclusions are only as good as the accuracy and precision of the numerator and denominator.

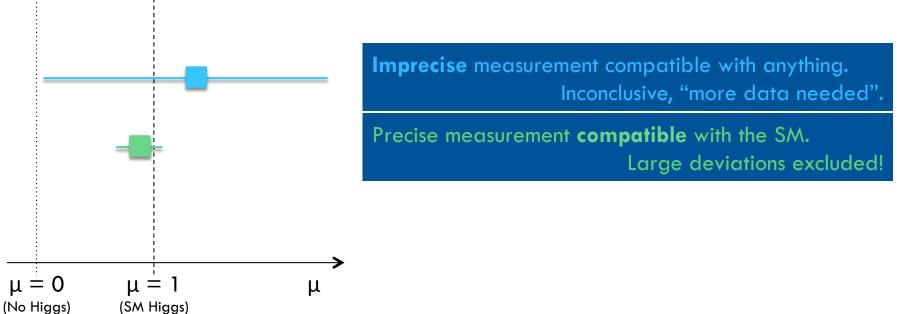


Deviations are searched relative to SM expectation.

Conclusions are only as good as the accuracy and precision of the numerator and denominator.

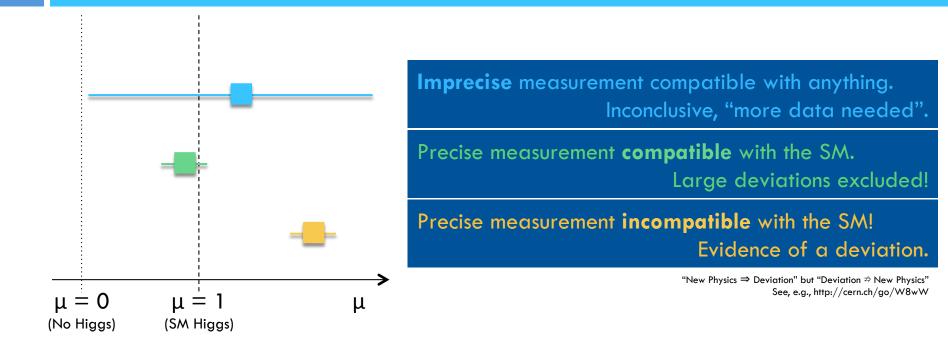


 Deviations are searched relative to SM expectation.
 Conclusions are only as good as the accuracy and precision of the numerator and denominator.

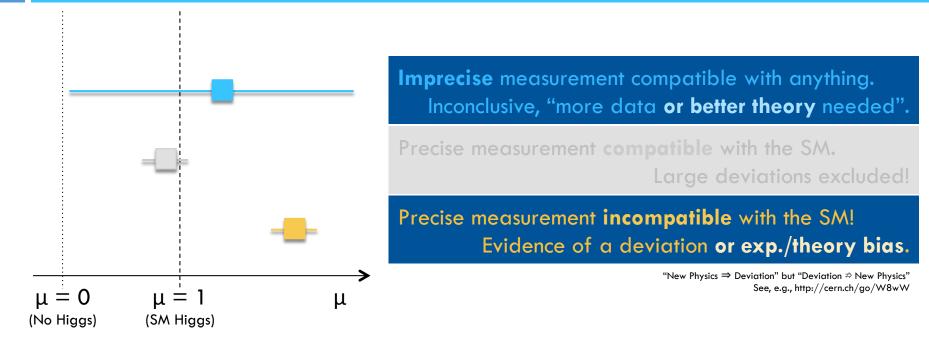

$$\mu = \frac{(\sigma \cdot BR)_{\text{observed}}}{(\sigma \cdot BR)_{\text{expected Standard Model}}}$$

 Deviations are searched relative to SM expectation.
 Conclusions are only as good as the accuracy and precision of the numerator and denominator.

- \square $\mu = 1$ means that the data match the SM.
 - **D** Uncertainty on μ quantifies the compatibility with the SM:
 - μ = 1.3 ±1.2 is inconclusive and "more data is needed", but
 - $\mu = 2.0 \pm 0.2$ could mean New Physics (or a systematic effect).



$\mu = 1$ means that the data match the SM.


- **D** Uncertainty on μ quantifies the compatibility with the SM:
 - $\mu = 1.3 \pm 1.2$ usually means "more data needed", but
 - $\mu = 2.0 \pm 0.2$ could mean New Physics (or a systematic effect).

207

- \square μ = 1 means that the data match the SM.
 - **D** Uncertainty on μ quantifies the compatibility with the SM:
 - $\mu = 3 \pm 5$ usually means "more data needed", but
 - $\mu = 2.0 \pm 0.2$ could mean New Physics (or a systematic effect).

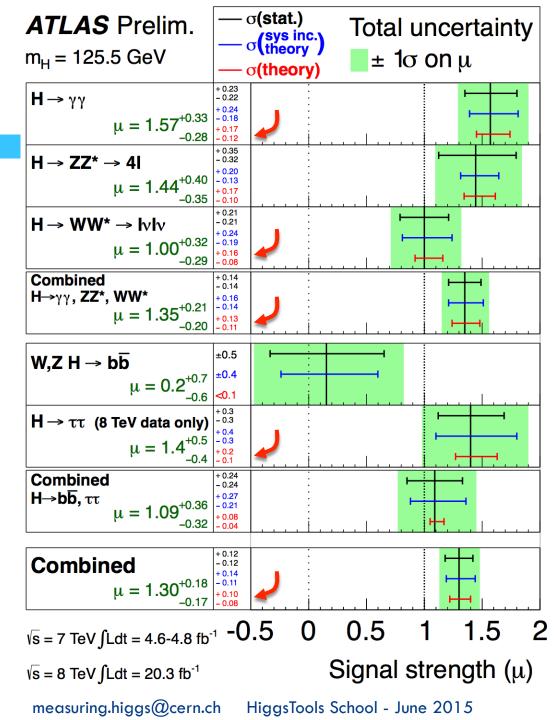
- \square μ = 1 means that the data match the SM.
 - \blacksquare Uncertainty on μ quantifies the compatibility with the SM:
 - $\mu = 3 \pm 5$ usually means "more data needed", but
 - $\mu = 2.0 \pm 0.2$ could mean New Physics (or a systematic effect).

Imprecise measurement compatible with anything. Inconclusive, "more data or better theory needed".

Precise measurement **compatible** with the SM. Large deviations excluded!

Precise measurement **incompatible** with the SM! Evidence of a deviation **or exp./theory bias**.

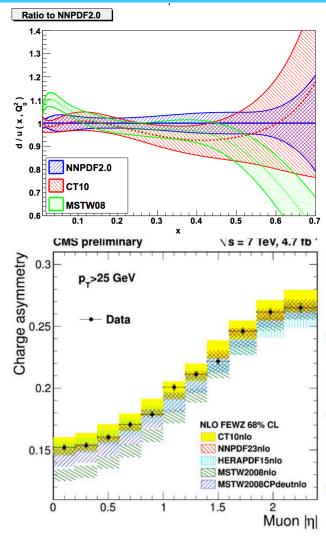
> "New Physics ⇒ Deviation" but "Deviation ⇒ New Physics" See, e.g., http://cern.ch/go/W8wW


Theory contributes as much to the conclusions as experiments !

Theory

uncertainties

- Description PDFs not dominating on μ .
 - ggH vs VBF+VH.
 - PDF4LHC prescription too conservative?
 - Changing soon!
 - PDG σ(α_s) too aggressive?
- NNLO+NNLL not enough to tame large QCD corrections in gluon-fusion?



Theory uncertainties: a tale of PDFs

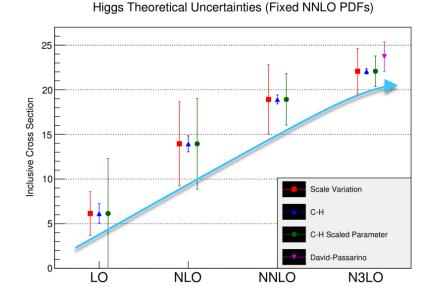
[http://cern.ch/go/V8xJ]

 Long-standing difference in d/u ratio between MSTW and others.

- Neatly resolved by CMS
 W asymmetry measurements.
- MSWT made parameterization more flexible: case closed.

Theory uncertainties

- Bottom-line for Run2:
 - Consider measurements that constrain PDF fits.
 - For higher orders, more than precision, also a matter of accuracy.
 - Need to work with theorists to get these right, also differentially.
- Or you can try to dodge them with p_T ratios...
 ...but end up needing a lot of data.

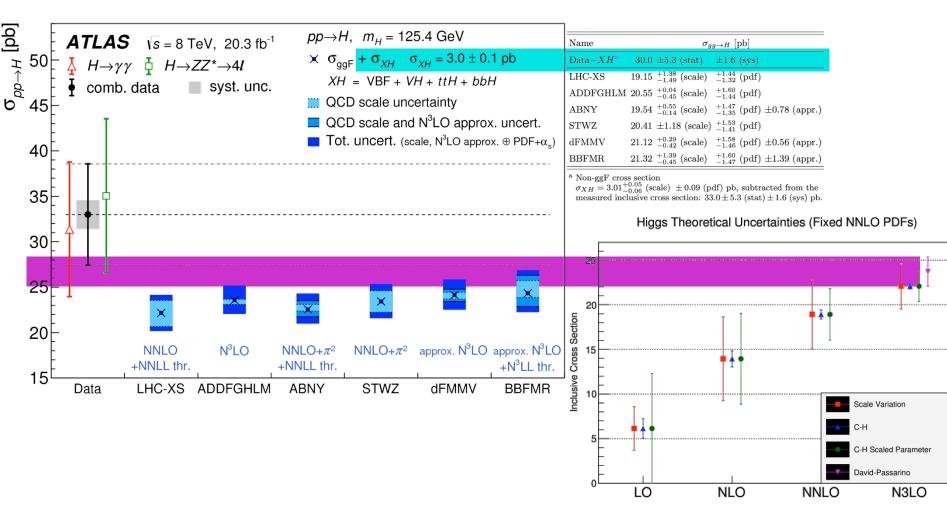

Theory uncertainties: MHOU

213 [arXiv:1307.1843][http://cern.ch/go/V8xJ]

- Scale variations are not theory uncertainties.
- The uncertainty is due to missing higher orders (MHO).

$$\frac{\sigma_{gg}(\sqrt{s}, M_H)}{\sigma_{gg}^{LO}(\sqrt{s}, M_H)} = 1 + \sum_{n=1}^{\infty} \alpha_s^n(\mu_R) \ K_{gg}^n(\sqrt{s}, \mu = M_H)$$

- Take gluon-gluon fusion:
 - All series terms are positive.
 - We can try and complete the series instead of always being off.


measuring.higgs@cern.ch

HiggsTools School - June 2015

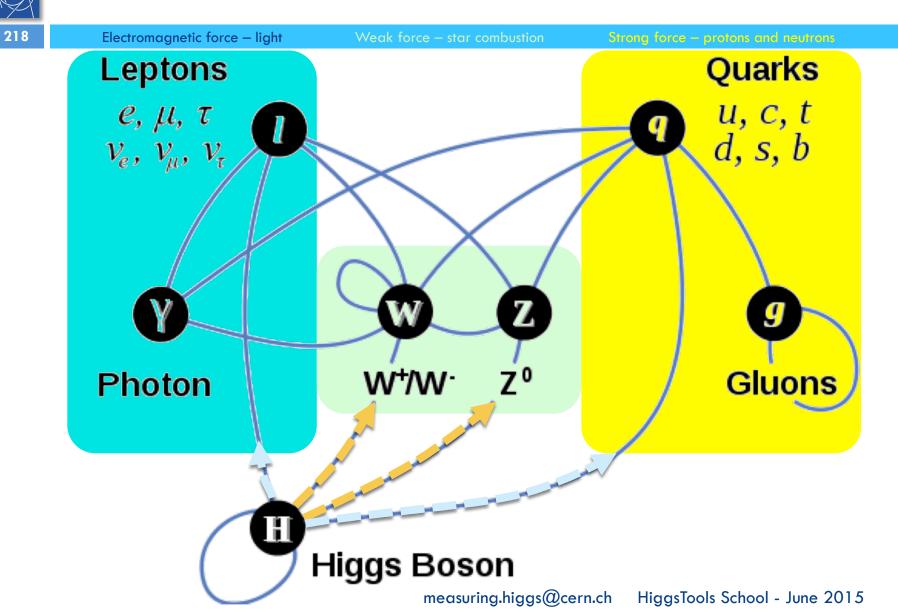
Up, up, and away!

214 [arXiv:1504.05833]

The Standard Model of Particle Physics

[16 [http://cern.ch/go/dW6z]

 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{b}_{\nu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{b}_{\nu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{c}$ $\partial_{\nu}W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2c^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\mu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\mu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\mu}$ $M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{w}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{q^{2}} + \frac{2M}{q}H + \frac{1}{2}(H^{2} + \phi^{0}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - \psi^{0})] + \frac{2M^{4}}{q}M_{\mu}^{0}(W_{\mu}^{+}W_{\nu}^{-}) + \frac{2M^{4}}{q}M_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-}) + \frac{2M^{4}}{q}M_{\mu}^{0}(W_{\mu}^{-}) + \frac{2M^{4}}{q}M_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-}) + \frac{2M^{4}}{q}M_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-}) + \frac{2M^{4}}{q}M_{\mu}^{0}(W_{\mu}^{+}W_{\mu}^{-}) + \frac{2M^{4}}{q}M_{\mu}^{0}(W_{\mu}^{-}W_{\mu}^{-}) + \frac{2M^{4}}{2$ $W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs$ $A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{$ $g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - Z_{\mu}^{b}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - A_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}c_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] + \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] + \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{2} + 4(\phi^{+}\phi^{-})^{2}\phi^{+}\phi^{-}] + \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{2} + 4(\phi^{+}\phi^{-})^{2}\phi^{+}\phi^{$ $4H^{2}\phi^{+}\phi^{-} + 2(\phi^{0})^{2}H^{2}] - gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c_{w}^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{-}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{$ $\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W^{-}_{\mu}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s^{2}_{w}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s^{2}_{w}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^$ $W_{\mu}^{-}\phi^{+}) + igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - ig\frac{1-2c_{w}^{2}}{2c_{w}}Z_{\mu}^{0}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) + igs_{w}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) - ig\frac{1-2c_{w}^{2}}{2c_{w}}Z_{\mu}^{0}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) - ig\frac{1-2c_{w}^{2}}{2c_{w}}Z_{\mu}^{0}(\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) - ig\frac{1-2c_{w}^{2}}{2$ $\frac{1}{4}g^2W^+_{\mu}W^-_{\mu}[H^2 + (\phi^0)^2 + 2\phi^+\phi^-] - \frac{1}{4}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + \phi^-)] - \frac{1}{4}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + \phi^-)] - \frac{1}{4}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + \phi^-)] - \frac{1}{4}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + \phi^-)] - \frac{1}{4}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + \phi^-)]$ $W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c_{w}}Z_{\mu}^{0}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} + W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}s_{w}A_{\mu}\phi^{0}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) + \frac{1}{2}ig$ $g^{2} \frac{s_{w}}{c_{w}} (2c_{w}^{2}-1) Z_{\mu}^{0} \bar{A}_{\mu} \phi^{+} \phi^{-} - g^{1} s_{w}^{2} A_{\mu} A_{\mu} \phi^{+} \phi^{-} - \bar{e}^{\lambda} (\gamma \partial + m_{e}^{\lambda}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} - \bar{u}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) u_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{d}^{$ $igs_wA_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_j^{\lambda}\gamma^{\mu}u_j^{\lambda}) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma^{\mu}d_j^{\lambda})] + \frac{ig}{4c_w}Z^0_{\mu}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_w^2 - 1 - \gamma^5)e^{\lambda}) + (\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2 - 1 - \gamma$ $1 - \gamma^{5})u_{j}^{\lambda}) + (\bar{d}_{j}^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_{w}^{2} - \gamma^{5})d_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{+}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{$ $\gamma^{5}(\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_{e}^{\lambda}}{M}[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] - \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \bar{e}^{\lambda}(1-\gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \bar{e}^{\lambda}(1-\gamma^{5})e^{\lambda})] - \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda})$ $i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})u_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda$ $m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_i^{\kappa}] - \frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_i^{\lambda}) - \frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda}) + \frac{ig}{2}\frac{m_u^{\lambda}}{M}\phi^0(\bar{u}_j^{\lambda}\gamma^5u_j^{\lambda}) - \frac{ig}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{d}_j^{\lambda}\gamma^5d_j^{\lambda}) + \bar{X}^+(\partial^2 - \bar{U}_j^{\lambda}) + \bar{X}^$ $M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{c_{w}^{2}})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - \partial_{\mu}\bar{X}^{+}X^{0}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}) +$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) + igc_{w}Z_{\mu}^{0}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igc_{w}W_{\mu}^{-}(\partial_{\mu}\bar{X}^{-}X^{-}) + igc_{w}W_{\mu}^{-}(\partial_{\mu$ $igs_{w}A_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) - \frac{1}{2}gM[\bar{X}^{+}X^{+}H + \bar{X}^{-}X^{-}H + \frac{1}{c^{2}}\bar{X}^{0}X^{0}H] + \frac{1-2c_{w}^{2}}{2c_{w}}igM[\bar{X}^{+}X^{0}\phi^{+} - \frac{1}{c^{2}}\bar{X}^{0}A^{0}H] + \frac{1-2c_{w}^{2}}{c^{2}}\bar{X}^{0}A^{0}H] + \frac{1-2c_{w$ $\bar{X}^{-}X^{0}\phi^{-}] + \frac{1}{2c_{w}}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{\bar{0}}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$


The Standard Model of Particle Physics

17 [http://cern.ch/go/dW6z]

 $-\frac{1}{2}\partial_{\nu}g^{a}_{\mu}\partial_{\nu}g^{a}_{\mu} - g_{s}f^{abc}\partial_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\nu} - \frac{1}{4}g^{2}_{s}f^{abc}f^{ade}g^{b}_{\mu}g^{c}_{\nu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + \frac{1}{2}ig^{2}_{s}(\bar{q}^{\sigma}_{i}\gamma^{\mu}q^{\sigma}_{j})g^{a}_{\mu} + \bar{G}^{a}\partial^{2}G^{a} + g_{s}f^{abc}\partial_{\mu}\bar{G}^{a}G^{b}g^{c}_{\mu} - g^{a}_{\mu}g^{a}_{\nu}g^{b}_{\mu}g^{c}_{\mu}g^{d}_{\mu}g^{e}_{\nu} + g^{a}_{\mu}g^{a}_{\nu}g^{a}_{\mu}g^{c}_{\mu}g^{a}_{\mu}g^{c}_{\mu}g^{a}_{\mu}g^{c}_{\mu}g^{a}_{\mu}g^{c}_{\mu}g^{a}_{\mu}g^{c}_{\mu}g^{a}_{\mu}g^{c}_{\mu}g^{a}_{\mu}g^{c}_{\mu}g^{a}_{\mu}g^{c}_{\mu}g^{a}_{\mu}g^{c}_{\mu}g^{a}_{\mu}g^{c}_{\mu}g^{c}_{\mu}g^{a}_{\mu}g^{c}$ $\partial_{\nu}W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - M^{2}W_{\mu}^{+}W_{\mu}^{-} - \frac{1}{2}\partial_{\nu}Z_{\mu}^{0}\partial_{\nu}Z_{\mu}^{0} - \frac{1}{2c^{2}}M^{2}Z_{\mu}^{0}Z_{\mu}^{0} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}H\partial_{\mu}H - \frac{1}{2}m_{h}^{2}H^{2} - \partial_{\mu}\phi^{+}\partial_{\mu}\phi^{-} - \frac{1}{2}\partial_{\mu}A_{\nu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\nu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\mu}A_{\mu} - \frac{1}{2}\partial_{\mu}A_{\mu}\partial_{\mu}A_{\mu} - \frac{1}{2}\partial_{\mu}A$ $M^{2}\phi^{+}\phi^{-} - \frac{1}{2}\partial_{\mu}\phi^{0}\partial_{\mu}\phi^{0} - \frac{1}{2c_{w}^{2}}M\phi^{0}\phi^{0} - \beta_{h}[\frac{2M^{2}}{q^{2}} + \frac{2M}{q}H + \frac{1}{2}(H^{2} + \phi^{0}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z^{0}_{\mu}(W^{+}_{\mu}W^{-}_{\nu} - \psi^{-}_{\mu})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z^{0}_{\mu}(W^{+}_{\mu}W^{-}_{\nu} - \psi^{-}_{\mu})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q^{2}}\alpha_{h} - igc_{w}[\partial_{\nu}Z^{0}_{\mu}(W^{+}_{\mu}W^{-}_{\nu} - \psi^{-}_{\mu})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{2M^{4}}{q}M^{2}\phi^{0} + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{+}\phi^{-})] + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{-})] + \frac{1}{2}(M^{2}\phi^{0} + 2\phi^{-})]$ $W_{\nu}^{+}W_{\mu}^{-}) - Z_{\nu}^{0}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + Z_{\mu}^{0}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-})] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{-}] - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - igs_{w}[\partial_{\nu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-} - W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}]] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-})] - igs_{w}[\partial_{\mu}A_{\mu}(W_{\mu}^{+}W_{\mu}^{-}] - igs_{$ $A_{\nu}(W_{\mu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\mu}^{-}\partial_{\nu}W_{\mu}^{+}) + A_{\mu}(W_{\nu}^{+}\partial_{\nu}W_{\mu}^{-} - W_{\nu}^{-}\partial_{\nu}W_{\mu}^{+})] - \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\nu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\nu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{1}{2}g^{2}W_{\mu}^{+}W_{\mu}^{-} + \frac{1}{2}g^{2}W_{\mu}^{+} + \frac{1}{2}g$ $g^{2}c_{w}^{2}(Z_{\mu}^{0}W_{\mu}^{+}Z_{\nu}^{0}W_{\nu}^{-} - Z_{\mu}^{0}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}^{2}(A_{\mu}W_{\mu}^{+}A_{\nu}W_{\nu}^{-} - \tilde{A}_{\mu}A_{\mu}W_{\nu}^{+}W_{\nu}^{-}) + g^{2}s_{w}\tilde{c}_{w}[A_{\mu}Z_{\nu}^{0}(W_{\mu}^{+}W_{\nu}^{-} - W_{\nu}^{+}W_{\mu}^{-}) - 2A_{\mu}Z_{\mu}^{0}W_{\nu}^{+}W_{\nu}^{-}] - g\alpha[H^{3} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] + g^{2}\omega^{2}W_{\nu}^{-}W_{\nu}^{-} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] + g^{2}\omega^{2}W_{\nu}^{-}W_{\nu}^{-} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] + g^{2}\omega^{2}W_{\nu}^{-}W_{\nu}^{-} + H\phi^{0}\phi^{0} + 2H\phi^{+}\phi^{-}] - \frac{1}{8}g^{2}\alpha_{h}[H^{4} + (\phi^{0})^{4} + 4(\phi^{+}\phi^{-})^{2} + 4(\phi^{0})^{2}\phi^{+}\phi^{-}] + g^{2}\omega^{2}W_{\nu}^{-}$ $4H^{2}\phi^{+}\phi^{-} + 2(\phi^{0})^{2}H^{2}] - gMW_{\mu}^{+}W_{\mu}^{-}H - \frac{1}{2}g\frac{M}{c^{2}}Z_{\mu}^{0}Z_{\mu}^{0}H - \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{+} - \phi^{+}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{0}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0}) - W_{\mu}^{-}(\phi^{-}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{-}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{-}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{0})] + \frac{1}{2}ig[W_{\mu}^{+}(\phi^{-}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{-} - \phi$ $\frac{1}{2}g[W^{+}_{\mu}(H\partial_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)-W^{-}_{\mu}(H\partial_{\mu}\phi^{+}-\phi^{+}\partial_{\mu}H)] + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s^{2}_{w}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)-ig\frac{s^{2}_{w}}{c_{w}}MZ^{0}_{\mu}(W^{+}_{\mu}\phi^{-}-\phi^{-}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^{0}\partial_{\mu}H)) + \frac{1}{2}g\frac{1}{c_{w}}(Z^{0}_{\mu}(H\partial_{\mu}\phi^{0}-\phi^$ $W_{\mu}^{-}\phi^{+}) + igs_{w}MA_{\mu}(W_{\mu}^{+}\phi^{-} - W_{\mu}^{-}\phi^{+}) - ig\frac{1-2c_{w}^{2}}{2c_{w}}Z_{\mu}^{0}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) + igs_{w}A_{\mu}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) - ig\frac{1-2c_{w}^{2}}{2c_{w}}Z_{\mu}^{0}(\phi^{+}\partial_{\mu}\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) - ig\frac{1-2c_{w}^{2}}{2c_{w}}Z_{\mu}^{0}(\phi^{-} - \phi^{-}\partial_{\mu}\phi^{+}) - ig\frac{1-2c_{w}^{2}}{2$ $\frac{1}{4}g^2W^+_{\mu}W^-_{\mu}[H^2 + (\phi^0)^2 + 2\phi^+\phi^-] - \frac{1}{4}g^2\frac{1}{c_w^2}Z^0_{\mu}Z^0_{\mu}[H^2 + (\phi^0)^2 + 2(2s_w^2 - 1)^2\phi^+\phi^-] - \frac{1}{2}g^2\frac{s_w^2}{c_w}Z^0_{\mu}\phi^0(W^+_{\mu}\phi^- + 1)^2\phi^+\phi^-]$ $W^{-}_{\mu}\phi^{+}) - \frac{1}{2}ig^{2}\frac{s_{w}^{2}}{c_{w}}Z^{0}_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + \frac{1}{2}g^{2}s_{w}A_{\mu}\phi^{0}(W^{+}_{\mu}\phi^{-} + W^{-}_{\mu}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) - \frac{1}{2}ig^{2}s_{w}A_{\mu}\phi^{0}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}\phi^{0}(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) - \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) - \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) - \frac{1}{2}ig^{2}s_{w}A_{\mu}H(W^{+}_{\mu}\phi^{-} - W^{-}_{\mu}\phi^{+}) + \frac{1}{$ $g^{2} \frac{s_{w}}{c_{w}} (2c_{w}^{2}-1) Z_{\mu}^{0} \bar{A}_{\mu} \phi^{+} \phi^{-} - g^{1} s_{w}^{2} A_{\mu} A_{\mu} \phi^{+} \phi^{-} - \bar{e}^{\lambda} (\gamma \partial + m_{e}^{\lambda}) e^{\lambda} - \bar{\nu}^{\lambda} \gamma \partial \nu^{\lambda} - \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{v}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{v}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{v}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{v}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{d}_{i}^{\lambda} (\gamma \partial + m_{d}^{\lambda}) d_{i}^{\lambda} + \bar{v}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} - \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{\lambda}) u_{i}^{\lambda} + \bar{u}_{i}^{\lambda} (\gamma \partial + m_{u}^{$ $igs_w^{\sim}A_{\mu}[-(\bar{e}^{\lambda}\gamma^{\mu}e^{\lambda}) + \frac{2}{3}(\bar{u}_j^{\lambda}\gamma^{\mu}u_j^{\lambda}) - \frac{1}{3}(\bar{d}_j^{\lambda}\gamma^{\mu}d_j^{\lambda})] + \frac{ig}{4c_w}Z^0_{\mu}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1+\gamma^5)\nu^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(4s_w^2 - 1 - \gamma^5)e^{\lambda}) + (\bar{u}_j^{\lambda}\gamma^{\mu}(\frac{4}{3}s_w^2 - 1$ $1 - \gamma^{5})u_{j}^{\lambda}) + (\bar{d}_{j}^{\lambda}\gamma^{\mu}(1 - \frac{8}{3}s_{w}^{2} - \gamma^{5})d_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{+}[(\bar{\nu}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})C_{\lambda\kappa}d_{j}^{\kappa})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{u}_{j}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda}) + (\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}W_{\mu}^{-}[(\bar{e}^{\lambda}\gamma^{\mu}(1 + \gamma^$ $\gamma^{5}(\nu^{\lambda}) + (\bar{d}_{j}^{\kappa}C_{\lambda\kappa}^{\dagger}\gamma^{\mu}(1+\gamma^{5})u_{j}^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_{e}^{\lambda}}{M}[-\phi^{+}(\bar{\nu}^{\lambda}(1-\gamma^{5})e^{\lambda}) + \phi^{-}(\bar{e}^{\lambda}(1+\gamma^{5})\nu^{\lambda})] - \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \bar{e}^{\lambda}(1-\gamma^{5})e^{\lambda})] + \frac{ig}{2\sqrt{2}}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \bar{e}^{\lambda}(1-\gamma^{5})e^{\lambda})] - \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda}) + \frac{g}{2}\frac{m_{e}^{\lambda}}{M}[H(\bar{e}^{\lambda}e^{\lambda})$ $i\phi^{0}(\bar{e}^{\lambda}\gamma^{5}e^{\lambda})] + \frac{ig}{2M\sqrt{2}}\phi^{+}[-m_{d}^{\kappa}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1-\gamma^{5})d_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})d_{j}^{\kappa}] + \frac{ig}{2M\sqrt{2}}\phi^{-}[m_{d}^{\lambda}(\bar{d}_{j}^{\lambda}C_{\lambda\kappa}^{\dagger}(1+\gamma^{5})u_{j}^{\kappa}) - m_{u}^{\lambda}(\bar{u}_{j}^{\lambda}C_{\lambda\kappa}(1+\gamma^{5})u_{j}^{\kappa}) + m_{u}^{\lambda}(\bar{u}_{j}^{\lambda$ $m_u^{\kappa}(\bar{d}_j^{\lambda}C_{\lambda\kappa}^{\dagger}(1-\gamma^5)u_i^{\kappa}] - \frac{g}{2}\frac{m_u^{\lambda}}{M}H(\bar{u}_j^{\lambda}u_j^{\lambda}) - \frac{g}{2}\frac{m_d^{\lambda}}{M}H(\bar{d}_j^{\lambda}d_j^{\lambda}) + \frac{ig}{2}\frac{m_u^{\lambda}}{M}\phi^0(\bar{u}_j^{\lambda}\gamma^5u_j^{\lambda}) - \frac{ig}{2}\frac{m_d^{\lambda}}{M}\phi^0(\bar{d}_j^{\lambda}\gamma^5d_j^{\lambda}) + \bar{X}^+(\partial^2 - \bar{U}_j^{\lambda}) + \bar{X}^$ $M^{2})X^{+} + \bar{X}^{-}(\partial^{2} - M^{2})X^{-} + \bar{X}^{0}(\partial^{2} - \frac{M^{2}}{c_{w}^{2}})X^{0} + \bar{Y}\partial^{2}Y + igc_{w}W^{+}_{\mu}(\partial_{\mu}\bar{X}^{0}X^{-} - \partial_{\mu}\bar{X}^{+}X^{0}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-} - \partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{\mu}\bar{Y}X^{-}) + igs_{w}W^{+}_{\mu}(\partial_{$ $\partial_{\mu}\bar{X}^{+}Y) + igc_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{0}X^{+}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) \\ + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{+}X^{+} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) \\ + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{-}X^{-}) + igs_{w}W^{-}_{\mu}(\partial_{\mu}\bar{X}^{-}Y - \partial_{\mu}\bar{Y}X^{+}) \\ + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{0} - \partial_{\mu}\bar{X}^{-}X^{-}) \\ + igc_{w}Z^{0}_{\mu}(\partial_{\mu}\bar{X}^{-}X^{-}) \\ + igc_{w}Z^{0}_{\mu}(\partial_{$ $igs_wA_{\mu}(\partial_{\mu}\bar{X}^+X^+ - \partial_{\mu}\bar{X}^-X^-) - \frac{1}{2}gM[\bar{X}^+X^+H + \bar{X}^-X^-H + \frac{1}{c_w^2}\bar{X}^0X^0H] + \frac{1-2c_w^2}{2c_w}igM[\bar{X}^+X^0\phi^+ - \frac{1}{2}c_w^2h^2]$ $\bar{X}^{-}X^{0}\phi^{-}] + \frac{1}{2c_{w}}igM[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{0}X^{+}\phi^{-}] + igMs_{w}[\bar{X}^{0}X^{-}\phi^{+} - \bar{X}^{\bar{0}}X^{+}\phi^{-}] + \frac{1}{2}igM[\bar{X}^{+}X^{+}\phi^{0} - \bar{X}^{-}X^{-}\phi^{0}]$

The Standard Model of Particle Physics

CERN

219 [http://cern.ch/go/6pjw]

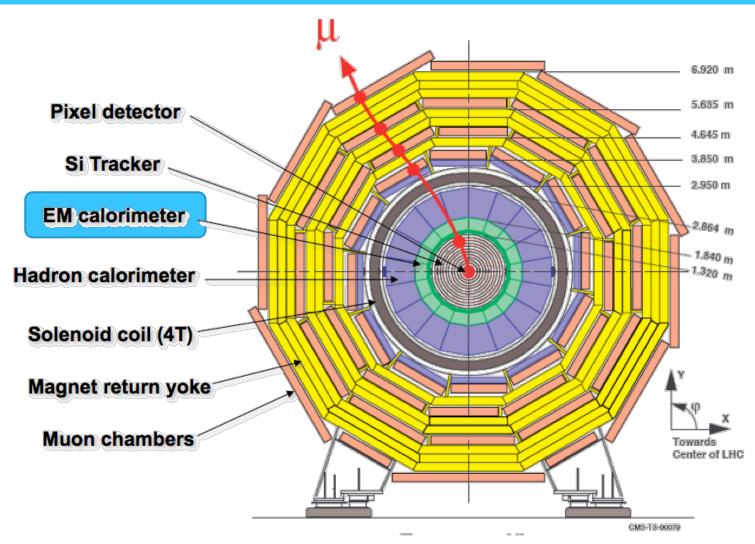
LIGHT IS A

220 [http://cern.ch/go/6pjw]

221

Photons in High Energy Particle Physics

[Particle Data Group]

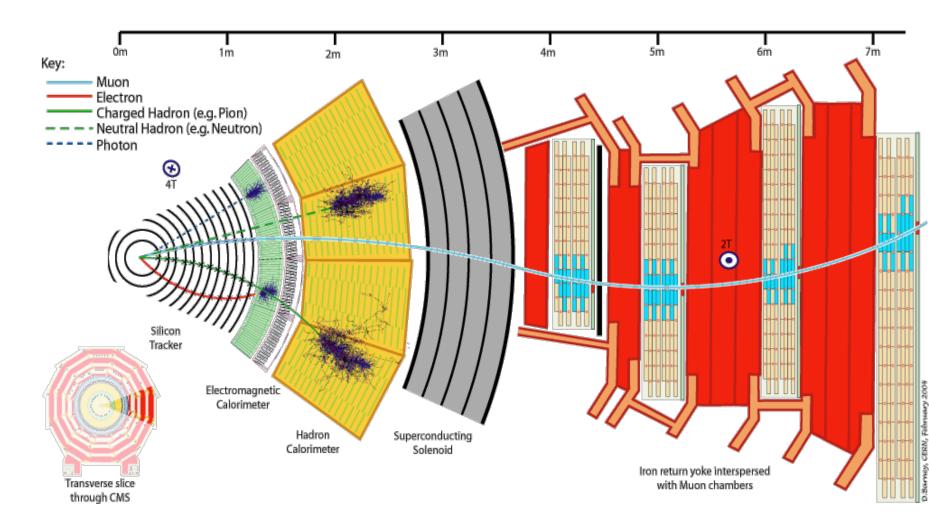

$$I(J^{PC}) = 0,1(1^{--})$$

Mass $m < 1 \times 10^{-18}$ eV Charge $q < 1 \times 10^{-35}$ e Mean life $\tau =$ Stable

A rather straightforward particle: massless, neutral and stable.

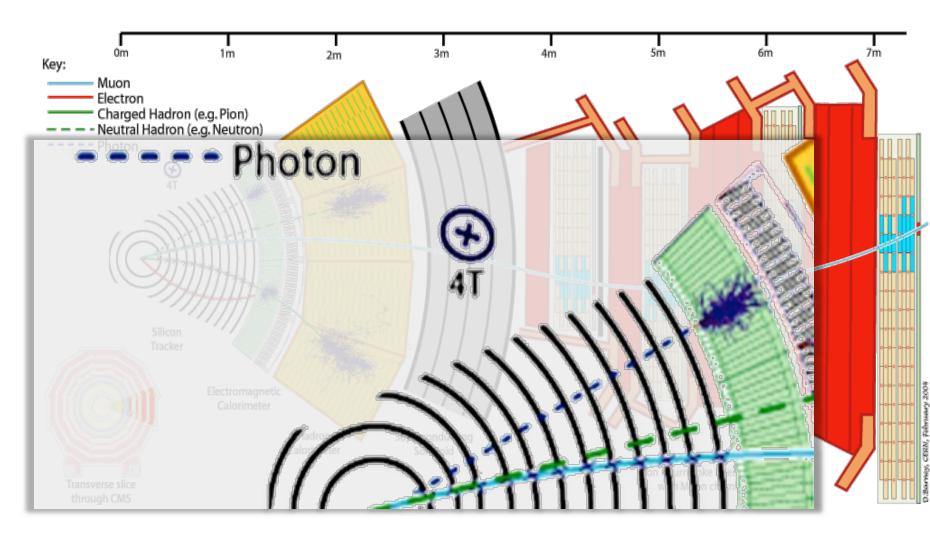
Particle detectors in CMS

2007: ECAL barrel installed


CERN

223

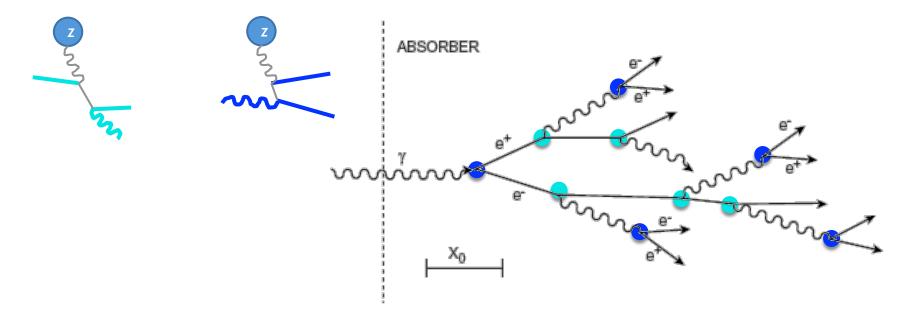
Detecting particles in CMS


224

Detecting particles in CMS

225

CÉRN

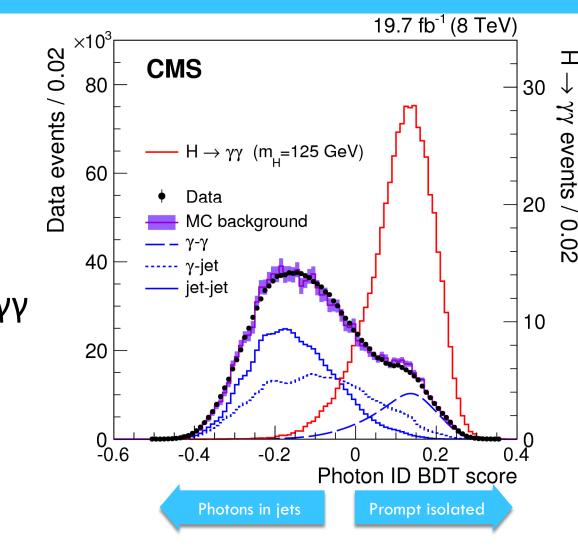


Detecting photons

226

and electrons and photons and electrons and photons and electrons and photons...

 Electromagnetic showers result from electrons and photons undergoing bremsstrahlung and pair creation in the presence of nuclei.


- Showers keep developing until all particles are absorbed.
 - **•** For high energy **electrons**, **bremsstrahlung** is the dominant mechanism.
 - **•** For high energy **photons**, **pair creation** is the dominant mechanism.

Not all showers look the same

 Jets of other particles mimic photons.

227

- Overwhelming production of $\pi^0 \rightarrow \gamma \gamma$.
- □ Photons from H→γγ segregated using multivariate technique.

Pristine yy event in data /

(c) CERN. All rights reserved

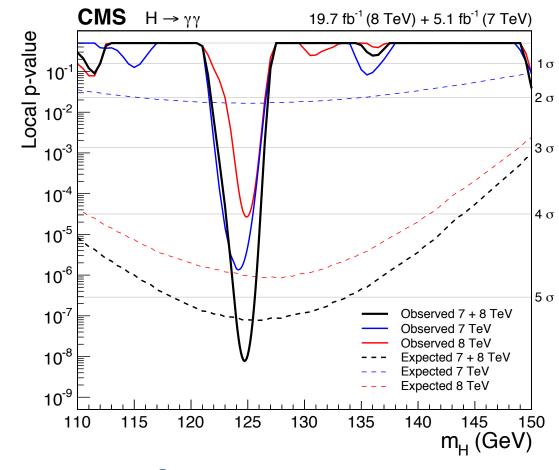
228

Final Run 1 H→γγ analysis

[arXiv:1407.0558, submitted to EPJC]

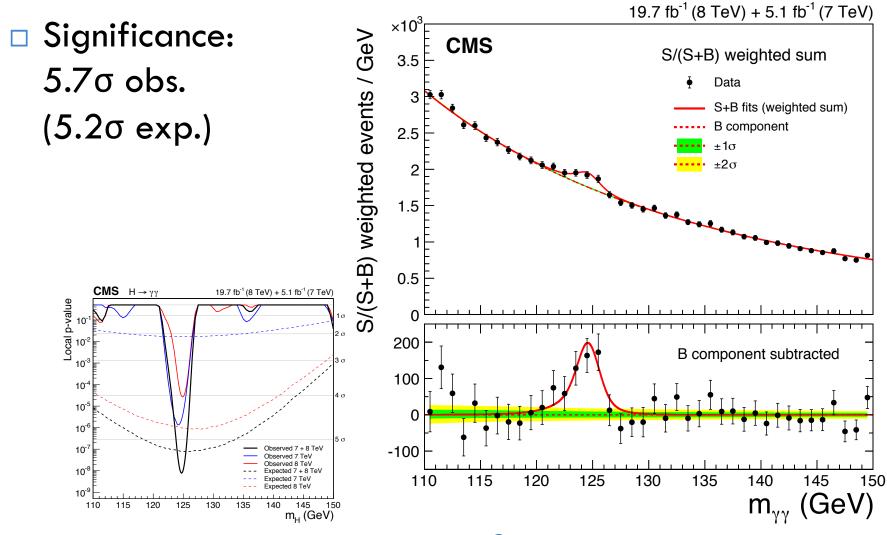
- **Final calibration** of the CMS ECAL for Run 1 data.
- Improved simulation/understanding of:
 - ECAL noise evolution with time.
 - Effect of out-of-time collisions.
 - Amount and distribution of material in front of ECAL.
- Improved description of energy scale uncertainties.
- 25 event categories targeting all production modes.
- New background modeling considers multiple functional forms simultaneously.

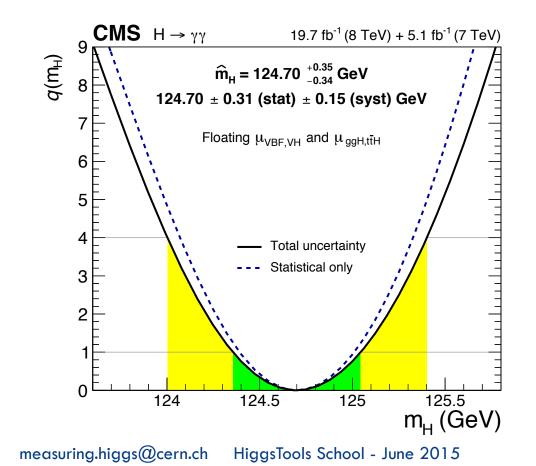
	Improved energy resolution	New event selection	Background modeling
Improvement on expected sensitivity since preliminary result:	~9%	~9%	~7%


arXiv:1407.0558 (subm. to EPJC)

[arXiv:1407.0558, submitted to EPJC]

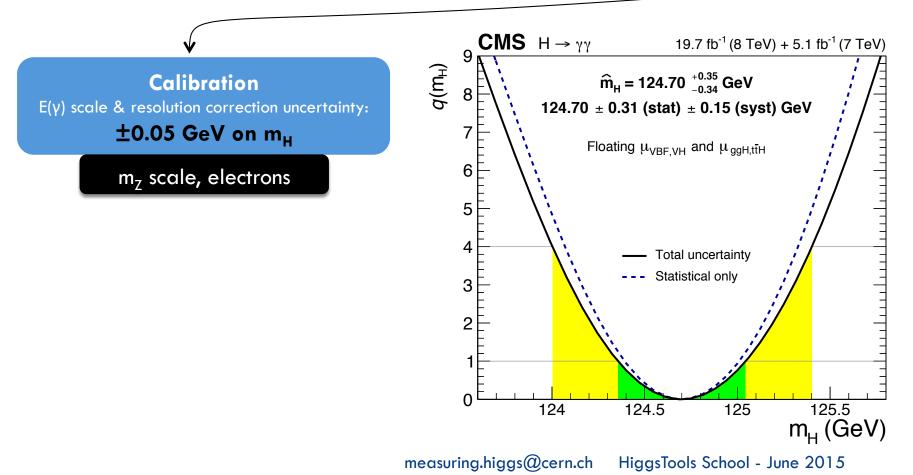
230


Significance:
 5.7σ obs.
 (5.2σ exp.)

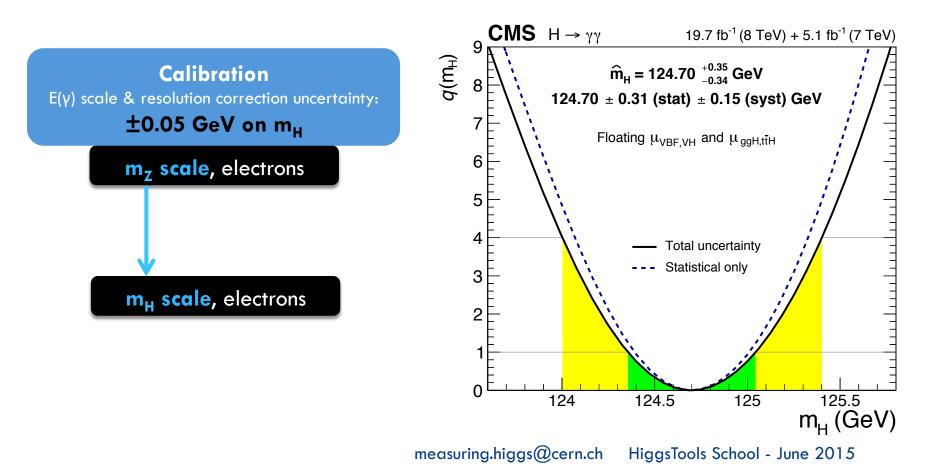


[arXiv:1407.0558, submitted to EPJC]

231

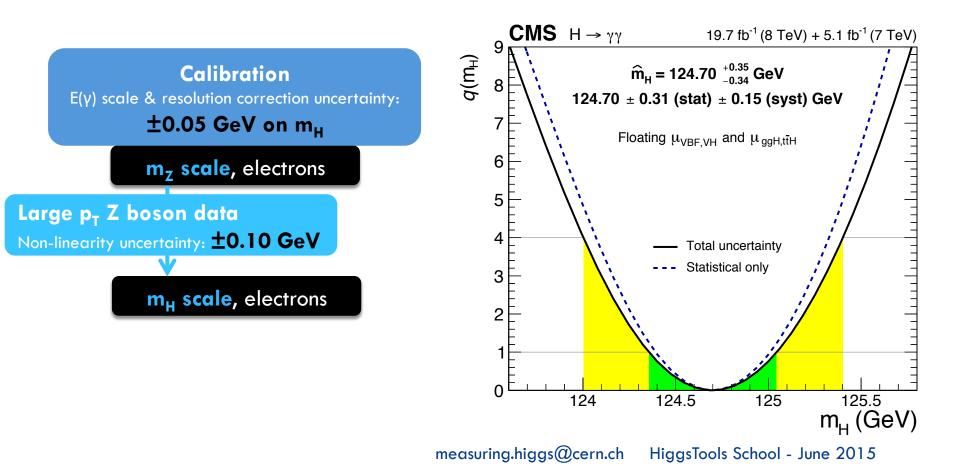


[arXiv:1407.0558, submitted to EPJC]

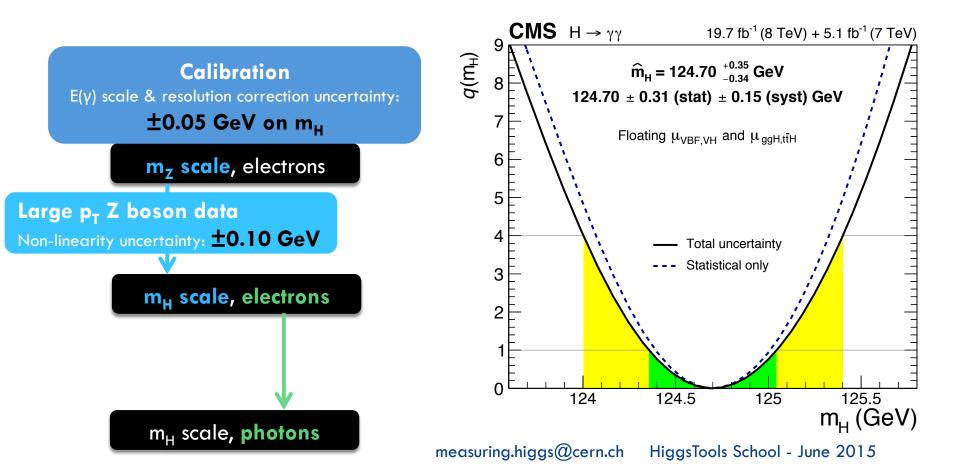


[arXiv:1407.0558, submitted to EPJC]

233

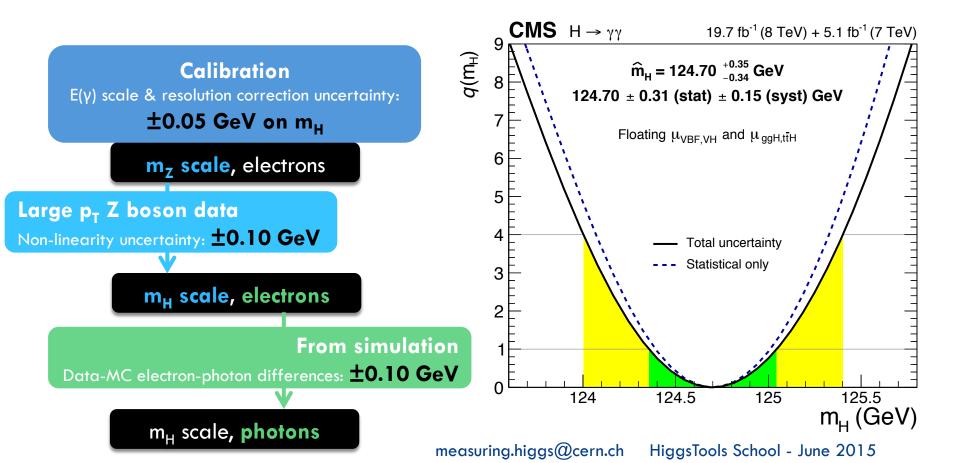


[arXiv:1407.0558, submitted to EPJC]



[arXiv:1407.0558, submitted to EPJC]

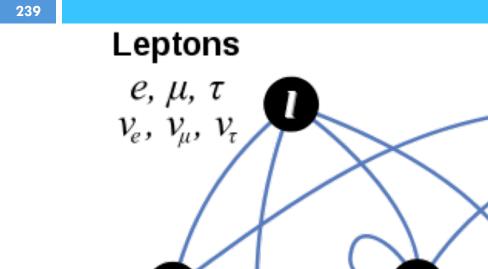
235



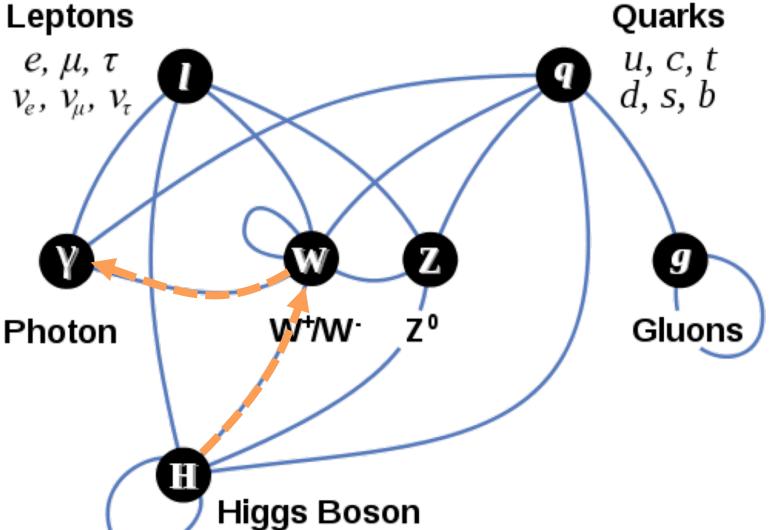
[arXiv:1407.0558, submitted to EPJC]

[arXiv:1407.0558, submitted to EPJC]

237

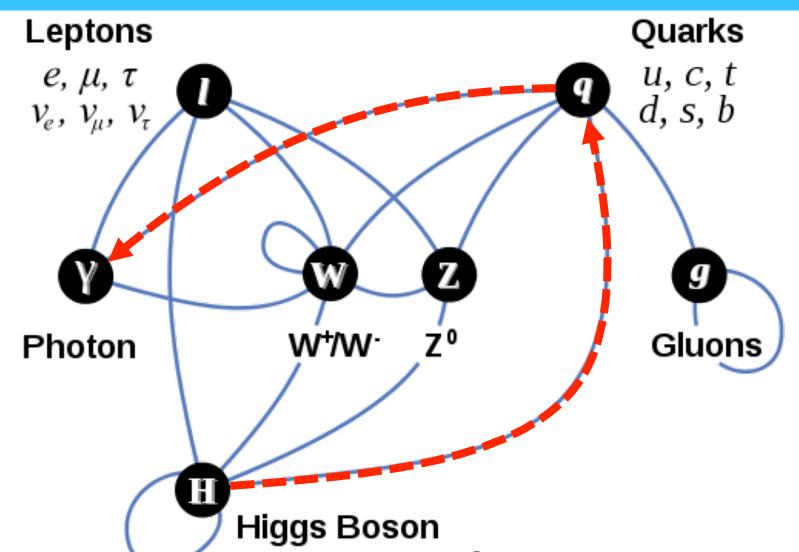

The (missing) path from H to γ

CERN



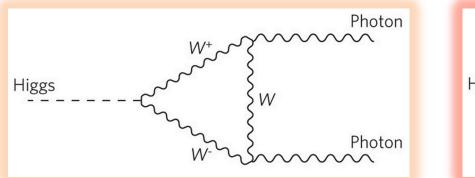
measuring.higgs@cern.ch

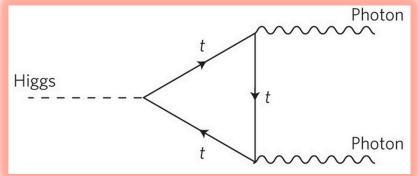
The path from H to y: W boson



CERN

The path from H to y: top quark




measuring.higgs@cern.ch HiggsToo

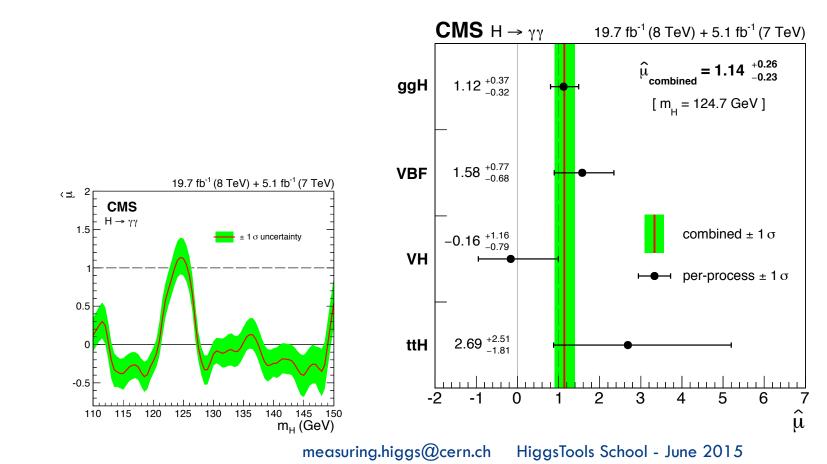
To interfere or not to interfere

241

QM: all possible paths will contribute.

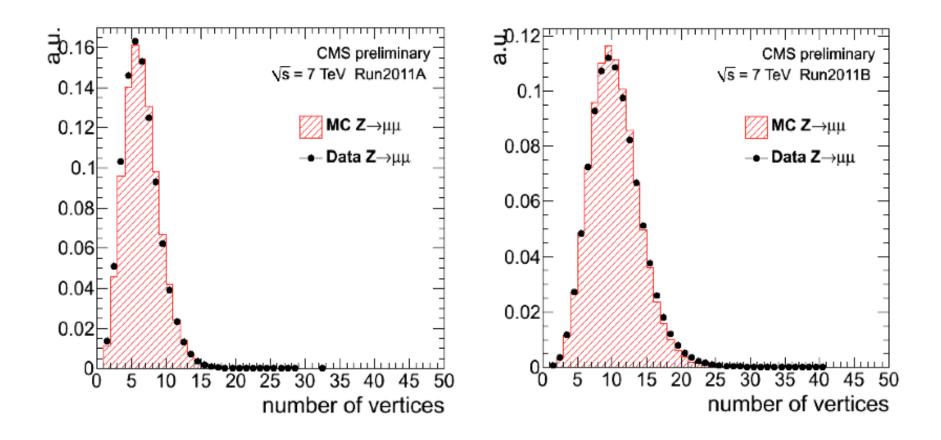
Two dominate in the SM: $\Gamma_{vv} \sim |1.26 \text{ A}_{W} - 0.26 \text{ A}_{top}|^2$

Destructive interference.


Decay rate is fixed from W and top couplings.

□ New BSM particles could open up new paths...

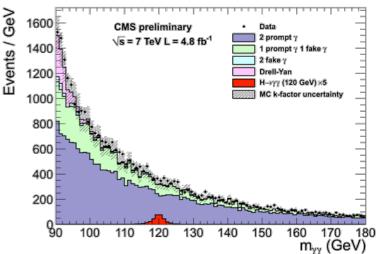
$H \rightarrow \gamma \gamma$ signal strength


[arXiv:1407.0558, submitted to EPJC]

$$\sigma/\sigma_{\rm SM} = 1.14^{+0.26}_{-0.23} \left[\pm 0.21(\text{stat.})^{+0.13}_{-0.09}(\text{theo.})^{+0.09}_{-0.05}(\text{syst.})\right]$$

Full 2011 dataset: pileup

The di-photon channel in CMS


- $H \rightarrow \gamma \gamma$ one of the most sensitive channels in 110 < m_H < 150 GeV
 - Clean final state: two high p_T isolated photons
 - Narrow mass peak

244

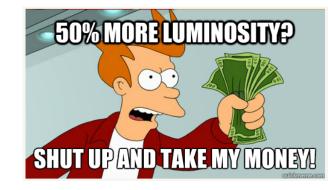
- $H \rightarrow \gamma \gamma$ sensitivity driven by mass resolution and S/B
 - Mass resolution
 - * Photon energy
 - * Di-photon opening angle
 - Major Backgrounds
 - * pp \rightarrow jet + jet , pp $\rightarrow \gamma$ + jet with jet faking photon (mainly π^0)

* pp $\rightarrow \gamma \gamma$

- Multivariate analysis (MVA) techniques used to improve $H \rightarrow \gamma \gamma$ search sensitivity
 - provides more optimal event classification
- The analysis uses $\int L dt = 4.76 \text{ fb}^{-1}$ of CMS data

Analysis strategy evolution

Cut-based analysis.

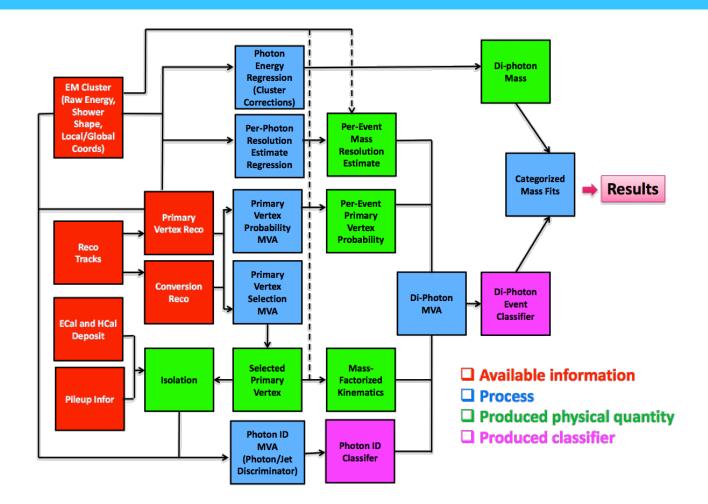

245

- [PLB 710 (2012) 403-425]
 - 1. Di-jet tagged events for VBF production.
 - 2. Remaining events split by resolution and S/B:
 - Photon pseudorapidity (barrel / endcap).
 - Photon shower shape (unconverted / converted / π^0).

Multivariate (MVA) analysis.

[CMS-PAS-HIG-12-001]

- Event-by-event boosted decision tree (BDT) classifier.
- Sensitivity improvement equivalent to
 - $\sim 50\%$ more integrated luminosity.

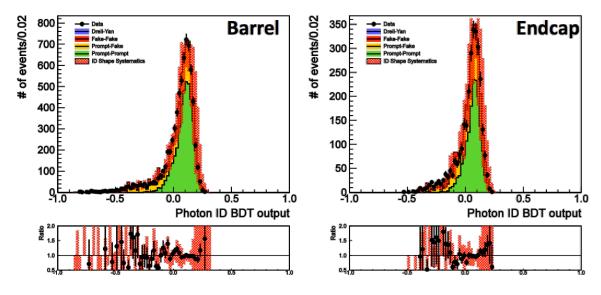


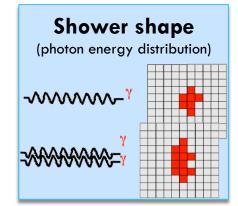
q

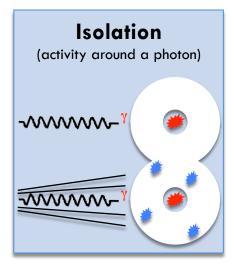
Anatomy of the analysis

246

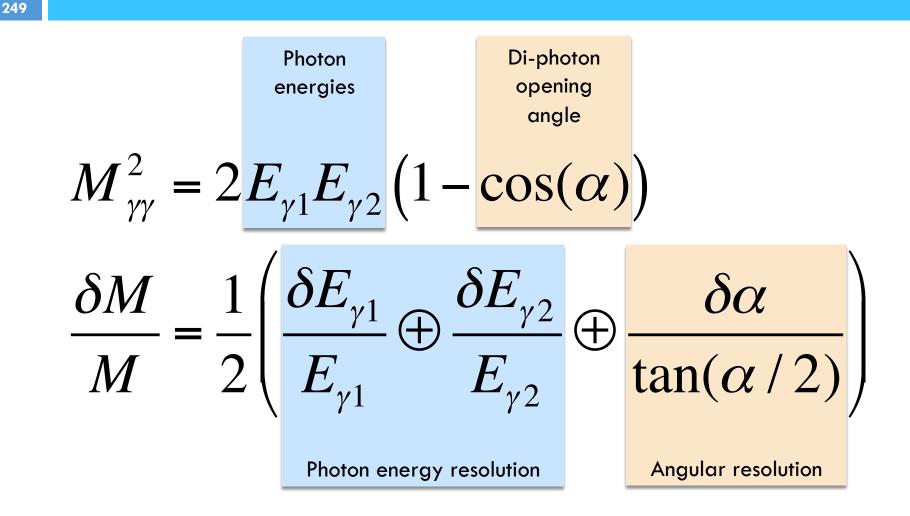
Anatomy of the analysis

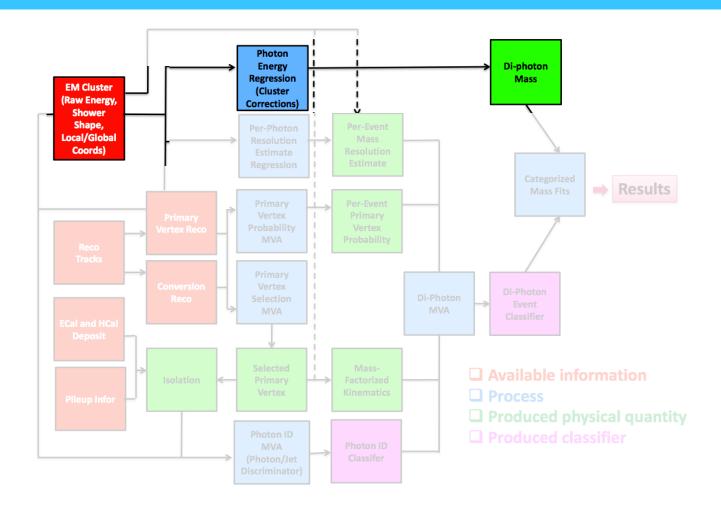

247



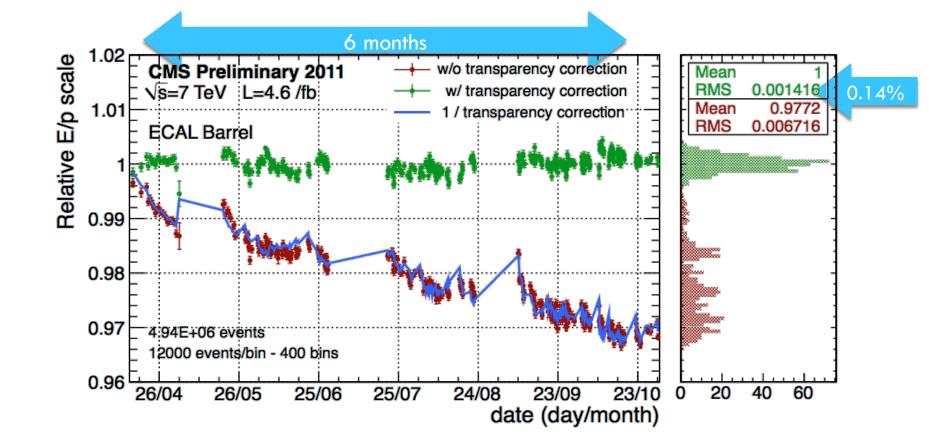


Photon identification

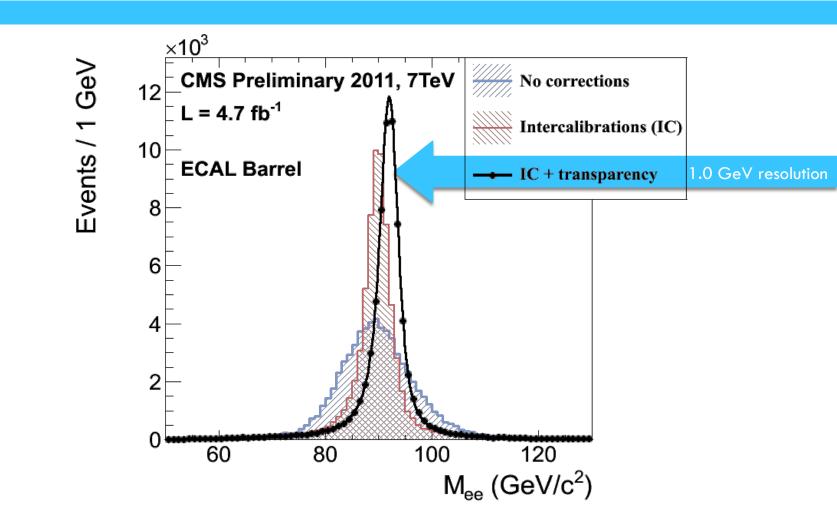

- Photon ID MVA discriminates prompt photon from jet faking photon using a boosted decision tree (BDT) trained on MC simulation events
 - Signal sample: prompt photons from $H \rightarrow \gamma \gamma$
 - Background sample: jets from $pp \rightarrow \gamma + jet$
- MVA trained separately for Barrel and Endcap
- Uses variables related to shower shape and isolation
- MVA output gives a classifier variable discriminating prompt photons from fakes
- Photon ID MVA output for the leading photon in preselected di-photon events with $m_{\gamma\gamma}$ >160 GeV is compared between data and MC



Mass resolution deconstructed

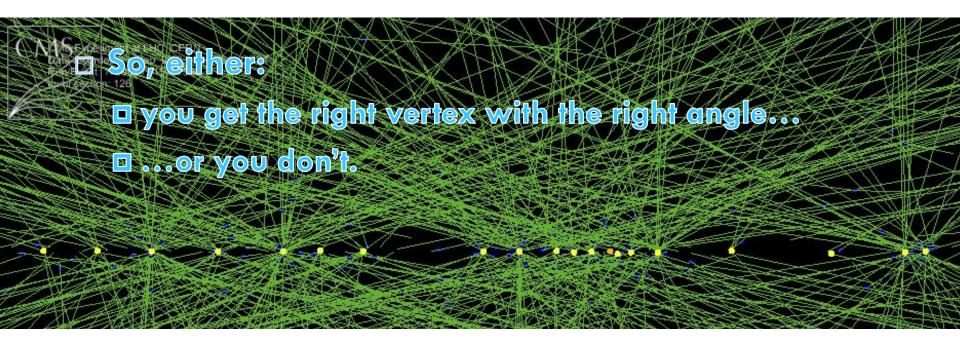


Anatomy of the analysis

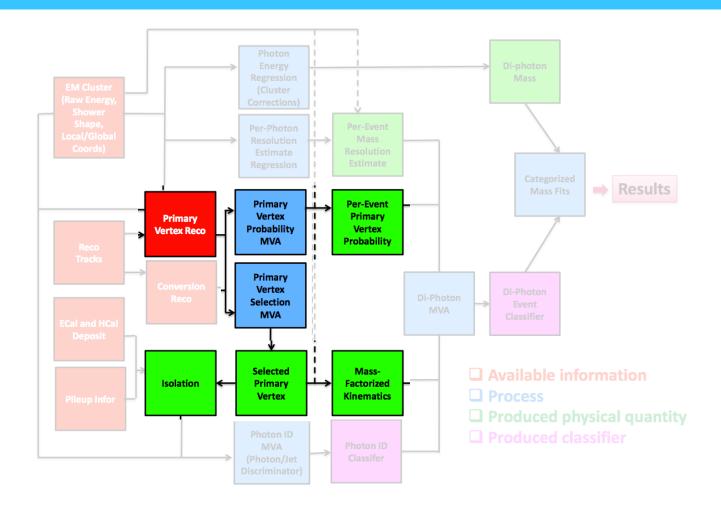

ECAL calibration: isolated electrons

251

ECAL calibration: $Z \rightarrow ee$ peak

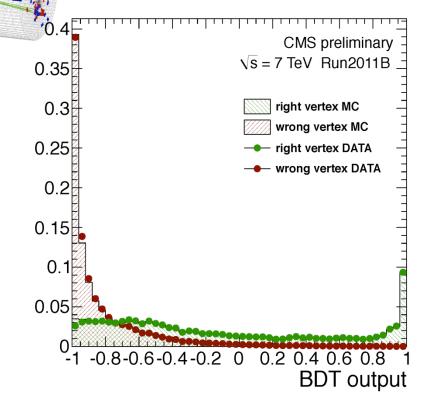

252

Angular resolution


- Unconverted photons have no tracks.
- CMS ECAL is homogeneous, optimized for energy resolution, no pointing ability.

Anatomy of the analysis

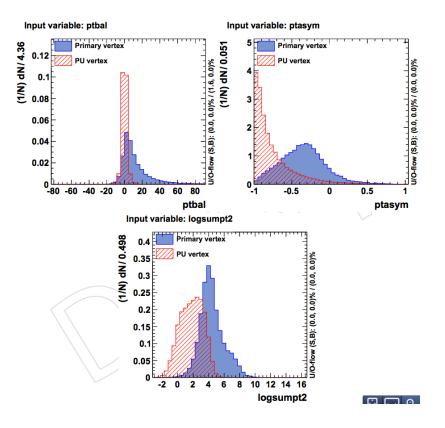
254



Choosing the best vertex

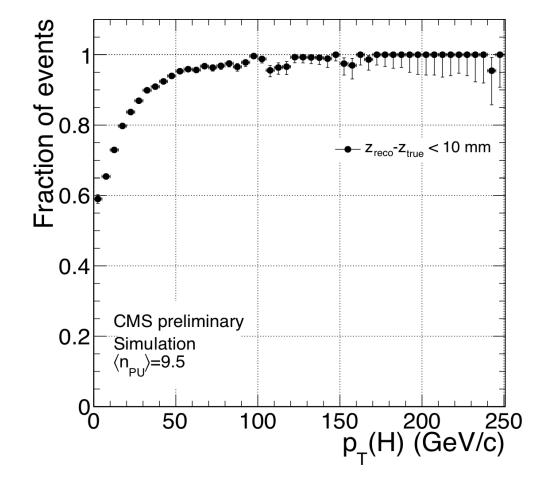
Main handles:

255

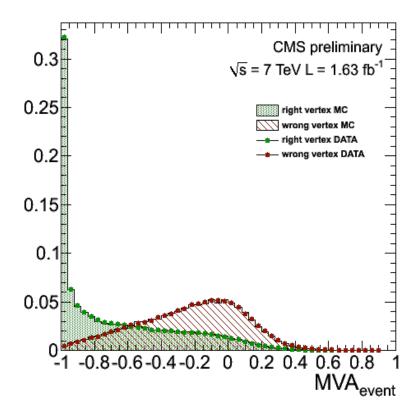

- Di-photon recoil tracks.
 - Good at high p_T.
 - Validated with $Z \rightarrow \mu \mu$ events. →
- Photon conversion tracks.
 - Validated with γ -jet events.

Vertex recoil variables

- sumpt2: $\sum_i |\vec{p}_T^i|^2$.
- *ptbal*: $-\sum_{i} (\vec{p}_{T}^{i} \cdot \frac{\vec{p}_{T}^{\gamma\gamma}}{|\vec{p}_{T}^{\gamma\gamma}|}).$
- *ptasym*: $(|\sum_i \vec{p}_T^i| p_T^{\gamma\gamma}) / (|\sum_i \vec{p}_T^i| + p_T^{\gamma\gamma}).$

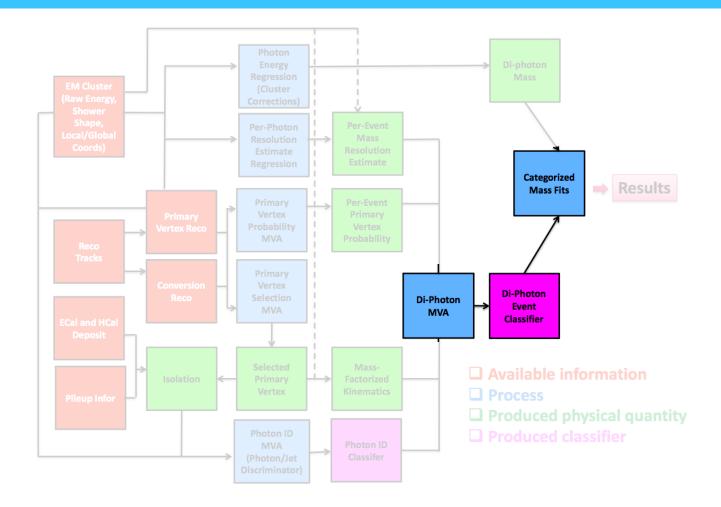

Converted photon vertexing

258

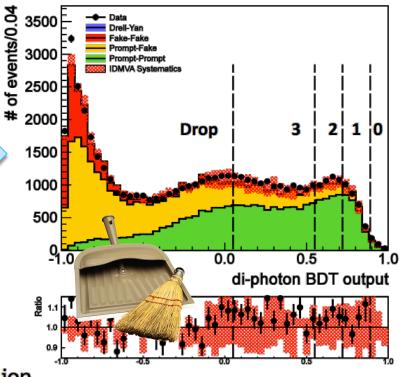


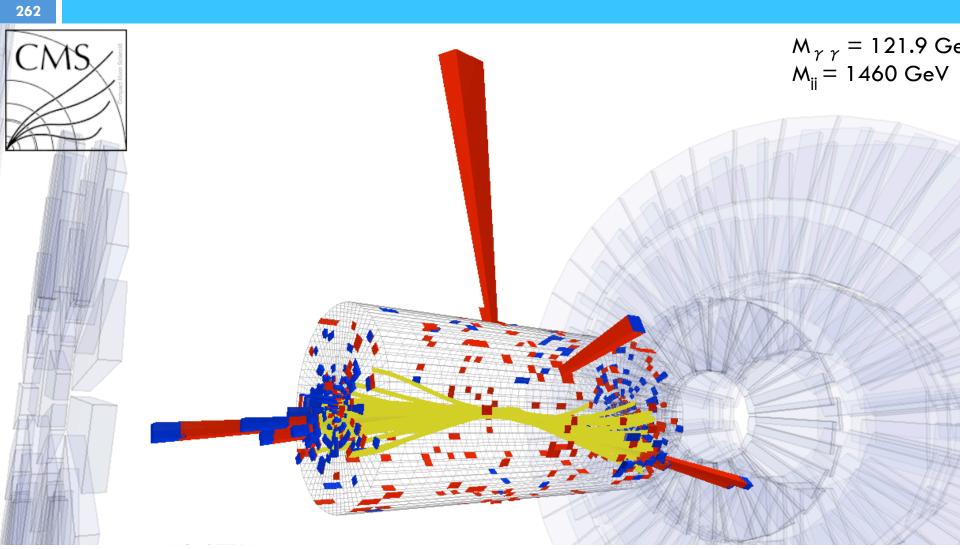
Is the best vertex the right one for this event?

- Make use of several event quantities:
 - Total number of vertices.
 - For each vertex:
 - MVA score.

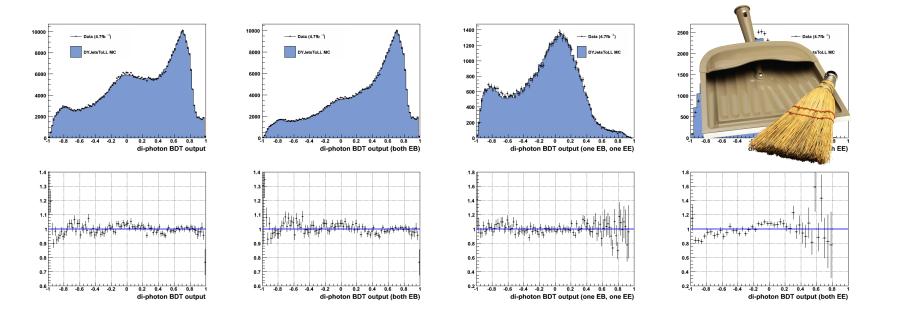

259

- Distance to best vertex.
- Di-photon p_T.
- Number of identified conversions.
- □ Validation in $Z \rightarrow \mu \mu$ events. →

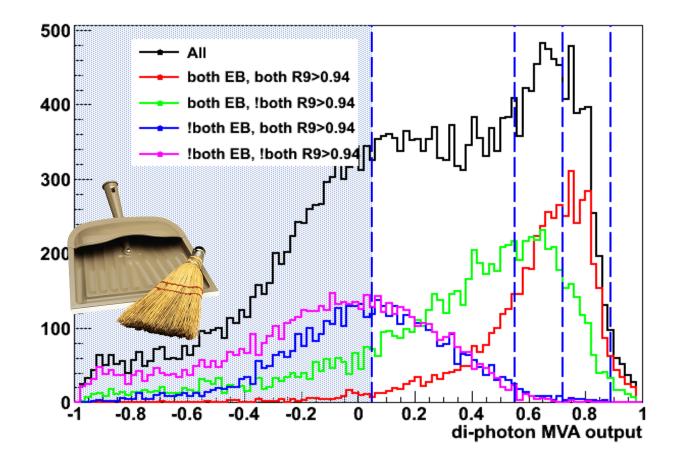

Anatomy of the analysis


Di-photon classification

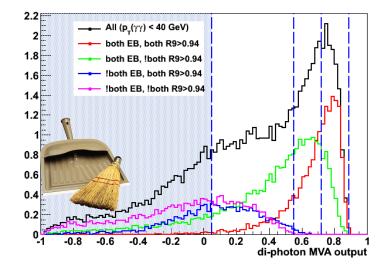
- Uses BDT method on MC background and Higgs boson signal events (m_H=123GeV)
- Training variables include photon ID, kinematics, right vertex probability and estimate mass resolution
- Keep Di-photon mass factorized
- Introduce good resolution as a desired feature by weighting signal events by 1/estimate mass resolution
- MVA output used to make <u>5 categories</u> with different S/B
- Separate di-jet tagged category to select VBF Higgs production
- Signal event category migration systematics
 - Up to 11% due to photon ID
 - Up to 8% due to estimate mass resolution

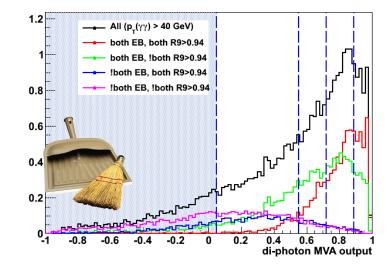


Di-jet tagged event

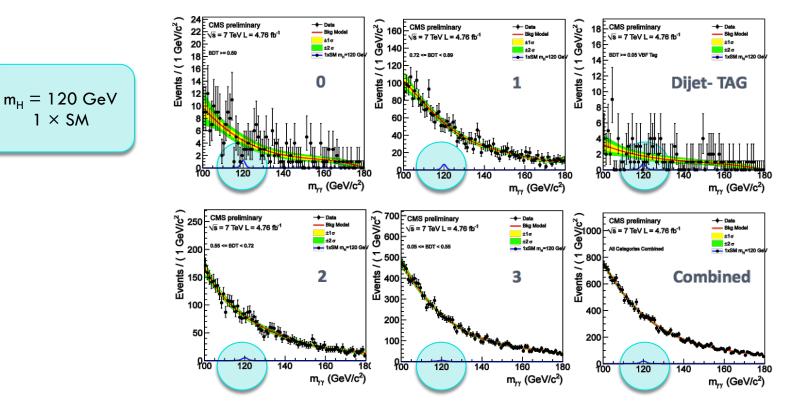


MVA validation on $Z \rightarrow ee$


264

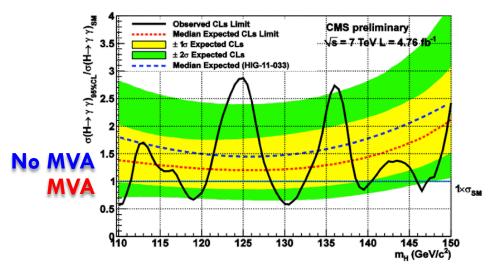

MVA in terms of simple classification

MVA in $p_T(\gamma \gamma)$ bins

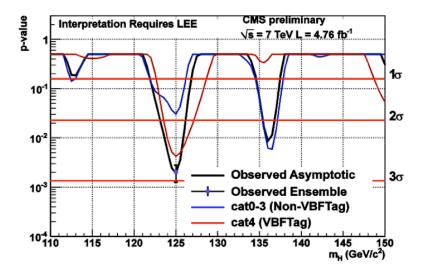


Signal and background modeling

266

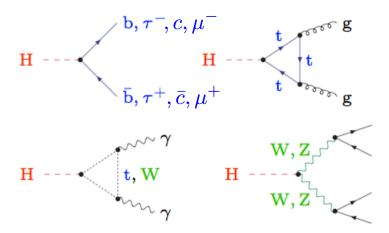

 $1 \times SM$

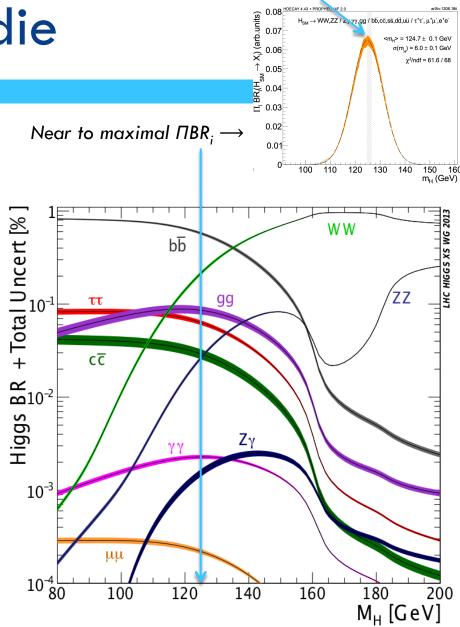
- Higgs mass modeled using MC with energy scale and resolution correction from • $Z \rightarrow ee$
- Background mass spectrum modeled by polynomial fit
 - Polynomial order between 3 and 5 depending on event category statistics



 Expected and observed exclusion limit at 95% CL

 Largest excess observed around 125 GeV with local significance 2.9 σ and global significance 1.6 σ

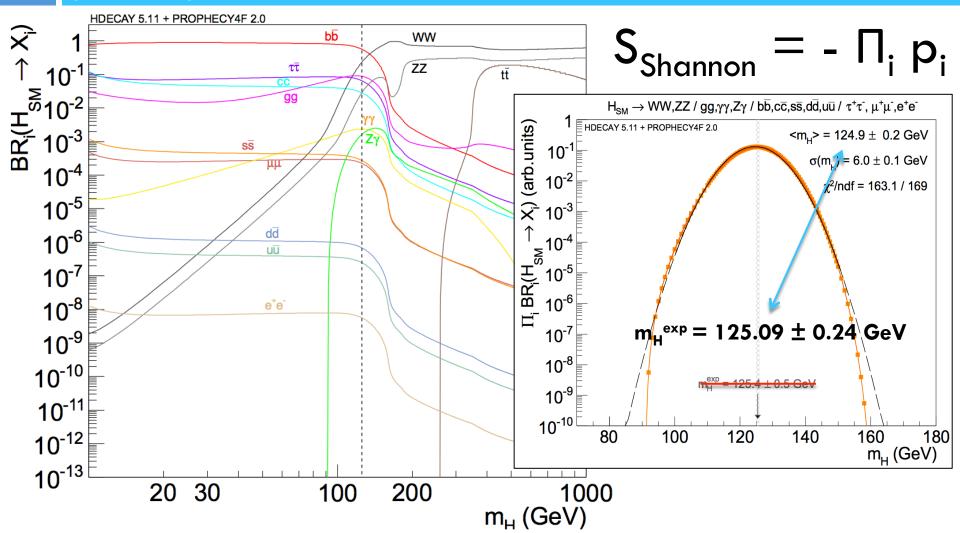



How SM Higgses die

268

[http://cern.ch/go/qkh6][arXiv:1208.1993][arXiv:1408.0827]

Couplings and kinematics drive BR (bb, WW, τττ, ZZ).
 Decays with photons (γγ, Ζγ) through loops.



The product coincidence

[arXiv:1208.1993]

measuring.higgs@cern.ch

The information/entropy connection

[arXiv:1208.1993][arXiv:1408.0827]

270

Multinomial entropy: recent asymptotic formula.


The total entropy is now given by the sum of the multinomial distribution of N Higgs bosons decaying to each possible partition of n_1 particles of type 1, n_2 of type 2, and so on until the *m*-th mode

$$S_{N} = \sum_{\{n\}}^{N} -P(\{n_{k}\}_{k=1}^{m}) \ln \left[P(\{n_{k}\}_{k=1}^{m})\right]$$

= $\langle -\ln(P) \rangle$ (8)

where $\sum_{\{n\}}^{N}(\bullet) \equiv \sum_{n_1=0}^{N} \cdots \sum_{n_m=0}^{N} (\bullet) \times \delta\left(N - \sum_{i=1}^{m} n_i\right)$. The number of possible configurations involved in the sum

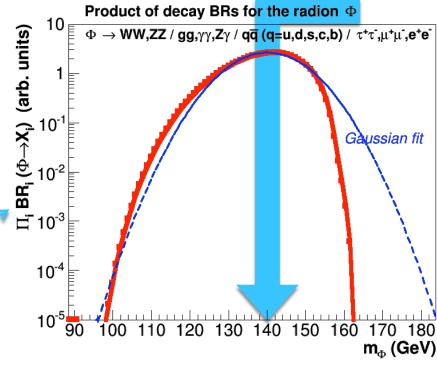
The number of possible configurations involved in the sum of Eq. (8) is huge for large N. Recently, an asymptotic formula up to order 1/N has been derived [10] and is given right below at Eq. (9)

$$S_{N} = \frac{1}{2} \ln \left((2\pi N e)^{m-1} \prod_{k=1}^{m} p_{k} \right) + \frac{1}{12N} \left(3m - 2 - \sum_{k=1}^{m} \frac{1}{p_{k}} \right) + O\left(\frac{1}{N^{2}} \right)$$
(9)

The information/entropy connection

[arXiv:1208.1993][arXiv:1408.0827]

m_{H} cannot be predicted. Or could it?

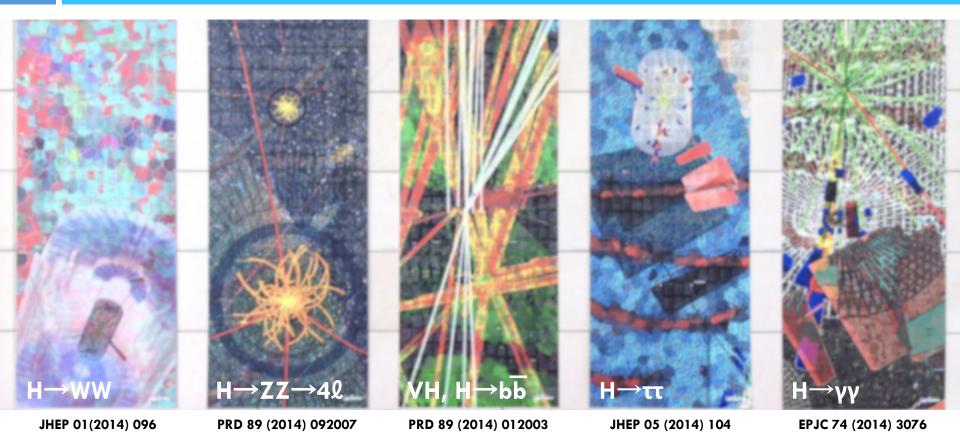

The total entropy is now given by the sum of the multinomial distribution of N Higgs bosons decaying to each possible partition of n_1 particles of type 1, n_2 of type 2, and so on until the *m*-th mode

$$S_{N} = \sum_{\{n\}}^{N} -P(\{n_{k}\}_{k=1}^{m}) \ln \left[P(\{n_{k}\}_{k=1}^{m})\right]$$

= $\langle -\ln(P) \rangle$ (8)

where $\sum_{\{n\}}^{N}(\bullet) \equiv \sum_{n_1=0}^{N} \cdots \sum_{n_m=0}^{N} (\bullet) \times \delta\left(N - \sum_{i=1}^{m} n_i\right)$. The number of possible configurations involved in the sum

The number of possible configurations involved in the sum of Eq. (8) is huge for large N. Recently, an asymptotic formula up to order 1/N has been derived [10] and is given right below at Eq. (9)


$$S_{N} = \frac{1}{2} \ln \left((2\pi N e)^{m-1} \prod_{k=1}^{m} p_{k} \right) + \frac{1}{12N} \left(3m - 2 - \sum_{k=1}^{m} \frac{1}{p_{k}} \right) + O\left(\frac{1}{N^{2}} \right)$$
(9)

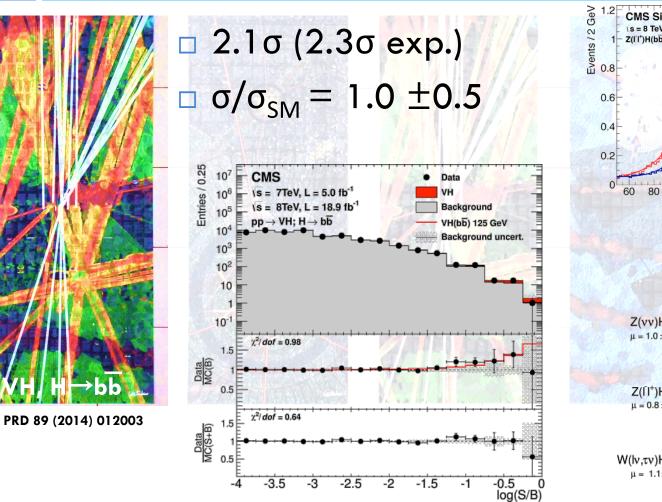
²⁷² More on the CMS combination

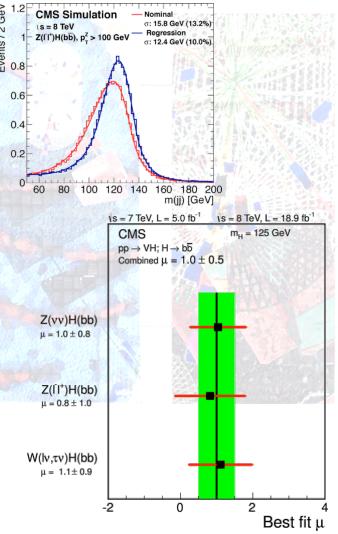
Bringing it all together in CMS

273 [arXiv:1412.8662]

Also include further ttH searches:

- JHEP 05(2013)145 ttH, H→bb (7 TeV).
- arXiv:1408.1682 (subm. to JHEP) ttH, $H \rightarrow b\overline{b}$, $H \rightarrow \tau\tau$, and H decaying to multiple leptons (8 TeV).

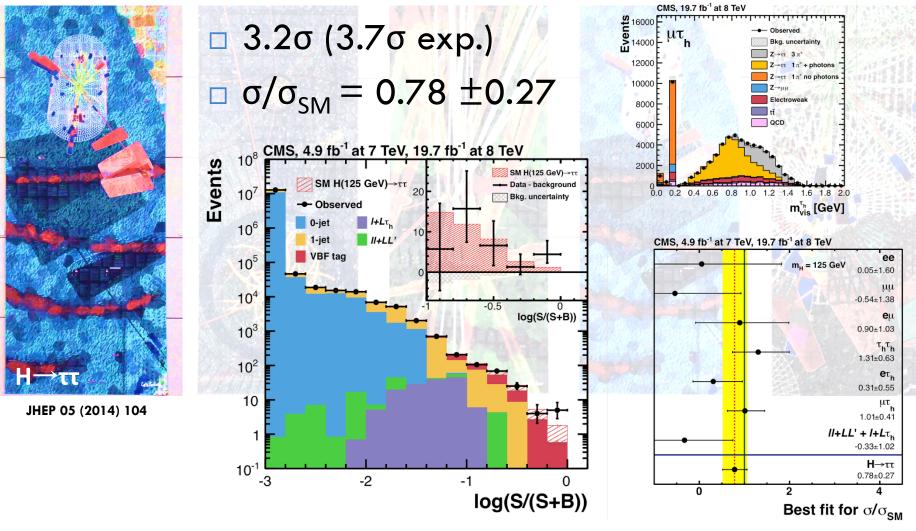

measuring.higgs@cern.ch



274

VH, $H \rightarrow b\overline{b}$ vignettes

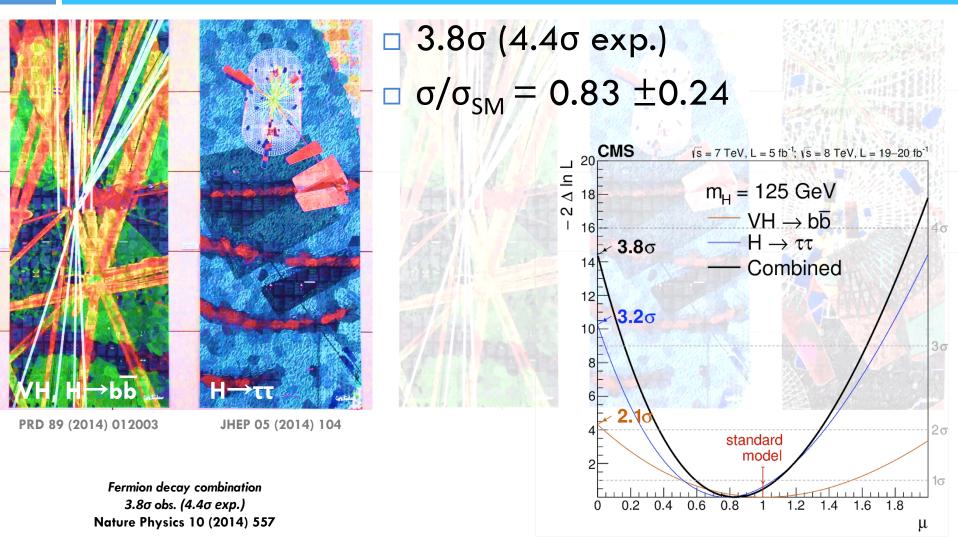
[PRD 89 (2014) 012003]



measuring.higgs@cern.ch

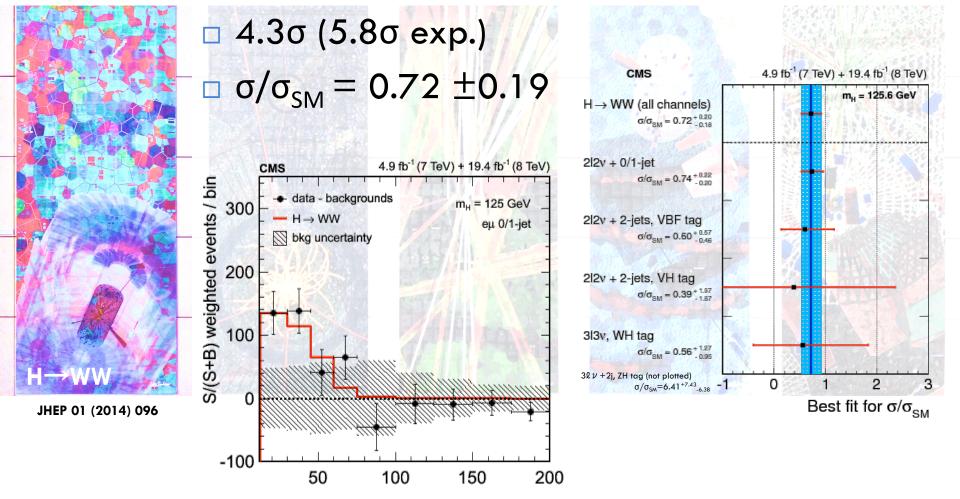
H→ττ vignettes

[JHEP 05 (2014) 104]



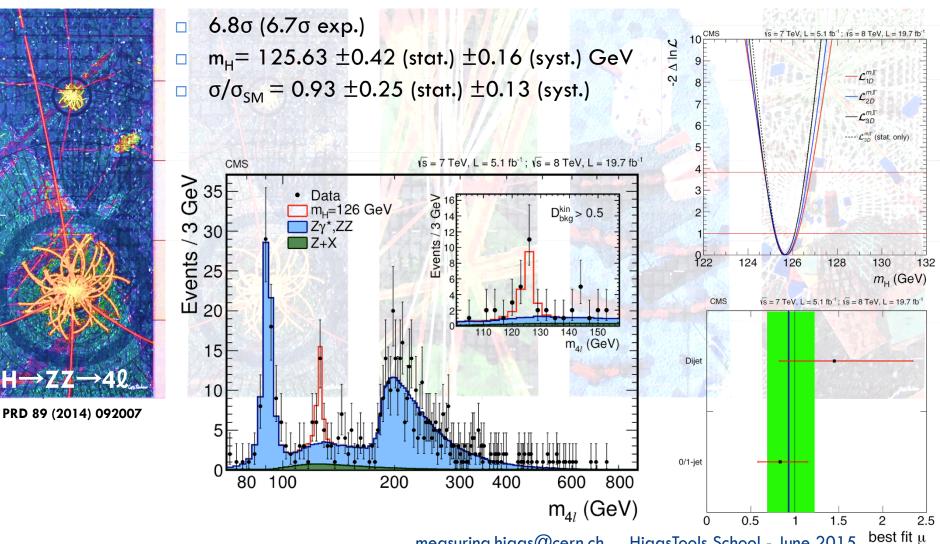
measuring.higgs@cern.ch HiggsTools S

Fermion decay combination vignette


276 [Nature Physics 10 (2014) 557]

[JHEP 01 (2014) 096]

277

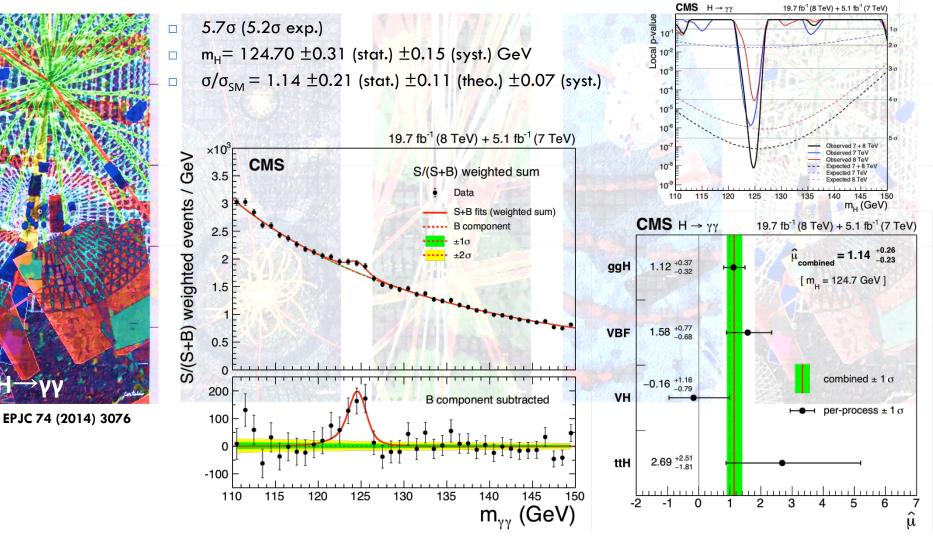

m_{ll} [GeV]

measuring.higgs@cern.ch

$H \rightarrow ZZ \rightarrow 4\ell$ vignettes

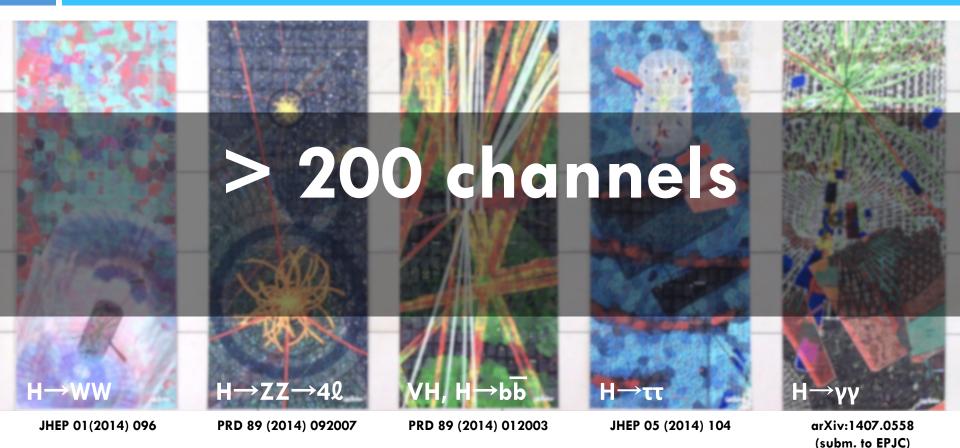
[PRD 89 (2014) 092007]

278



$H \rightarrow \gamma \gamma$ vignettes

EPJC 74 (2014) 3076]


279

measuring.higgs@cern.ch

Bringing it all together in CMS

280 [arXiv:1412.8662]

Also include further ttH searches:

- JHEP 05(2013)145 ttH, H→bb (7 TeV).
- arXiv:1408.1682 (subm. to JHEP) ttH, $H \rightarrow b\overline{b}$, $H \rightarrow \tau\tau$, and H decaying to multiple leptons (8 TeV).

measuring.higgs@cern.ch Hig

281 [arXiv:1412.8662]

> 200 channels 2'500 floating parameters

H→WW

JHEP 01(2014) 096

PRD 89 (2014) 092007

H→ZZ→4l

PRD 89 (2014) 012003

JHEP 05 (2014) 104

Η→ττ

arXiv:1407.0558 (subm. to EPJC)

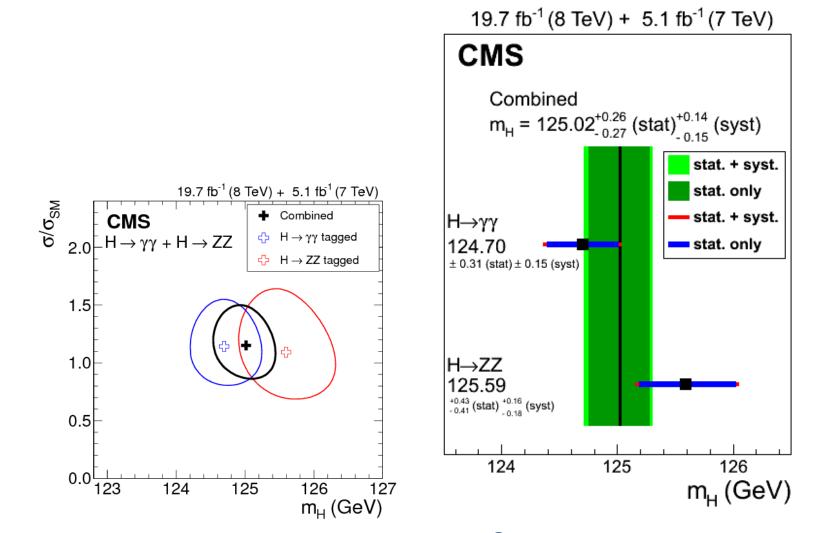
Also include further ttH searches:

- JHEP 05(2013)145 ttH, H→bb (7 TeV).
- arXiv:1408.1682 (subm. to JHEP) ttH, $H \rightarrow b\overline{b}$, $H \rightarrow \tau\tau$, and H decaying to multiple leptons (8 TeV).

measuring.higgs@cern.ch Hi

The challenge of combining

- Include five main decays and searches for ttH production.
- 207 channels.
- 2519 parameters.
 - 219 H→γγ background
 - parameters.

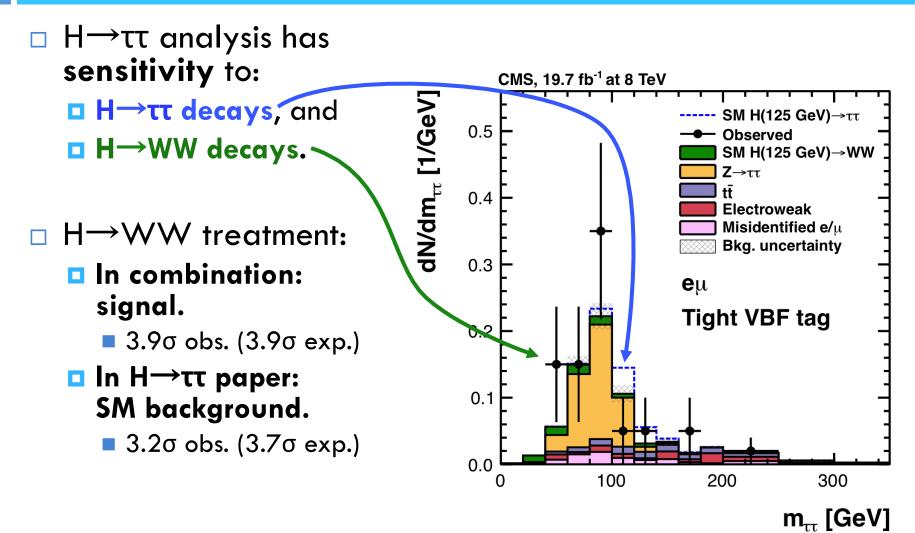

	Decay tag and production t	Expected signal composition	$\sigma_{m_{\rm H}}/m_{\rm H}$	Luminosity (fb^{-1}) No. of categories		
					7 TeV	8 TeV
	$ m H ightarrow \gamma\gamma$ [20], Section 2.1				5.1	19.7
		Untagged	76–93% ggH	0.8-2.1%	4	5
	$\gamma\gamma$	2-jet VBF	50–80% VBF	1.0-1.3%	2	3
		Leptonic VH	\approx 95% VH (WH/ZH \approx 5)	1.3%	2	2
		$E_{\rm T}^{\rm miss}$ VH	70–80% VH (WH/ZH \approx 1)	1.3%	1	1
		2-jet VH	\approx 65% VH (WH/ZH \approx 5)	1.0-1.3%	1	1
		Leptonic ttH	≈95% tīH	1.1%	1†	1
		Multijet tīH	>90% tīH	1.1%	1.	1
	$H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ [18], Section 2.2				5.1	19.7
	4μ, 2e2μ, 4e	2-jet	42% VBF + VH	1.3, 1.8, 2.2% [‡]	3	3
		Other	≈90% ggH		3	3
1	$H \rightarrow WW^{(*)} \rightarrow \ell \nu \ell \nu$ [17], Section 2.3				4.9	19.4
		0-jet	96–98% ggH	еµ: 16%‡	2	2
	$ee + \mu\mu$, $e\mu$	1-jet	82-84% ggH	eµ: 17%‡	2	2
		2-jet VBF	78–86% VBF	-1	2	2
		2-jet VH	31–40% VH		2	2
ī	31/31/ WH	SF-SS, SF-OS	$\approx 100\%$ WH, up to 20% $\tau\tau$		2	2
	$\ell\ell + \ell' \nu_{jj} ZH$	еее, ееµ, µµµ, µµе	≈100% ZH		4	4
	$H \rightarrow \tau \tau$ [19], Section 2.4				4.9	19.7
		0-jet	≈98% ggH	11–14%	4	4
	$e \tau_{h}, \mu \tau_{h}$	1-jet	70–80% ggH	12-16%	5	5
		2-jet VBF	75–83% VBF	13-16%	2	4
	τ _h τ _h eμ ee, μμ	1-jet	67–70% ggH	10-12%	-	2
		2-jet VBF	80% VBF	10 12/0	-	1
		0-jet	≈98% ggH, 23–30% WW	16-20%	2	2
		1-jet	75–80% ggH, 31–38% WW	18-19%	2	2
		2-jet VBF	79–94% VBF, 37–45% WW	14-19%	1	2
		0-jet	88–98% ggH	14-17/0	4	4
		1-jet	74–78% ggH,≈17% WW *		4	4
		2-jet CJV		71% JATIAT *	2	2
	$\ell\ell + LL' \operatorname{ZH}$	$LL' = \tau_{\rm h}\tau_{\rm h}, \ell\tau_{\rm h}, e\mu$	\approx 50% VBF, \approx 45% ggH, 17–24% WW * \approx 15% (70%) WW for $LL' = \ell \tau_h (e\mu)$		8	8
	$\ell \ell + LL \Sigma H$ $\ell + \tau_{\rm b} \tau_{\rm b} W H$	$LL = \iota_h \iota_h, \iota_h, e\mu$	\approx 15% (70%) WW for LL = \approx 96% VH, ZH/WH \approx 0.1			2
	$\ell + \ell_{\rm h} \epsilon_{\rm h} { m WH} \ \ell + \ell' au_{ m h} { m WH}$		\approx 5%, 9–11% WW		2 2	4
	VH with H \rightarrow bb [16], Section 2.5		$211/9911 \sim 3/0, 7-11/0 9999$		5.1	4 18.9
, I	$W(\ell v)$ bb	$n_{-}(\mathbf{V})$ bins	~100% VII 06 08% WIT		5.1 4	
\	· · ·	$p_{\rm T}({ m V})$ bins	≈100% VH, 96–98% WH 93% WH			6
1	$W(\tau_h \nu)bb$	$n(\mathbf{V})$ hind		$\approx 10\%$	-	1
\	$Z(\ell\ell)bb$	$p_{\rm T}({\rm V})$ bins	≈100% ZH		4	4
▲,	$Z(\nu\nu)bb$	$p{\rm T}({\rm V})$ bins	≈100% VH, 62–76% ZH		2	3
	ttH with H \rightarrow hadrons [14, 28], Section 2.6	17.1	- 000/ 11 1	2 (1 + 0)	5.0	19.3
\	$H \rightarrow bb$	tī lepton+jets	\approx 90% bb but \approx 24% WW in	- , .	7	7
\		tī dilepton	45-85% bb, 8-35% WW, 4-1		2	3
_ ∖ _ ;	$H \rightarrow \tau_h \tau_h$	tī lepton+jets	68–80% ττ, 13–22% WW, 5–	13% bb	-	6
	ttH with H \rightarrow leptons [29], Section 2.6				-	19.6
	2 <i>ℓ</i> -SS		WW/ $\tau\tau \approx 3$		-	6
_	3ℓ		WW/ $\tau\tau \approx 3$		-	2
	4ℓ		$WW: \tau\tau: ZZ \approx 3:2:1$		-	1

measuring.higgs@cern.ch

CERN

Combined m_H measurement

283 [arXiv:1412.8662]



measuring.higgs@cern.ch Higgs

Extra Higgs sensitivity in $H \rightarrow \tau \tau$ analysis

[JHEP 05 (2014) 104][arXiv:1412.8662]

284

$H \rightarrow VV$ results in combination

[JHEP 01 (2014) 096][PRD 89 (2014) 092007][arXiv:1412.8662]

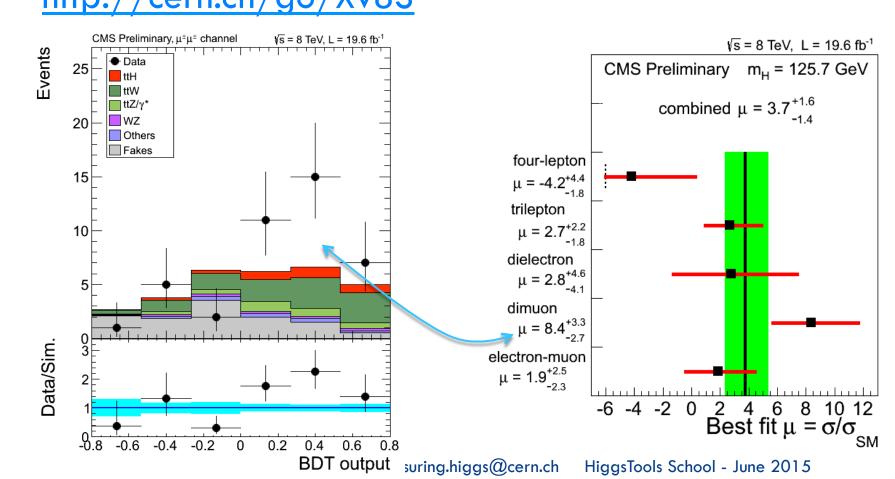
What changed?

285

- **BR(H** \rightarrow **VV) changes by 4 5%.**
 - H→WW and H→ZZ paper results evaluated at H→ZZ m_H result: m_H = 125.6 GeV.
 - Combined mass slightly lower: m_H = 125.0 GeV.
- □ In the combination $H \rightarrow WW$ includes the ttH, H

decaying to multi-lepton result: $\sigma/\sigma_{SM} = 3.7 \pm 1.5$.

σ/σ _{SM}	Individual publication	Combination
H→ZZ	0.93	1.00
H→WW	0.72	0.83



ttH multi-leptons

286

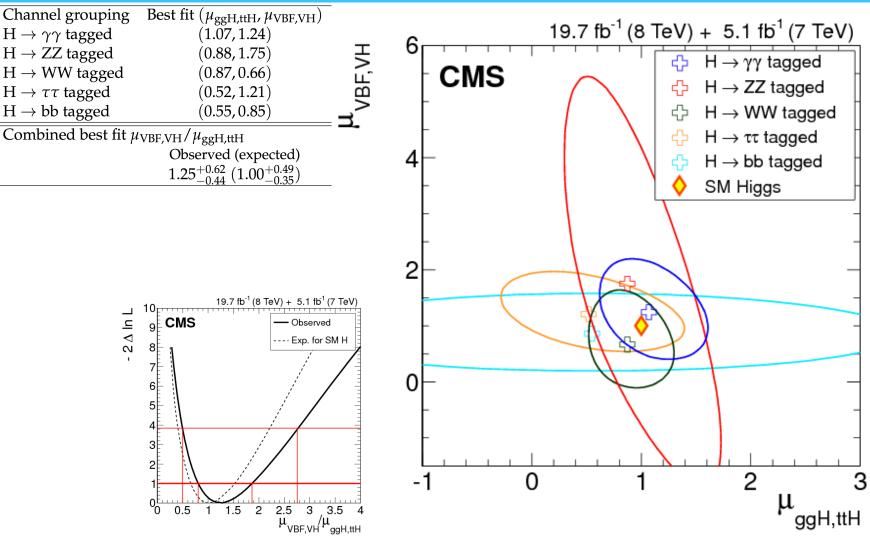
[CMS-PAS-HIG-13-020][http://cern.ch/go/FKr9]

Very extensive cross-checks performed: http://cern.ch/go/Xv8S

287

Significance of excesses

[arXiv:1412.8662]

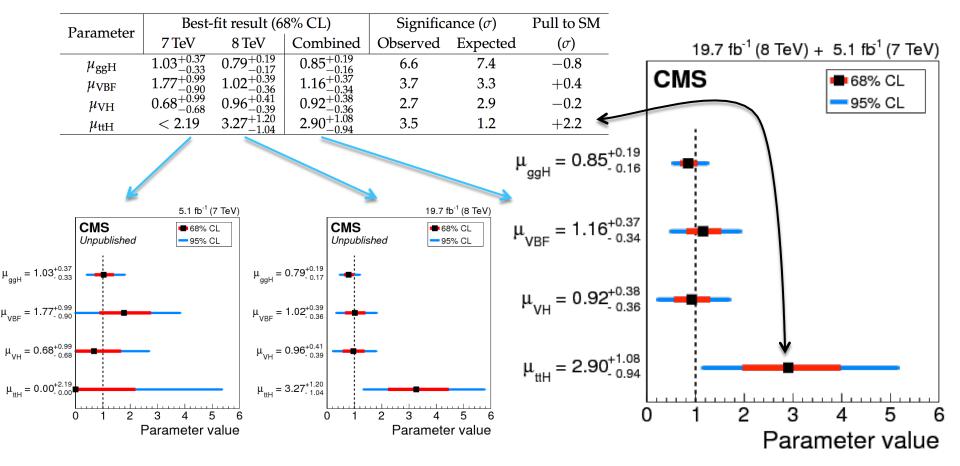

Channel grouping	Significance (σ)		
Channel grouping	Observed	Expected	
$H \rightarrow ZZ$ tagged	6.5	6.3	
$H \rightarrow \gamma \gamma$ tagged	5.6	5.3	
$H \rightarrow WW$ tagged	4.7	5.4	
Grouped as in Ref. [22]	4.3	5.4	
$H \rightarrow \tau \tau$ tagged	3.8	3.9	
Grouped as in Ref. [23]	3.9	3.9	
$H \rightarrow bb$ tagged	2.0	2.6	
Grouped as in Ref. [21]	2.1	2.5	
$H \rightarrow \mu \mu$ tagged	< 0.1	0.4	

Combined production measurement

288

[arXiv:1412.8662]

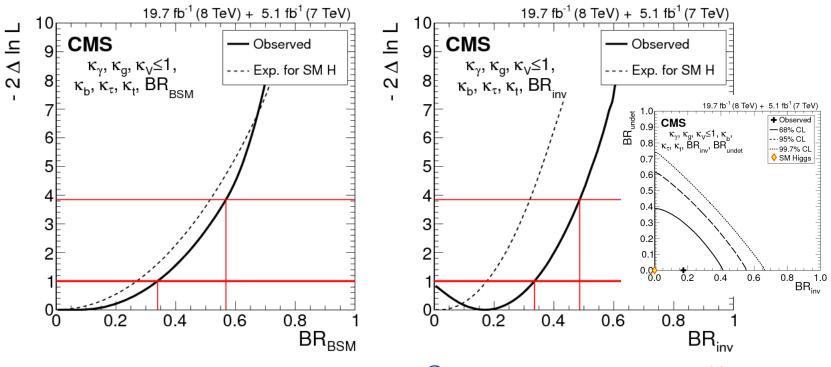
measuring.higgs@cern.ch HiggsTools


Production mode scaling

assuming SM BR structure

289

$$\square \mu_{ggH} = 0.85 \,{}^{+0.11}_{-0.09} \,(\text{stat.}) \,{}^{+0.11}_{-0.08} \,(\text{theo.}) \,{}^{+0.10}_{-0.09} \,(\text{syst.})$$



Coupling deviations summaries

[arXiv:1412.8662][arXiv:1307.1347]

290

Visible searches can constrain BR_{BSM}=BR_{inv}+Br_{undet}.
 Combine with H(inv) searches, assuming BR_{undet}=0.
 Can then scan BR_{inv} vs. BR_{undet}.

measuring.higgs@cern.ch Higgs1

HiggsTools School - June 2015

Coupling

deviations

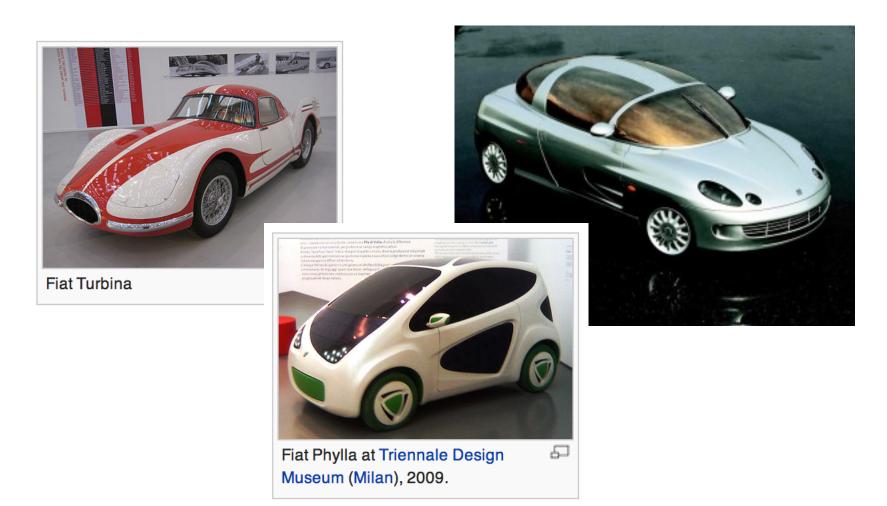
[arXiv:1412.8662][arXiv:1307.1347]

	Table in		Best-fit result		
Model parameters	Ref. [169]	Parameter	68% CL	95% CL	Comment
	_	λ_{WZ}	$0.94\substack{+0.22\\-0.18}$	[0.61, 1.45]	$\lambda_{WZ} = \kappa_W / \kappa_Z$ from ZZ and 0/1-jet WW channels.
$\kappa_{\rm Z}, \lambda_{\rm WZ}, \kappa_{\rm f}$	44 (top)	λ_{WZ}	$0.92\substack{+0.14 \\ -0.12}$	[0.71, 1.24]	$\lambda_{WZ} = \kappa_W / \kappa_Z$ from full combination.
	43 (top)	$\kappa_{ m V}$	$1.01\substack{+0.07\\-0.07}$	[0.87, 1.14]	$\kappa_{\rm V}$ scales couplings to W and Z bosons.
	(10)	$\kappa_{ m f}$	$0.87\substack{+0.14 \\ -0.13}$	[0.63, 1.15]	$\kappa_{\rm f}$ scales couplings to all fermions.
$\kappa_{ m V}, \lambda_{ m du}, \kappa_{ m u}$	46 (top)	$\lambda_{ m du}$	$0.99\substack{+0.19\\-0.18}$	[0.65, 1.39]	$\lambda_{du} = \kappa_u / \kappa_d$, relates up-type and down-type fermions.
$\kappa_{\rm V}, \lambda_{\ell \rm q}, \kappa_{\rm q}$	47 (top)	$\lambda_{\ell q}$	$1.03\substack{+0.23 \\ -0.21}$	[0.62, 1.50]	$\lambda_{\ell q} = \kappa_{\ell} / \kappa_q$, relates leptons and quarks.
		$\kappa_{\rm W}$	$0.95 \ ^{+0.14}_{-0.13}$	[0.68, 1.23]	
		κ _Z	$1.05 \ ^{+0.16}_{-0.16}$	[0.72, 1.35]	
$\kappa_{\mathrm{W}}, \kappa_{\mathrm{Z}}, \kappa_{\mathrm{t}},$	Extends	$\kappa_{\rm t}$	$0.81 \ ^{+0.19}_{-0.15}$	[0.53, 1.20]	Up-type quarks (via t).
$\kappa_{ m b}, \kappa_{ au}, \kappa_{\mu}$	51	$\kappa_{ m b}$	$0.74 \ ^{+0.33}_{-0.29}$	[0.09, 1.44]	Down-type quarks (via b).
		$\kappa_{ au}$	$0.84 \ ^{+0.19}_{-0.18}$	[0.50, 1.24]	Electron and tau lepton (via τ).
		κ_{μ}	$0.49\ ^{+1.38}_{-0.49}$	[0.00, 2.77]	κ_μ scales the coupling to muons.
М, є	Ref. [202]	M (GeV)	245 ± 15	[217, 279]	$\kappa_{ m f}=vrac{m_{ m f}^e}{M^{1+arepsilon}} ext{ and } \kappa_{ m V}=vrac{m_{ m V}^{2e}}{M^{1+2e}}$
<i>IVI,</i> c	Kel. [202]	ϵ	$0.014\substack{+0.041\\-0.036}$	[-0.054, 0.100]	(Section 7.4)
κ _g , κ _γ	48	$\kappa_{ m g}$	$0.89\substack{+0.11\\-0.10}$	[0.69, 1.11]	Effective couplings to
	(top)	κ_{γ}	$1.14\substack{+0.12 \\ -0.13}$	[0.89, 1.40]	gluons (g) and photons (γ).
$\kappa_{\rm g}, \kappa_{\gamma}, {\rm BR}_{\rm BSM}$	48 (middle)	BR _{BSM}	≤ 0.14	[0.00, 0.32]	Allows for BSM decays.
with $H(inv)$ searches	—	BR _{inv}	$0.03 \ ^{+0.15}_{-0.03}$	[0.00, 0.32]	$H(inv)$ use implies $BR_{undet} = 0$.
with H(inv) and $\kappa_i = 1$	—	BR _{inv}	$0.06 \ ^{+0.11}_{-0.06}$	[0.00, 0.27]	Assumes $\kappa_i = 1$ and uses H(inv).
		κ_{gZ}	$0.98 \ ^{+0.14}_{-0.13}$	[0.73, 1.27]	$\kappa_{gZ} = \kappa_g \kappa_Z / \kappa_H$, i.e. floating κ_H .
κ _{gZ} ,		λ_{WZ}	$0.87 {}^{+0.15}_{-0.13}$	[0.63, 1.19]	$\lambda_{WZ} = \kappa_W / \kappa_Z.$
0	-	λ_{Zg}	$1.39 \ ^{+0.36}_{-0.28}$	[0.87, 2.18]	$\lambda_{\mathrm{Zg}} = \kappa_{\mathrm{Z}} / \kappa_{\mathrm{g}}.$
$\lambda_{WZ}, \lambda_{Zg}, \lambda_{bZ},$	50 (bottom)	λ_{bZ}	$0.59 \ ^{+0.22}_{-0.23}$	≤ 1.07	$\lambda_{bZ} = \kappa_b / \kappa_Z.$
	(bottom)	$\lambda_{\gamma Z}$	$0.93 \ ^{+0.17}_{-0.14}$	[0.67, 1.31]	$\lambda_{\gamma Z} = \kappa_{\gamma} / \kappa_{Z}.$
$\lambda_{\gamma Z}, \lambda_{\tau Z}, \lambda_{ m tg}$		$\lambda_{ au Z}$	$0.79 \ ^{+0.19}_{-0.17}$	[0.47, 1.20]	$\lambda_{\tau Z} = \kappa_{\tau} / \kappa_{Z}.$
		$\lambda_{ m tg}$	$2.18 \ ^{+0.54}_{-0.46}$	[1.30, 3.35]	$\lambda_{\rm tg} = \kappa_{\rm t}/\kappa_{\rm g}.$
		κ _V	$0.96\substack{+0.14 \\ -0.15}$	[0.66, 1.23]	
		$\kappa_{ m b}$	$0.64\substack{+0.28\\-0.29}$	[0.00, 1.23]	Down-type quarks (via b).
$\kappa_{\rm V}, \kappa_{\rm b}, \kappa_{\rm \tau},$	Similar to	$\kappa_{ au}$	$0.82\substack{+0.18\\-0.18}$	[0.48, 1.20]	Charged leptons (via τ).
	50 (top)	$\kappa_{ m t}$	$1.60\substack{+0.34 \\ -0.32}$	[0.97, 2.28]	Up-type quarks (via t).
$\kappa_{\rm t}, \kappa_{\rm g}, \kappa_{\gamma}$		$\kappa_{ m g}$	$0.75\substack{+0.15\\-0.13}$	[0.52, 1.07]	
		κ_{γ}	$0.98\substack{+0.17\\-0.16}$	[0.67, 1.33]	_
with $\kappa_{ m V} \leq 1$ and ${ m BR}_{ m BSM}$		BR _{BSM}	≤ 0.34	[0.00, 0.57]	Allows for BSM decays.
with $\kappa_V \leq 1$ and $H(inv)$	_	BR _{inv}	0.17 ± 0.17	[0.00, 0.49]	$H(inv)$ use implies $BR_{undet} = 0$.
with $\kappa_{\rm V} \leq 1$, H(inv),	_	BR _{inv}	0.17 ± 0.17	[0.00, 0.49]	Separates BR _{inv} from BR _{undet} ,
BR _{inv} , and BR _{undet}	_	BRundet	≤ 0.23	[0.00, 0.52]	$BR_{BSM} = BR_{inv} + BR_{undet}.$

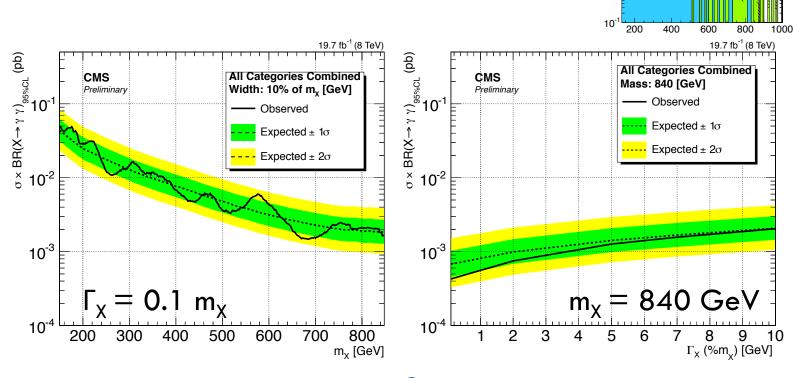
[http://cern.ch/go/r8kv]

293

[http://cern.ch/go/r8kv]


294

[http://cern.ch/go/r8kv]


measuring.higgs@cern.ch HiggsTools School - June 2015

High-mass diphoton searches

[CMS-PAS-HIG-14-006]

- Simplified cut-based selection.
- □ Signal model: double Crystal-Ball [⊗] Breit-Wigner.
 - Signal width and mean scale appropriately with m_{H.}
- **Limits on \sigma \times BR as a function of Γ_x and m_x.**

measuring.higgs@cern.ch Higgs

HiggsTools School - June 2015

Events/10.00

 10^{4}

 10^{3}

10²

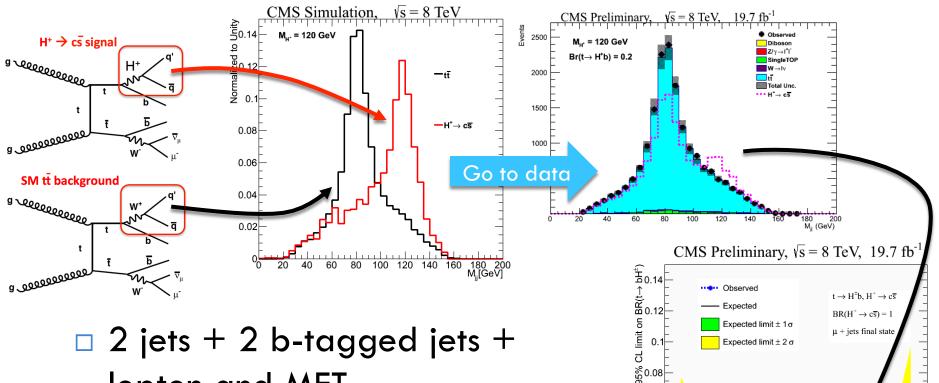
10

CMS

Prelimina

19.7 fb⁻¹ (8 TeV) All Categories Combined

γ²/NDF: 2.064


Data

γ + jet γ + γ Bkg Err

$H^+ \rightarrow cs$ in decays of $t \rightarrow H^+ + b$

[CMS-PAS-HIG-13-035]

297

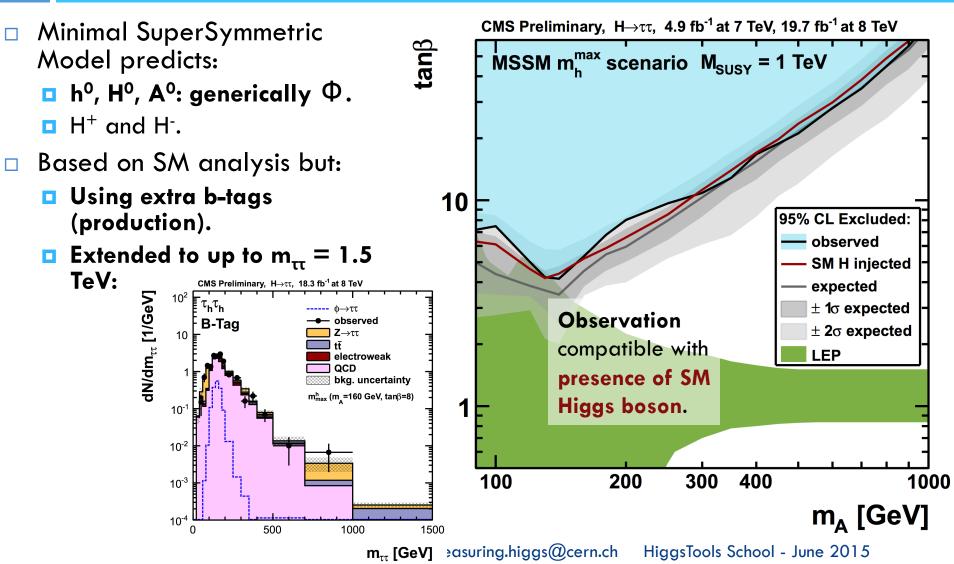
- lepton and MET.
- Mass reconstructed using m_W and m_t constraints and likelihood fit.

0.06

0.04

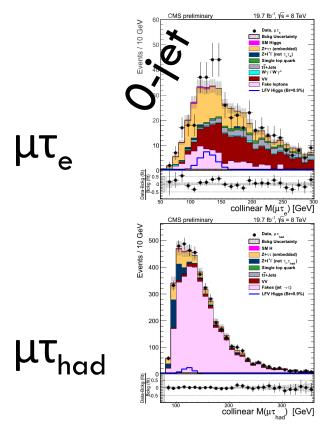
0.02

measuring.higgs@cern.ch

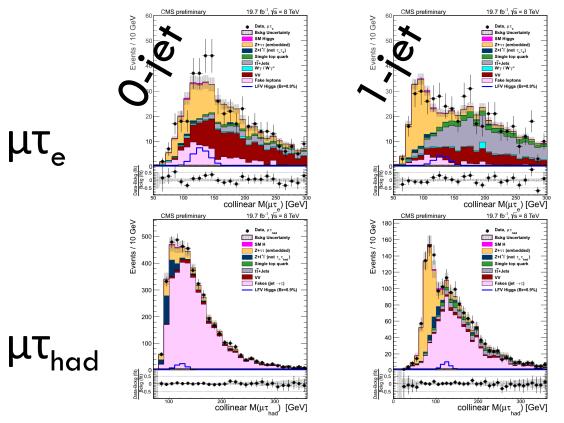


298

Search for MSSM $\Phi \rightarrow \tau \tau$

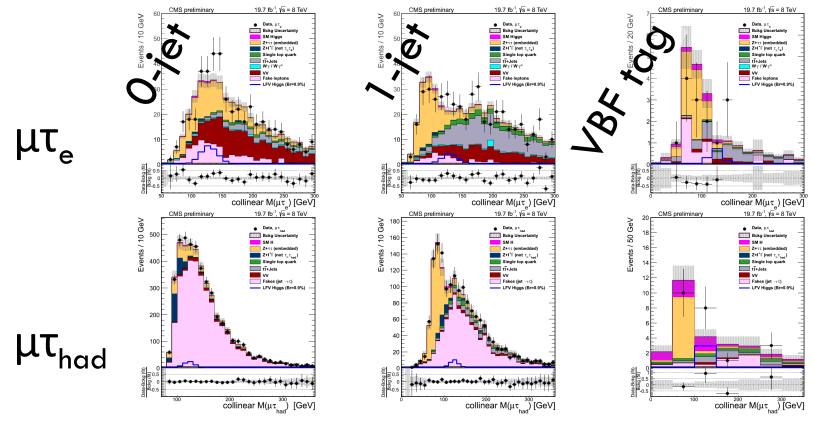

[CMS-PAS-HIG-13-021]

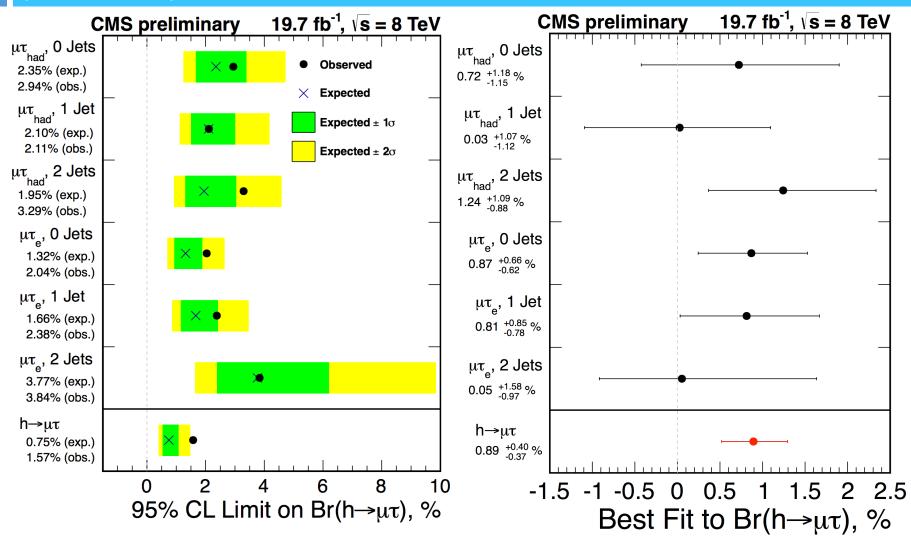
Not shown: model-independent limits on $gg \rightarrow \Phi$ and $gg \rightarrow \Phi b\overline{b}$.


299 [CMS-PAS-HIG-14-005]

- \Box τ lepton flavor violation not as well constrained as μe (MEG).
- **D** Based on SM $H \rightarrow \tau \tau$ analysis. **Different kinematics allows good SM H rejection**.
 - **BR(H→** μ τ) < 1.57% at 95%CL (expected limit of 0.75%)

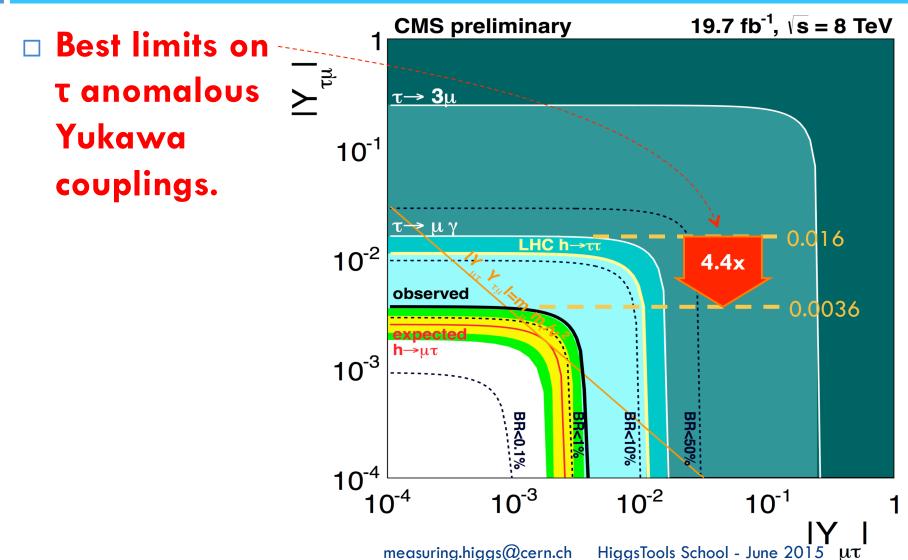
300 [CMS-PAS-HIG-14-005]

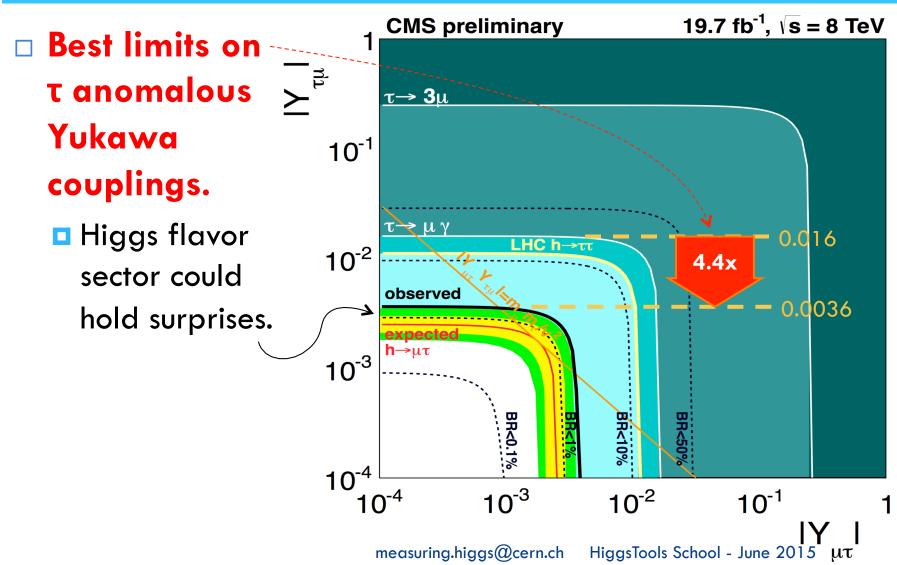

- \Box τ lepton flavor violation not as well constrained as μe (MEG).
- **D** Based on SM $H \rightarrow \tau \tau$ analysis. **Different kinematics allows good SM H rejection**.
 - **BR(H\rightarrowµ\tau) < 1.57% at 95%CL (expected limit of 0.75%)**


301 [CMS-PAS-HIG-14-005]

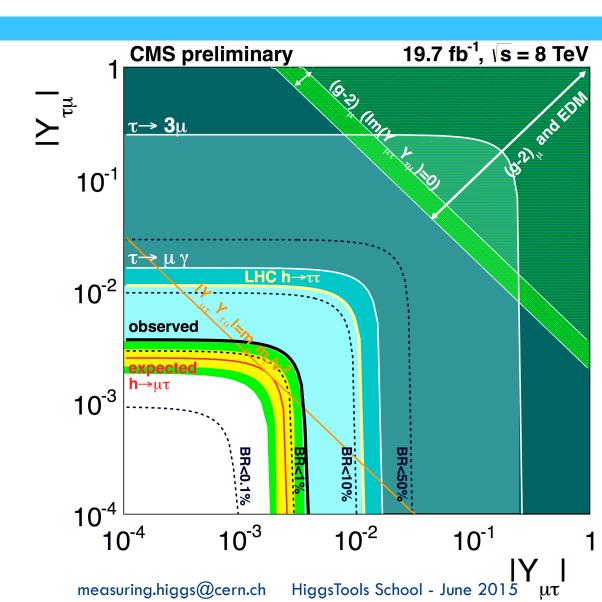
CERN

- \Box τ lepton flavor violation not as well constrained as μe (MEG).
- **D** Based on SM $H \rightarrow \tau \tau$ analysis. **Different kinematics allows good SM H rejection**.
 - **BR(H\rightarrowµ\tau) < 1.57% at 95%CL (expected limit of 0.75%)**


[CMS-PAS-HIG-14-005]

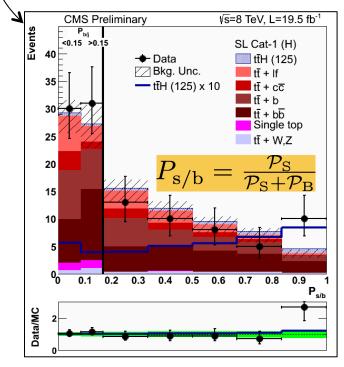

measuring.higgs@cern.ch

HiggsTools School - June 2015


[CMS-PAS-HIG-14-005]

[CMS-PAS-HIG-14-005]

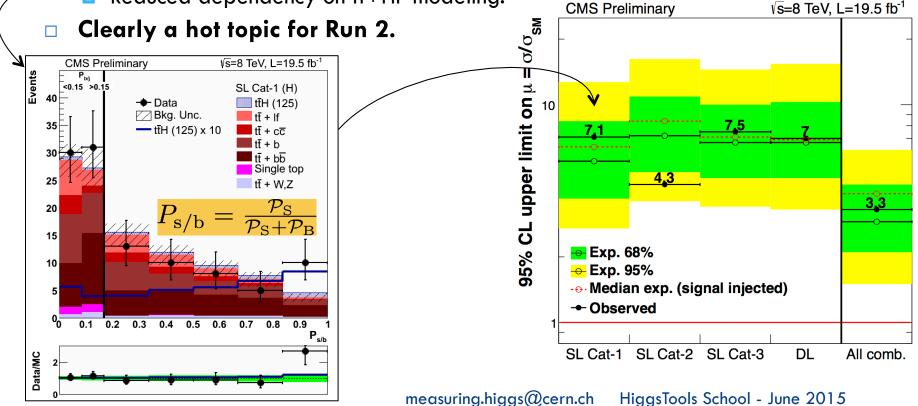
305 [CMS-PAS-HIG-14-005]


New search for ttH with $H \rightarrow b\overline{b}$

[CMS-PAS-HIG-14-010]

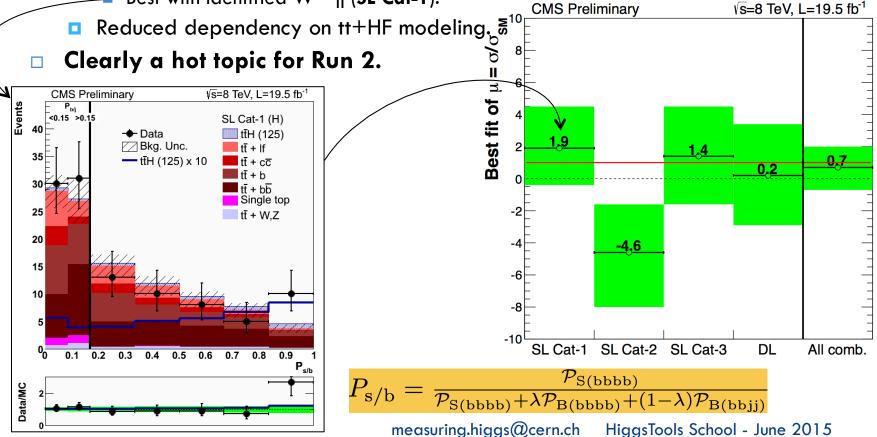
306

- Improved performance:
 - Event probability (P_{s/b}) based on matrix element probabilities.
 - Single lepton (SL) and di-lepton (DL) topologies.
 - Best with identified $W \rightarrow jj$ (SL Cat-1).
 - Reduced dependency on tt+HF modeling.


Clearly a hot topic for Run 2.

New search for ttH with $H \rightarrow b\overline{b}$

[CMS-PAS-HIG-14-010]


- Improved performance:
 - Event probability (P_{s/b}) based on matrix element probabilities.
 - Single lepton (SL) and di-lepton (DL) topologies.
 - Best with identified $W \rightarrow jj$ (SL Cat-1).
 - Reduced dependency on tt+HF modeling.

New search for ttH with $H \rightarrow b\overline{b}$

[CMS-PAS-HIG-14-010]

- Improved performance:
 - Event probability $(P_{s/b})$ based on matrix element probabilities.
 - Single lepton (SL) and di-lepton (DL) topologies.
 - Best with identified $W \rightarrow jj$ (**SL Cat-1**).

310 [arXiv:1411.3441]

Parameterization in terms of cross-section fractions:

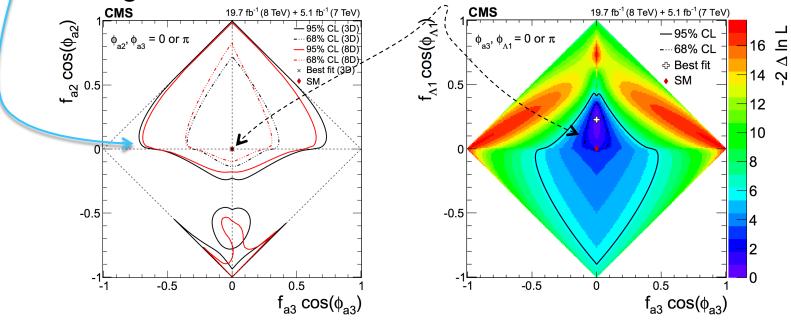
$$f_{a3} = \frac{|a_{3}|^{2}\sigma_{3}}{|a_{1}|^{2}\sigma_{1} + |a_{2}|^{2}\sigma_{2} + |a_{3}|^{2}\sigma_{3} + \tilde{\sigma}_{\Lambda_{1}}/(\Lambda_{1})^{4}} \qquad \phi_{a3} = \arg\left(\frac{a_{3}}{a_{1}}\right)$$

$$f_{a2} = \frac{|a_{2}|^{2}\sigma_{2}}{|a_{1}|^{2}\sigma_{1} + |a_{2}|^{2}\sigma_{2} + |a_{3}|^{2}\sigma_{3} + \tilde{\sigma}_{\Lambda_{1}}/(\Lambda_{1})^{4}} \qquad \phi_{a2} = \arg\left(\frac{a_{2}}{a_{1}}\right)$$

$$f_{\Lambda 1} = \frac{\tilde{\sigma}_{\Lambda_{1}}/(\Lambda_{1})^{4}}{|a_{1}|^{2}\sigma_{1} + |a_{2}|^{2}\sigma_{2} + |a_{3}|^{2}\sigma_{3} + \tilde{\sigma}_{\Lambda_{1}}/(\Lambda_{1})^{4}} \qquad \phi_{\Lambda 1},$$

Spin zero amplitude in $H \rightarrow ZZ \rightarrow 4\ell$

[arXiv:1411.3441]


 $g(\overline{q})$

311

g(q)

- Full final state available:
 - **Kinematic discriminants** reducing to 2D or 3D.
 - **BD likelihood** fit.
- 2D scans of anomalous coupling fractions (real phases).
 - But also done profiling over the phases.

No significant deviations from SM found.

measuring.higgs@cern.ch

HiggsTools School - June 2015

- Anomalous couplings formalism:
 - \square a₁ is the SM amplitude.
 - \square Λ_1 is a higher-term of an expansion in momentum.
 - a₂ and a₃ control the CP-even and CP-odd amplitudes.
- □ Parameterized using fractions of cross-sections: f_{a1} , f_{a2} , f_{a3} , $f_{\Lambda 1}$.

$$\begin{split} A(X_{J=0} \to V_1 V_2) &\sim v^{-1} \left(\left[a_1 - e^{i\phi_{\Lambda_1}} \frac{q_{Z_1}^2 + q_{Z_2}^2}{(\Lambda_1)^2} \right] m_Z^2 \epsilon_{Z_1}^* \epsilon_{Z_2}^* \right. \\ &+ a_2 f_{\mu\nu}^{*(Z_1)} f^{*(Z_2),\mu\nu} + a_3 f_{\mu\nu}^{*(Z_1)} \tilde{f}^{*(Z_2),\mu\nu} \\ &+ a_2^{Z\gamma} f_{\mu\nu}^{*(Z)} f^{*(\gamma),\mu\nu} + a_3^{Z\gamma} f_{\mu\nu}^{*(Z)} \tilde{f}^{*(\gamma),\mu\nu} \\ &+ a_2^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_1)} f^{*(\gamma_2),\mu\nu} + a_3^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_1)} \tilde{f}^{*(\gamma_2),\mu\nu} \right) \end{split}$$

- □ Anomalous couplings formalism:
 - \square a₁ is the SM amplitude.
 - \square Λ_1 is a higher-term of an expansion in momentum.
 - a_2 and a_3 control the CP-even and CP-odd amplitudes.
- □ Parameterized using fractions of cross-sections: f_{a1} , f_{a2} , f_{a3} , $f_{\Lambda 1}$.

$$\begin{aligned} A(X_{J=0} \to V_1 V_2) &\sim v^{-1} \left(\begin{bmatrix} a_1 - e^{i\phi_{\Lambda_1}} \frac{q_{Z_1}^2 + q_{Z_2}^2}{(\Lambda_1)^2} \end{bmatrix} m_Z^2 \epsilon_{Z_1}^* \epsilon_{Z_2}^* \\ &+ a_2 f_{\mu\nu}^{*(Z_1)} f^{*(Z_2),\mu\nu} + a_3 f_{\mu\nu}^{*(Z_1)} \tilde{f}^{*(Z_2),\mu\nu} \\ &+ a_2^{Z\gamma} f_{\mu\nu}^{*(Z)} f^{*(\gamma),\mu\nu} + a_3^{Z\gamma} f_{\mu\nu}^{*(Z)} \tilde{f}^{*(\gamma),\mu\nu} \\ &+ a_2^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_1)} f^{*(\gamma_2),\mu\nu} + a_3^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_1)} \tilde{f}^{*(\gamma_2),\mu\nu} \end{pmatrix} \end{aligned}$$

- □ Anomalous couplings formalism:
 - a₁ is the SM amplitude.
 - **\square** Λ_1 is a higher-term of an expansion in momentum.
 - a₂ and a₃ control the CP-even and CP-odd amplitudes.
- □ Parameterized using fractions of cross-sections: f_{a1} , f_{a2} , f_{a3} , $f_{\Lambda 1}$.

$$\begin{split} A(X_{J=0} \to V_1 V_2) &\sim v^{-1} \left(\begin{bmatrix} a_1 - e^{i\phi_{\Lambda_1}} \frac{q_{Z_1}^2 + q_{Z_2}^2}{(\Lambda_1)^2} \end{bmatrix} m_Z^2 \epsilon_{Z_1}^* \epsilon_{Z_2}^* \\ &+ a_2 f_{\mu\nu}^{*(Z_1)} f^{*(Z_2),\mu\nu} + a_3 f_{\mu\nu}^{*(Z_1)} \tilde{f}^{*(Z_2),\mu\nu} \\ &+ a_2^{Z\gamma} f_{\mu\nu}^{*(Z)} f^{*(\gamma),\mu\nu} + a_3^{Z\gamma} f_{\mu\nu}^{*(Z)} \tilde{f}^{*(\gamma),\mu\nu} \\ &+ a_2^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_1)} f^{*(\gamma_2),\mu\nu} + a_3^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_1)} \tilde{f}^{*(\gamma_2),\mu\nu} \end{pmatrix} \end{split}$$

- □ Anomalous couplings formalism:
 - a₁ is the SM amplitude.
 - **\square** Λ_1 is a higher-term of an expansion in momentum.
 - a₂ and a₃ control the CP-even and CP-odd amplitudes.
- □ Parameterized using fractions of cross-sections: f_{a1} , f_{a2} , f_{a3} , f_{A1} .

$$\begin{split} A(X_{J=0} \to V_{1}V_{2}) &\sim v^{-1} \left(\begin{bmatrix} a_{1} - e^{i\phi_{\Lambda_{1}}} \frac{q_{Z_{1}}^{2} + q_{Z_{2}}^{2}}{(\Lambda_{1})^{2}} \end{bmatrix} m_{Z}^{2} \epsilon_{Z_{1}}^{*} \epsilon_{Z_{2}}^{*} \\ &+ a_{2} f_{\mu\nu}^{*(Z_{1})} f^{*(Z_{2}),\mu\nu} + a_{3} f_{\mu\nu}^{*(Z_{1})} \tilde{f}^{*(Z_{2}),\mu\nu} \\ &+ a_{2}^{Z\gamma} f_{\mu\nu}^{*(Z)} f^{*(\gamma),\mu\nu} + a_{3}^{Z\gamma} f_{\mu\nu}^{*(Z)} \tilde{f}^{*(\gamma),\mu\nu} \\ &+ a_{2}^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_{1})} f^{*(\gamma_{2}),\mu\nu} + a_{3}^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_{1})} \tilde{f}^{*(\gamma_{2}),\mu\nu} \right) \\ &= a_{2}^{2} terms \\ \text{CP-even (scalar)} \end{split}$$

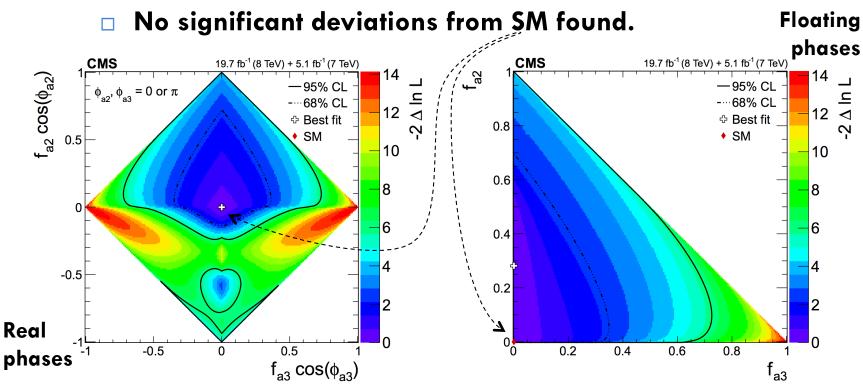
- Anomalous couplings formalism:
 - a₁ is the SM amplitude.
 - **\square** Λ_1 is a higher-term of an expansion in momentum.
 - a₂ and a₃ control the CP-even and CP-odd amplitudes.
- □ Parameterized using fractions of cross-sections: f_{a1} , f_{a2} , f_{a3} , f_{A1} .

$$\begin{split} A(X_{J=0} \to V_{1}V_{2}) &\sim v^{-1} \left(\begin{bmatrix} a_{1} - e^{i\phi_{\Lambda_{1}}} \frac{q_{Z_{1}}^{2} + q_{Z_{2}}^{2}}{(\Lambda_{1})^{2}} \end{bmatrix} m_{Z}^{2} \epsilon_{Z_{1}}^{*} \epsilon_{Z_{2}}^{*} \\ &+ a_{2} f_{\mu\nu}^{*(Z_{1})} f^{*(Z_{2}),\mu\nu} + a_{3} f_{\mu\nu}^{*(Z_{1})} \tilde{f}^{*(Z_{2}),\mu\nu} \\ &+ a_{2}^{Z\gamma} f_{\mu\nu}^{*(Z)} f^{*(\gamma),\mu\nu} + a_{3}^{Z\gamma} f_{\mu\nu}^{*(Z)} \tilde{f}^{*(\gamma),\mu\nu} \\ &+ a_{2}^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_{1})} f^{*(\gamma_{2}),\mu\nu} + a_{3}^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_{1})} \tilde{f}^{*(\gamma_{2}),\mu\nu} \\ &+ a_{2}^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_{1})} f^{*(\gamma_{2}),\mu\nu} + a_{3}^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_{1})} \tilde{f}^{*(\gamma_{2}),\mu\nu} \\ &+ a_{2}^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_{1})} f^{*(\gamma_{2}),\mu\nu} + a_{3}^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_{1})} \tilde{f}^{*(\gamma_{2}),\mu\nu} \\ &+ a_{2}^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_{1})} f^{*(\gamma_{2}),\mu\nu} + a_{3}^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_{1})} \tilde{f}^{*(\gamma_{2}),\mu\nu} \\ &+ a_{2}^{\gamma} f_{\mu\nu}^{*(\gamma_{1})} f^{*(\gamma_{2}),\mu\nu} + a_{3}^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_{1})} \tilde{f}^{*(\gamma_{2}),\mu\nu} \\ &+ a_{3}^{\gamma} f_{\mu\nu}^{*(\gamma_{1})} \tilde{f}^{*(\gamma_{1})} \tilde{f}^{*(\gamma_{1})} \tilde{f}^{*(\gamma_{2$$

- Anomalous couplings formalism:
 - \square a₁ is the SM amplitude.
 - **\square** Λ_1 is a higher-term of an expansion in momentum.
 - **a** a_2 and a_3 control the CP-even and CP-odd amplitudes.
- □ Parameterized using fractions of cross-sections: f_{a1} , f_{a2} , f_{a3} , $f_{\Lambda 1}$.

$$\begin{split} A(X_{J=0} \to V_{1}V_{2}) &\sim v^{-1} \left(\begin{bmatrix} a_{1} - e^{i\phi_{\Lambda_{1}}} \frac{q_{Z_{1}}^{2} + q_{Z_{2}}^{2}}{(\Lambda_{1})^{2}} \end{bmatrix} m_{z}^{2} \epsilon_{Z_{1}}^{*} \epsilon_{Z_{2}}^{*} \\ z_{2}, ww &+ a_{2} f_{\mu\nu}^{*(Z_{1})} f^{*(Z_{2}),\mu\nu} + a_{3} f_{\mu\nu}^{*(Z_{1})} \tilde{f}^{*(Z_{2}),\mu\nu} \\ z_{\gamma}^{*} &+ a_{2}^{2\gamma} f_{\mu\nu}^{*(Z)} f^{*(\gamma),\mu\nu} + a_{3}^{2\gamma} f_{\mu\nu}^{*(Z)} \tilde{f}^{*(\gamma),\mu\nu} \\ \gamma^{*} \gamma^{*} &+ a_{2}^{2\gamma} f_{\mu\nu}^{*(\gamma_{1})} f^{*(\gamma_{2}),\mu\nu} + a_{3}^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_{1})} \tilde{f}^{*(\gamma_{2}),\mu\nu} \\ e^{i\phi_{\Lambda_{1}}} q_{\mu\nu}^{2} f^{*(\gamma_{1})} f^{*(\gamma_{2}),\mu\nu} + a_{3}^{\gamma\gamma} f_{\mu\nu}^{*(\gamma_{1})} \tilde{f}^{*(\gamma_{2}),\mu\nu} \\ e^{i\phi_{\Lambda_{1}}} q_{\mu\nu}^{2} f^{*(\gamma_{1})} f^{*(\gamma_{2}),\mu\nu} + a_{3}^{\gamma\gamma} f^{*(\gamma_{1})} \tilde{f}^{*(\gamma_{2}),\mu\nu} \\ e^{i\phi_{\Lambda_{1}}} q_{\mu\nu}^{2} f^{*(\gamma_{1})} f^{*(\gamma_{2}),\mu\nu} + a_{3}^{\gamma\gamma} f^{*(\gamma_{1})} \tilde{f}^{*(\gamma_{2}),\mu\nu} \\ e^{i\phi_{\Lambda_{1}}} q_{\mu\nu}^{2} f^{*(\gamma_{1})} f^{*(\gamma_{2}),\mu\nu} + a_{3}^{\gamma\gamma} f^{*(\gamma_{1})} \tilde{f}^{*(\gamma_{2}),\mu\nu} \\ e^{i\phi_{\Lambda_{1}}} q_{\mu\nu}^{2} f^{*(\gamma_{1})} f^{*(\gamma_{2}),\mu\nu} + a_{3}^{\gamma\gamma} f^{*(\gamma_{1})} \tilde{f}^{*(\gamma_{2}),\mu\nu} \\ e^{i\phi_{\Lambda_{1}}} q_{\mu\nu}^{2} f^{*(\gamma_{1})} f^{*(\gamma_{2}),\mu\nu} + a_{3}^{\gamma\gamma} f^{*(\gamma_{1})} \tilde{f}^{*(\gamma_{2}),\mu\nu} \\ e^{i\phi_{\Lambda_{1}}} q_{\mu\nu}^{2} f^{*(\gamma_{1})} f^{*(\gamma_{2}),\mu\nu} + a_{3}^{\gamma\gamma} f^{*(\gamma_{1})} \tilde{f}^{*(\gamma_{2}),\mu\nu} \\ e^{i\phi_{\Lambda_{1}}} q_{\mu\nu}^{2} f^{*(\gamma_{1})} f^{*(\gamma_{2}),\mu\nu} + a_{3}^{\gamma\gamma} f^{*(\gamma_{1})} \tilde{f}^{*(\gamma_{2}),\mu\nu} \\ e^{i\phi_{\Lambda_{1}}} q_{\mu\nu}^{2} f^{*(\gamma_{1})} f^{*(\gamma_{2}),\mu\nu} + a_{3}^{\gamma\gamma} f^{*(\gamma_{1})} \tilde{f}^{*(\gamma_{2}),\mu\nu} \\ e^{i\phi_{\Lambda_{1}}} q_{\mu\nu}^{2} f^{*(\gamma_{1})} f^{*(\gamma_{2}),\mu\nu} + a_{3}^{\gamma\gamma} f^{*(\gamma_{1})} \tilde{f}^{*(\gamma_{2}),\mu\nu} \\ e^{i\phi_{\Lambda_{1}}} q_{\mu\nu}^{2} f^{*(\gamma_{1})} f^{*(\gamma_{2}),\mu\nu} + a_{3}^{\gamma\gamma} f^{*(\gamma_{1})} \tilde{f}^{*(\gamma_{2}),\mu\nu} \\ e^{i\phi_{\Lambda_{1}}} q_{\mu\nu}^{2} f^{*(\gamma_{1})} f^{*(\gamma_{1})} q_{\mu\nu}^{2} f^{*(\gamma_{1})} \tilde{f}^{*(\gamma_{2}),\mu\nu} \\ e^{i\phi_{\Lambda_{1}}} q_{\mu\nu}^{2} f^{*(\gamma_{1})} f^{*(\gamma_{1})} q_{\mu\nu}^{2} f^{*(\gamma_{1})$$

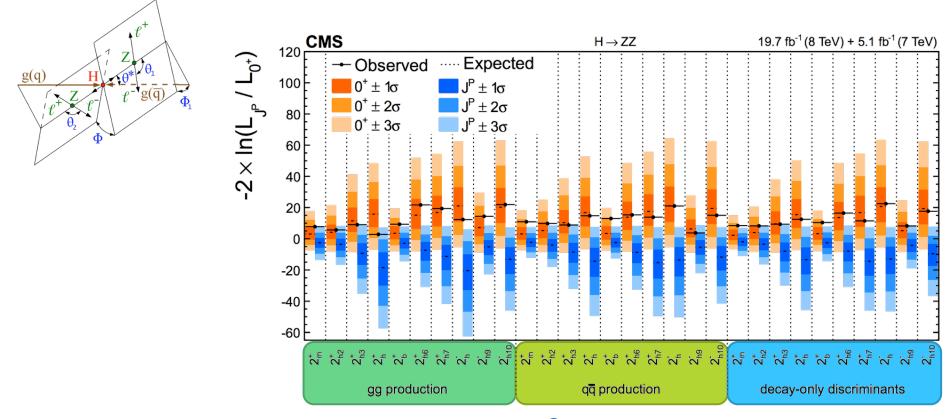
Spin zero amplitude in $H \rightarrow ZZ \rightarrow 4\ell$


[arXiv:1411.3441]

 $g(\overline{q})$

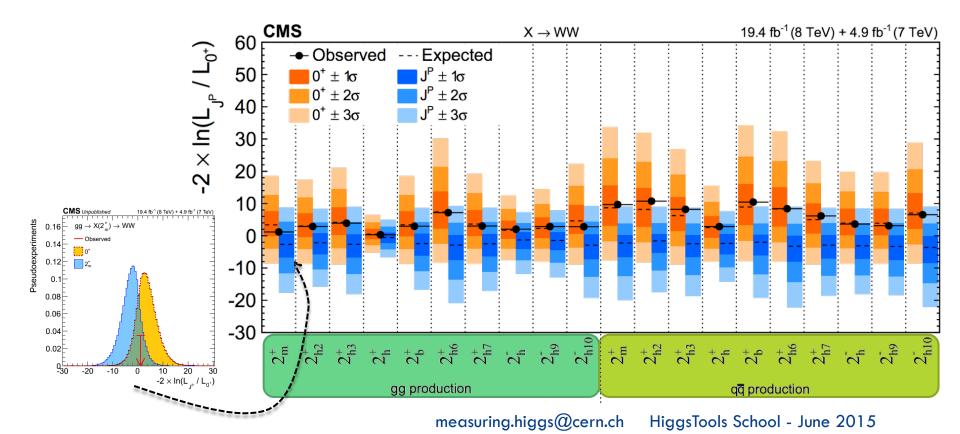
318

g(q)


- Full final state available:
 - **Kinematic discriminants** reduce 8D to 2D or 3D.
- □ 2D scans of anomalous coupling fractions.
 - Assuming real phases and floating the phases.

319

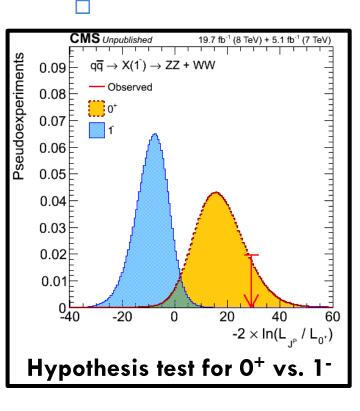
Broad range of hypothesis tests based on the observables optimized for each case.



[CMS-PAS-HIG-14-012]

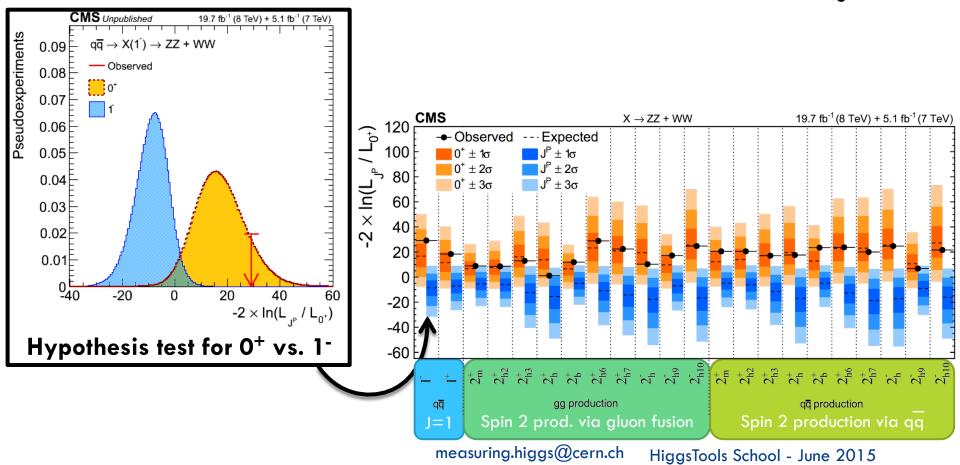
320

Broad range of hypothesis tests based on the observables used for the SM measurements.



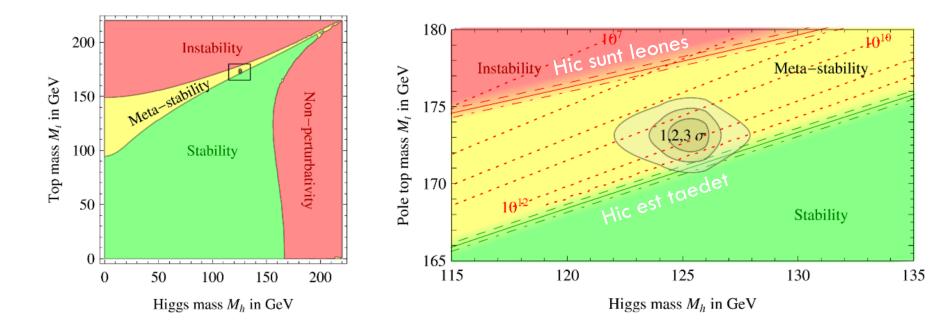
[CMS-PAS-HIG-14-012][arXiv:1411.3441]

321


□ Combination of $H \rightarrow WW \rightarrow 2\ell 2\nu$ and $H \rightarrow ZZ \rightarrow 4\ell$.

[CMS-PAS-HIG-14-012][arXiv:1411.3441]

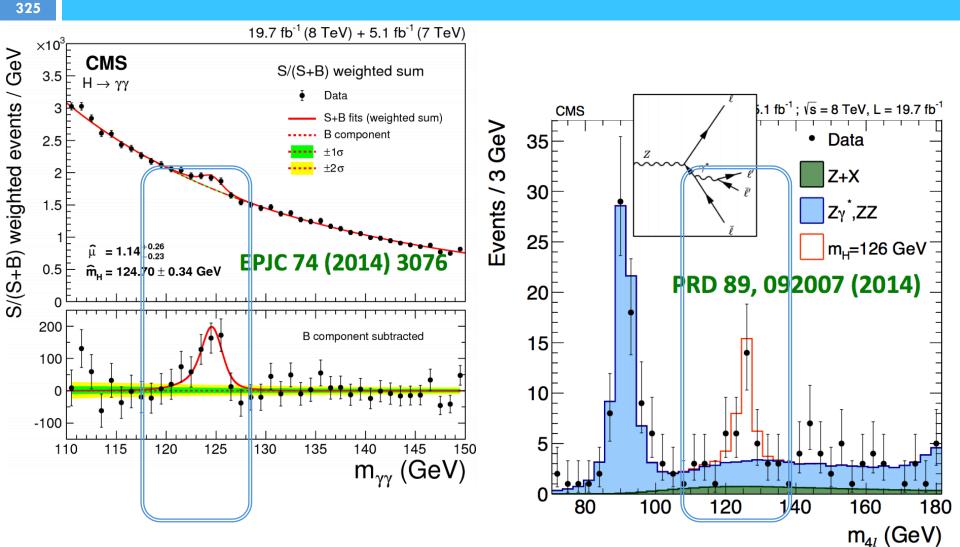
- □ Combination of $H \rightarrow WW \rightarrow 2\ell 2\nu$ and $H \rightarrow ZZ \rightarrow 4\ell$.
- All tested hypotheses excluded at more than 99.9% CL_s.



³²³ Combined m_H measurement

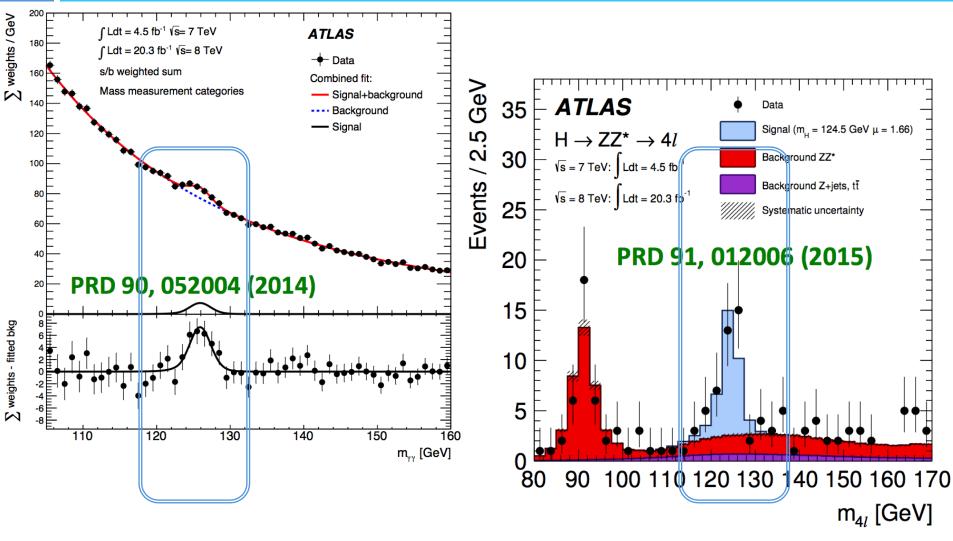
The fate/character of the Universe

[JHEP 08 (2012) 098]

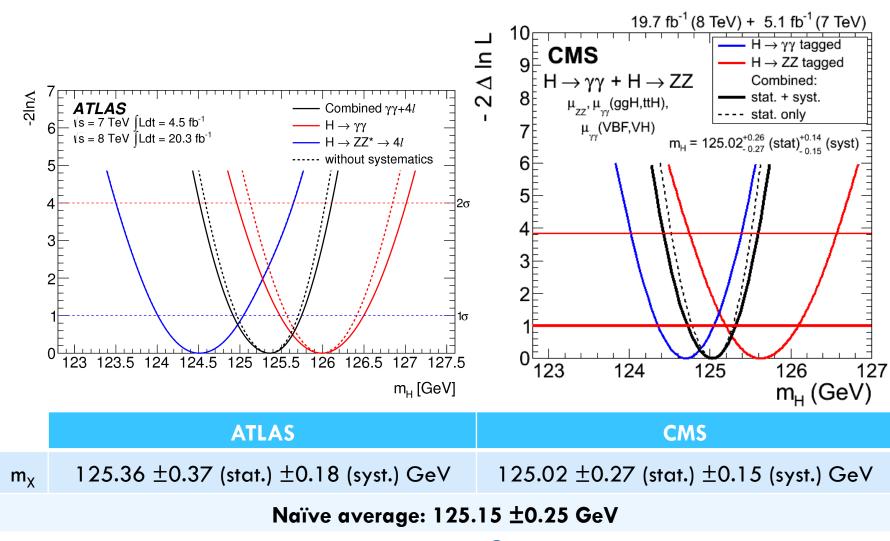

324

The SM vacuum stability depends crucially on the masses of the top quark and Higgs boson.

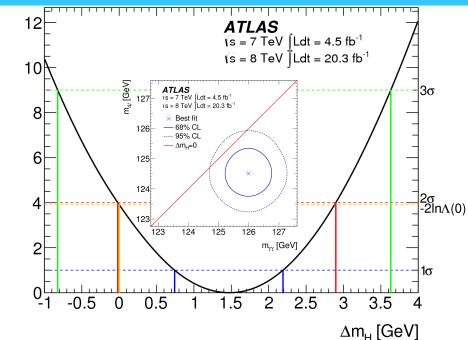
Mass peaks: mass measurements

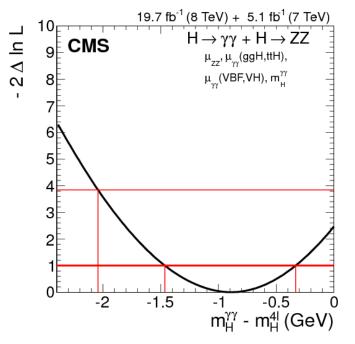


Mass peaks: mass measurements


326

[arXiv:1406.3827][arXiv:1412.8662]


327


328 [arXiv:1406.3827][arXiv:1412.8662

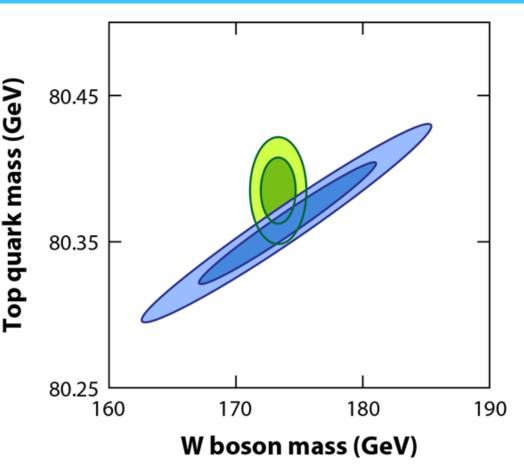
-2InA

□ Slight difference in ATLAS results:

- m_H^{γ γ}-m_H^{ZZ} = 1.47 ±0.67(stat.) ±0.28(syst.) GeV
- **1.97**σ (p=4.9%).
- Using more conservative energy scale uncertainties: 1.8σ (p=7.5%).

- In CMS, less significant and with opposite sign:
 - □ $m_{H}^{\gamma \gamma} m_{H}^{ZZ} = -0.9 \pm 0.6 \text{ GeV}$ □ 1.6σ.

329


ATLAS+CMS m_H in PRL

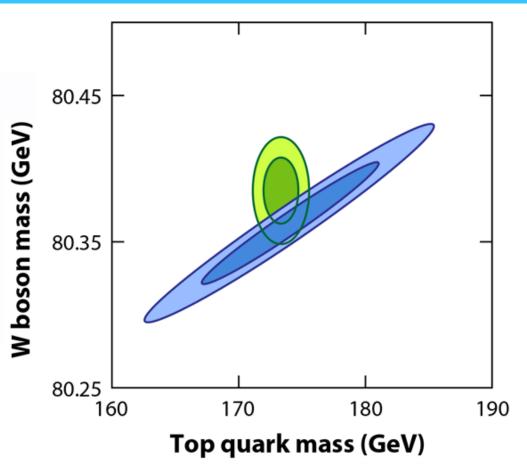
[PRL 114 (2015) 191803][http://physics.aps.org/articles/v8/45]

First ATLAS+CMS publication.

• 0.2% precision.

 PRL Viewpoint by Chris Quigg: "With LHC Run 2 [we] can look forward to a new round of exploration, searches for new phenomena, and refined measurements. Combined analyses [...], such as the measurement of the Higgs boson mass discussed here, will help make the most of the data. We still have much to learn about the Higgs boson, the electroweak theory, and beyond."

330


ATLAS+CMS m_H in PRL

[PRL 114 (2015) 191803][http://physics.aps.org/articles/v8/45]

First ATLAS+CMS publication.

• 0.2% precision.

PRL Viewpoint by Chris Quigg: "With LHC Run 2 [we] can look forward to a new round of exploration, searches for new phenomena, and refined measurements. Combined analyses [...], such as the measurement of the Higgs boson mass discussed here, will help make the most of the data. We still have much to learn about the Higgs boson, the electroweak theory, and beyond."

For the record

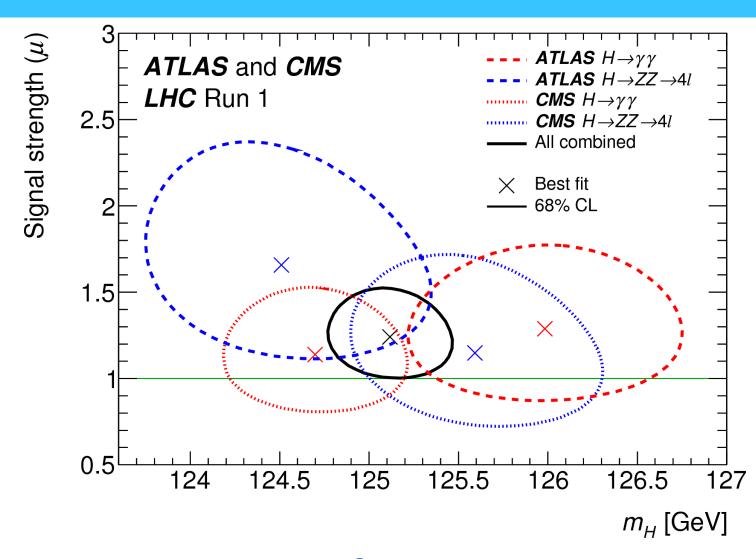
- □ ~5150 authors.
- Found that there are two:
 - Archana Sharma (both CMS)
 - Andrea Bocci
 - Muhammad Ahmad
 - F. M. Giorgi (one CMS, one ATLAS)

Physics paper sets record with more than 5,000 authors

Detector teams at the Large Hadron Collider collaborated for a more precise estimate of the size of the Higgs boson.

Davide Castelvecchi

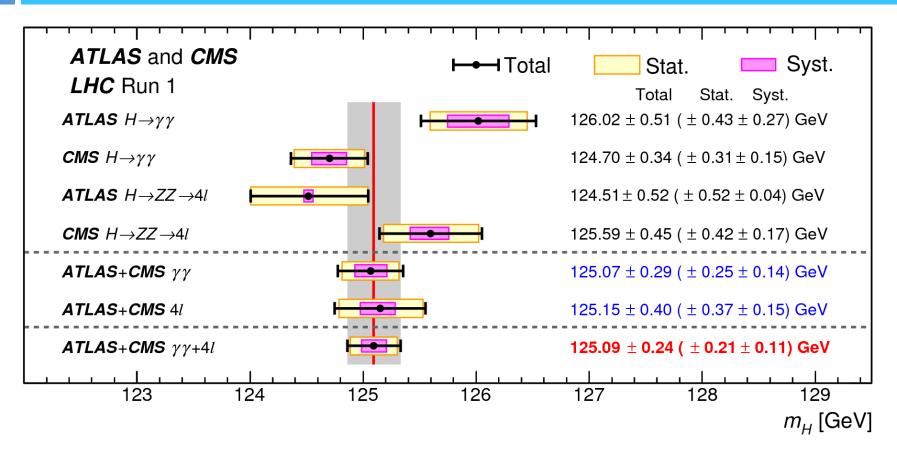
15 May 2015

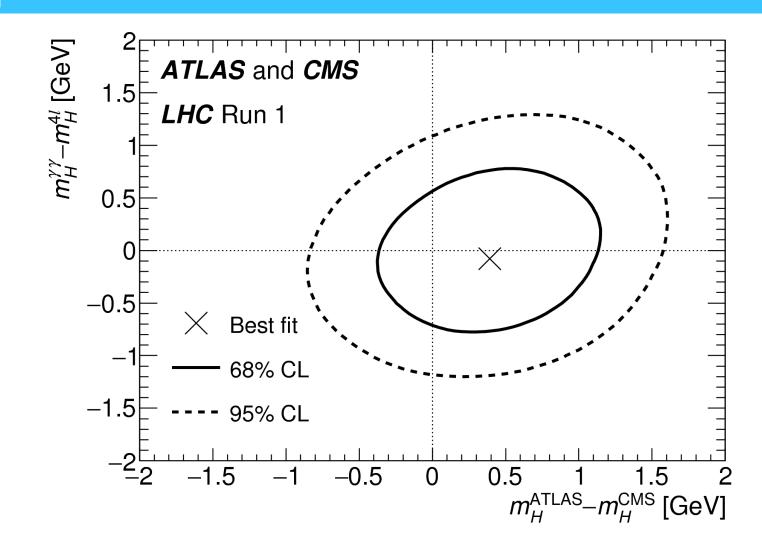


CERN

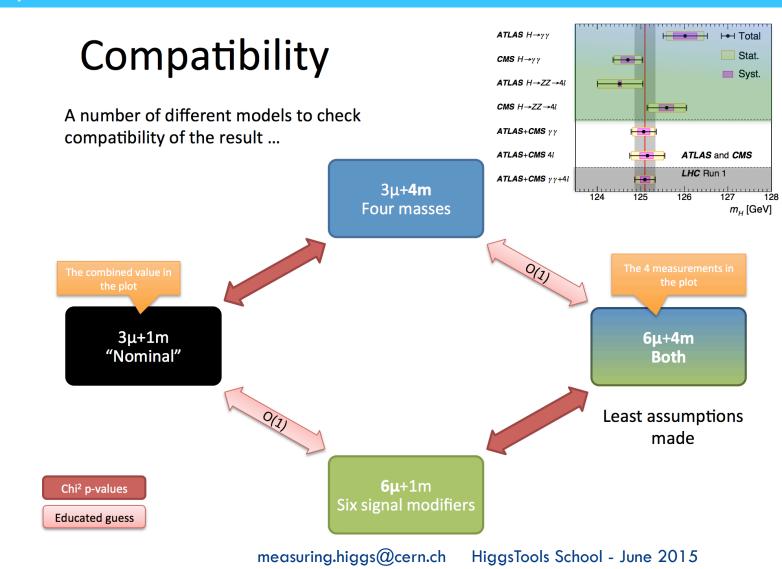
Thousands of scientists and engineers have worked on the Large Hadron Collider at CERN.

A physics paper with 5,154 authors has — as far as anyone knows — broken the record for the largest number of contributors to a single research article.

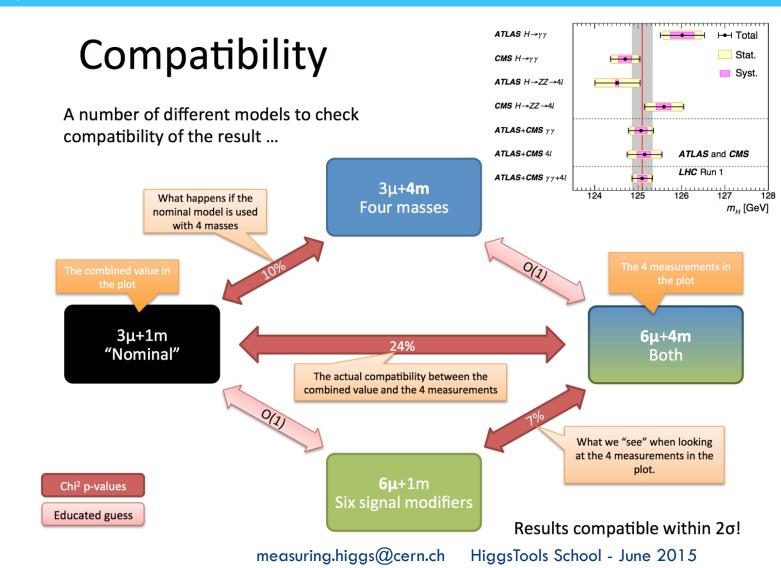

332 [arXiv:1503.07589]


CERN

Combined LHC mass measurement


333 [arXiv:1503.07589]

334 [arXiv:1503.07589]



335

[arXiv:1503.07589]

336

[arXiv:1503.07589]

$m_{H} = 125.09 \pm 0.21 ~(stat)$

Uncertainty is mostly statistical

Scale uncertainties dominate systematic

→ But we can expect that to improve with more data!

 $\pm 0.11 \text{ (scale)} \\ \pm 0.02 \text{ (other)} \\ \pm 0.01 \text{ (theory}^*$

GeV

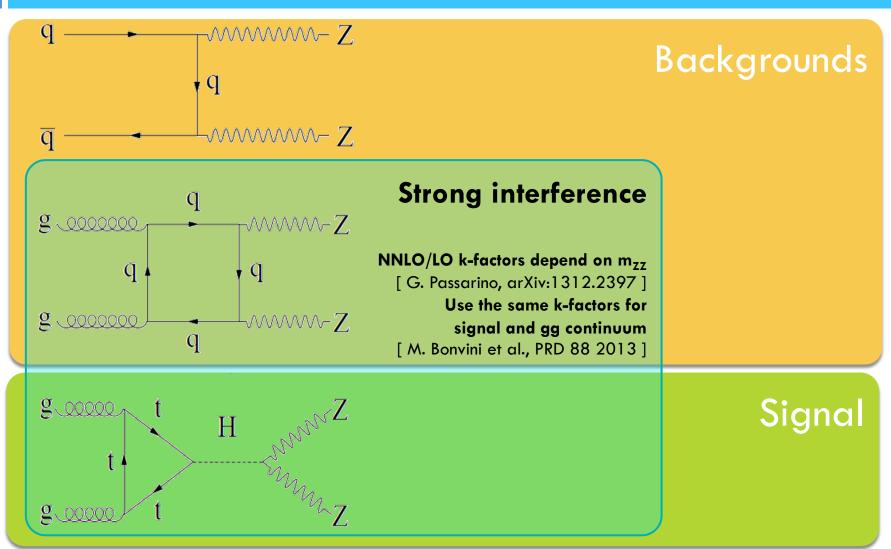
338

 Fiat 124

339

Fiat 124

Fiat 124

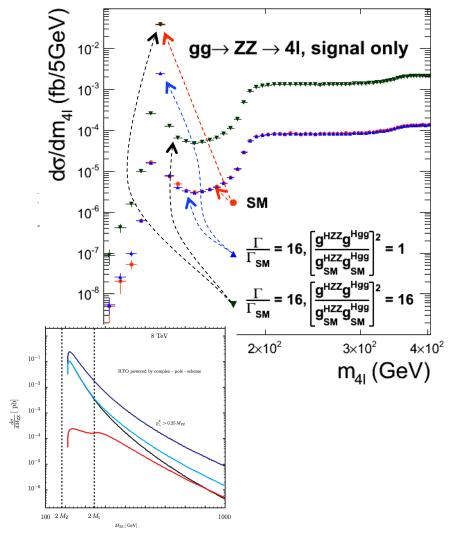


Fiat 124

Off-shell – involved processes

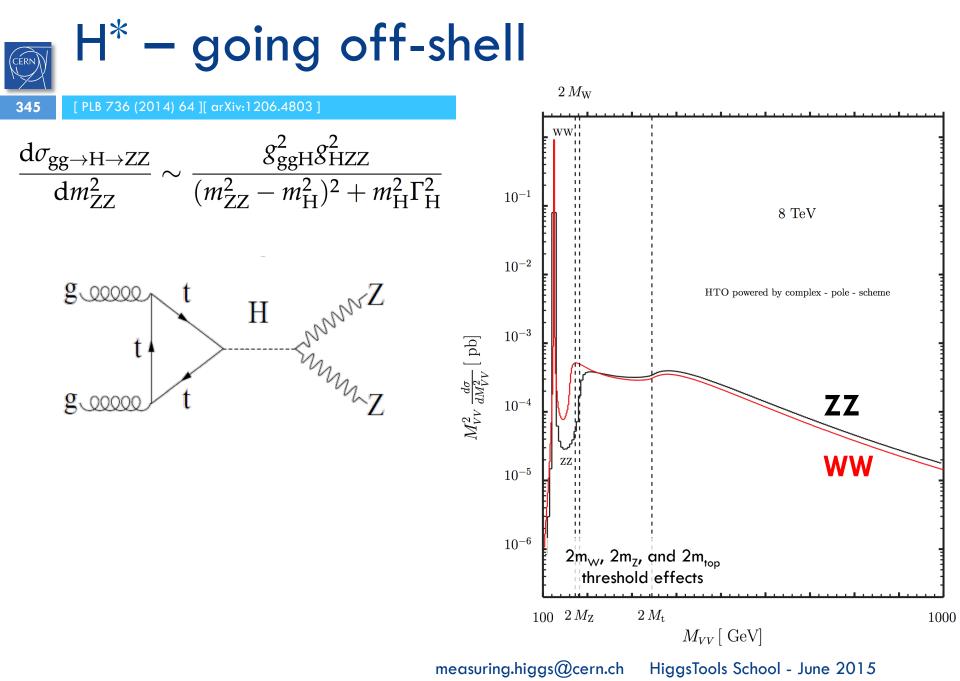
[PLB 736 (2014) 64][JHEP 08 (2012) 116][PRD 88 (2013) 054024][arXiv:1311.3589

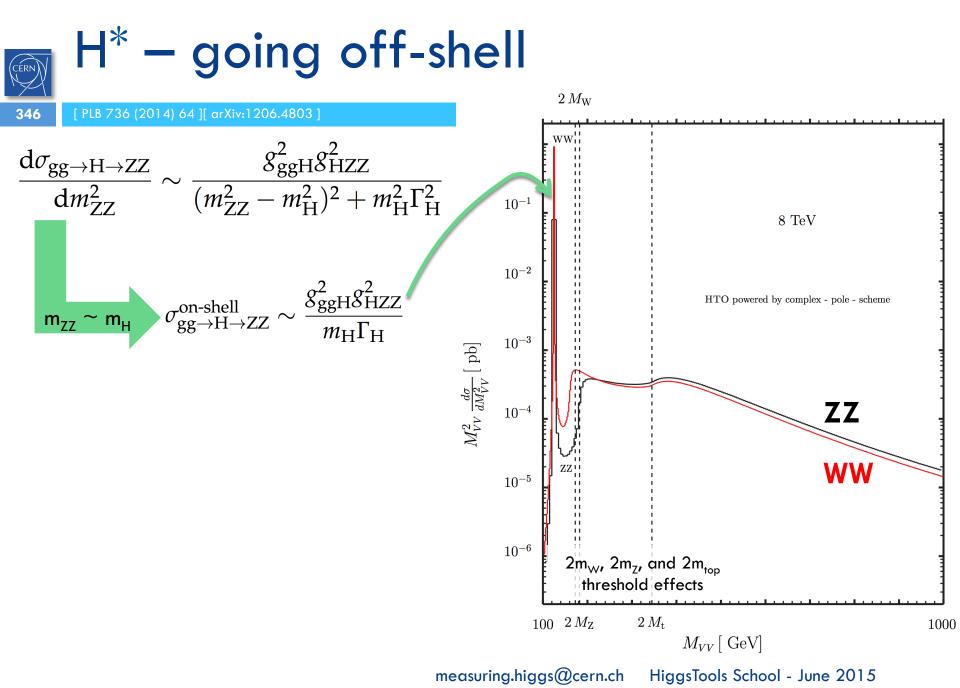
 \Box Define $r = \Gamma_{\rm H} / \Gamma_{\rm H}^{\rm SM}$


344

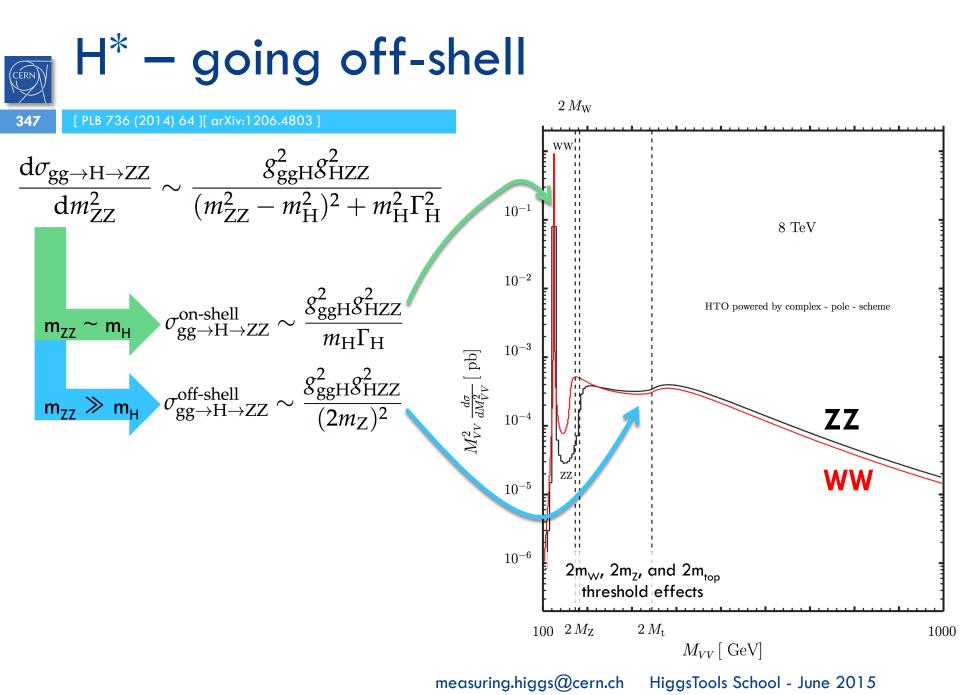
On-mass-shell we have

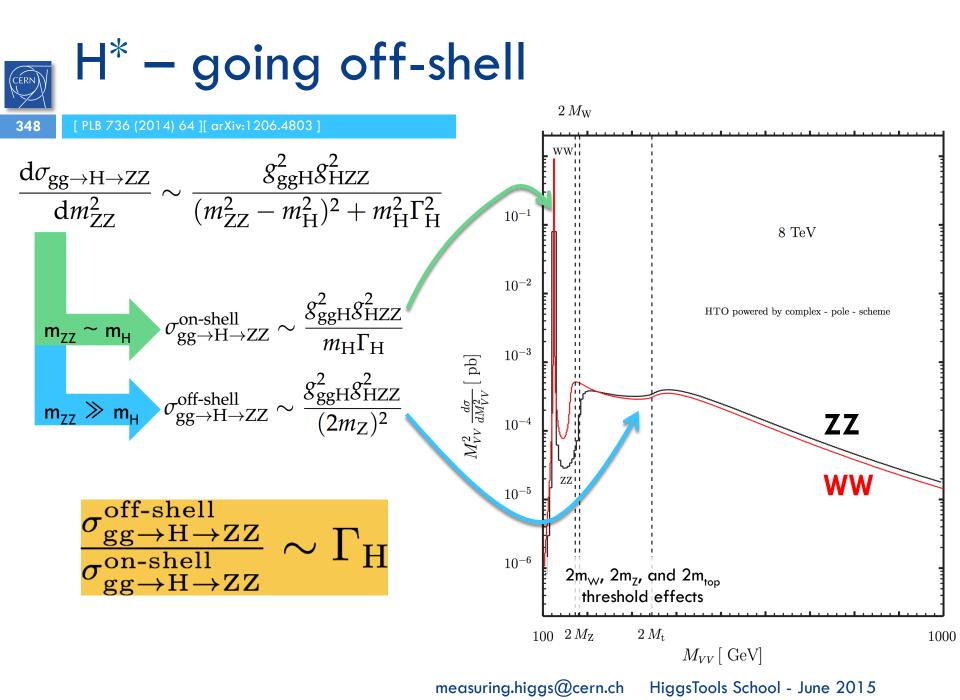
$\sigma_{gg \to H \to ZZ}^{on-peak} = \frac{\kappa_g^2 \kappa_Z^2}{r} (\sigma \cdot \mathcal{B})_{SM}$


- $\Box \quad Off-mass-shell there is no r:$ $\frac{d\sigma_{gg \to H \to ZZ}^{off-peak}}{dm_{ZZ}} = \kappa_g^2 \kappa_Z^2 \cdot \frac{d\sigma_{gg \to H \to ZZ}^{off-peak,SM}}{dm_{ZZ}}$
- Can make inference on *r* from onand off-shell assuming:

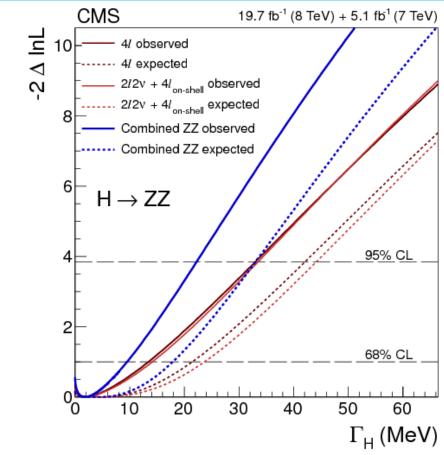

■
$$\mu_{on-shell} = \mu_{off-shell}$$

■ Only SM processes → ZZ:
■ $gg \rightarrow H^*$
■ $gg = |gg \rightarrow H^* + gg \rightarrow non-H|^2$
■ $|gg \rightarrow H^*|^2 + |gg \rightarrow non-H|^2$
■ Total = $gg + qq$




measuring.higgs@cern.ch

HiggsTools School - June 2015

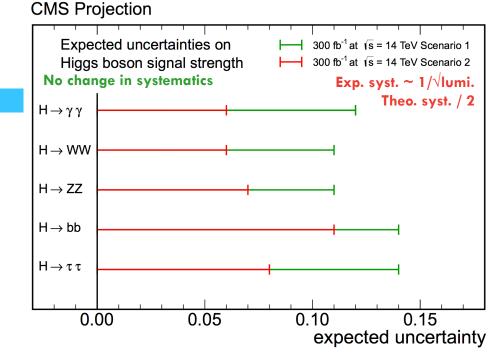


H^* – off-shell decay to ZZ

[PLB 736 (2014) 64]

- Two channels exploited:
 - □ ZZ→4Q
 - 2D: m_{4l} and gg vs. qq discriminant.
 - □ ZZ→2l2v
 - Jet-inclusive m_T shape.
- Observed limit lower than expected.

Obs. (exp.)	42	2 2 2v		Combined	
Г _н /Г _н ^{ѕм} (95% CL)	< 8.0 (10.1)	< 8.1 (10.6)		< 5.4 (8.0)	
		measuring.higgs@cern.ch		HiggsTools School - June 2015	

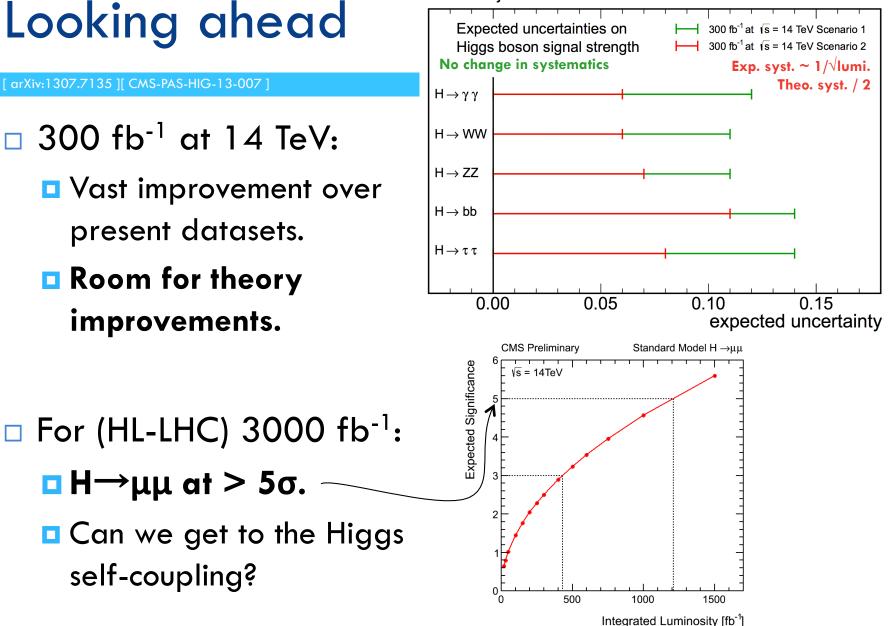


Looking ahead

[arXiv:1307.7135][CMS-PAS-HIG-13-007]

351

- □ 300 fb⁻¹ at 14 TeV:
 - Vast improvement over present datasets.
 - Room for theory improvements.


Looking ahead

arXiv:1307.7135][CMS-PAS-HIG-13-007]

- □ 300 fb⁻¹ at 14 TeV:
 - Vast improvement over present datasets.
 - Room for theory improvements.

D H \rightarrow µµ at > 5 σ .

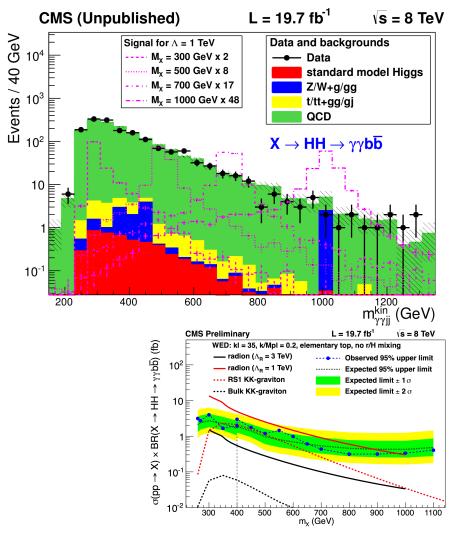
self-coupling?

measuring.higgs@cern.ch

CMS Projection

HiggsTools School - June 2015

352


353

$X \rightarrow HH \rightarrow b\overline{b}\gamma\gamma$ and the future

[CMS-PAS-HIG-13-032]

 First step towards two-Higgs measurements at the HL-LHC.

For now setting limits on radion production from warped extra dimensions.

measuring.higgs@cern.ch

HiggsTools School - June 2015

Decompose all the kappas

355

CERN

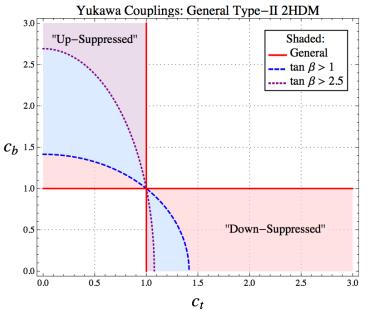
Production	Loops	Interference	Expression in terms of fundamental coupling strengths		
$\sigma(ggF)$	\checkmark	b-t	$\kappa_{g}^{2} \sim$	$1.06\cdot\kappa_t^2+0.01\cdot\kappa_b^2-0.07\cdot\kappa_t\kappa_b$	
$\sigma(\mathrm{VBF})$	-	-	~	$0.74 \cdot \kappa_W^2 + 0.26 \cdot \kappa_Z^2$	
$\sigma(WH)$	-	-	~	$\kappa_{\rm W}^2$	
$\sigma(q\bar{q}\to ZH)$	-	-		κ_Z^2	
$\sigma(gg \to ZH)$	\checkmark	Z-t	$\kappa^2_{\sigma\sigma ZH} \sim$	$2.27 \cdot \kappa_Z^2 + 0.37 \cdot \kappa_t^2 - 1.64 \cdot \kappa_Z \kappa_t$	
$\sigma(bbH)$	-	-		κ_b^2	
$\sigma(ttH)$	-	-		κ_t^2	
$\sigma(gb \to WtH)$				$1.84 \cdot \kappa_t^2 + 1.57 \cdot \kappa_W^2 - 2.41 \cdot \kappa_t \kappa_W$	
$\sigma(qb \to tHq')$	-	W-t	~	$3.4\cdot\kappa_t^2+3.56\cdot\kappa_W^2-5.96\cdot\kappa_t\kappa_W$	
Partial decay width					
$\Gamma_{b\bar{b}}$			~	$\kappa_{\rm L}^2$	
Γ_{WW}	-	-	~	κ_{W}^{2}	
Γ_{ZZ}	_	_	~	v^2	
			~ ~ ~	2 2	
$\Gamma_{ au au}$	-	-	~	$\kappa_{\tilde{\tau}}^2$	
$\Gamma_{\mu\mu}$	-				
$\Gamma_{\gamma\gamma}$	\checkmark	W-t	$\kappa_{\gamma}^2 \sim$	$1.59 \cdot \kappa_W^2 + 0.07 \cdot \kappa_t^2 - 0.66 \cdot \kappa_W \kappa_t$	
$\Gamma_{Z\gamma}$	\checkmark	W-t	$\kappa_{Z\gamma}^2 \sim$	$1.12 \cdot \kappa_W^2 + 0.00035 \cdot \kappa_t^2 - 0.12 \cdot \kappa_W \kappa_t$	
Total decay width					
				$0.57 \cdot \kappa_{\rm b}^2 + 0.22 \cdot \kappa_{\rm W}^2 + 0.09 \cdot \kappa_{\rm g}^2 +$	
$\Gamma_{ m H}$	1	W-t	$\kappa^2 \sim$	$0.06 \cdot \kappa_{\tau}^{2} + 0.03 \cdot \kappa_{Z}^{2} + 0.03 \cdot \kappa_{c}^{2} +$	
	v	b-t	ĽΗ		
				$0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa_{Z\gamma}^2 + 0.00022 \cdot \kappa_{\mu}^2$	

[http://cern.ch/go/W96V]

356

Shifts to tree-level couplings due to mixing with heavier Higgs

$$c_{V} = \sin(\beta - \alpha) \qquad c_{t} = \frac{\cos \alpha}{\sin \beta} \qquad c_{b} = -\frac{\sin \alpha}{\cos \beta} \qquad \begin{pmatrix} h^{0} \\ H^{0} \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \operatorname{Re} H^{0}_{u} \\ \operatorname{Re} H^{0}_{d} \end{pmatrix}$$

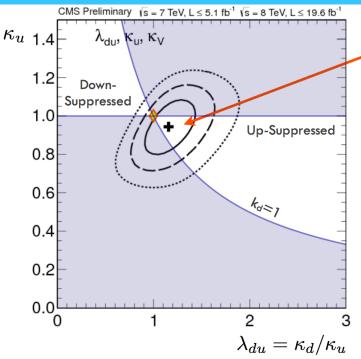

$$\operatorname{tan} \beta = \frac{v_{u}}{v_{d}}$$

$$\frac{\operatorname{Yukawa Couplings: General Type-II 2HDM}{\operatorname{Shaded:}}$$

Only two regions in the (c_t, c_b) plane accessible in a generic Type-II 2HDM

Down-Suppressed region almost not accessible in the MSSM for $\tan \beta > 1$

see: Azatov, Chang, Craig, Galloway PRD 86 (2012) 075033

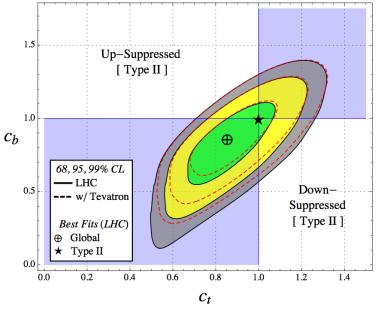


measuring.higgs@cern.ch

HiggsTools School - June 2015

357

[http://cern.ch/go/W96V]

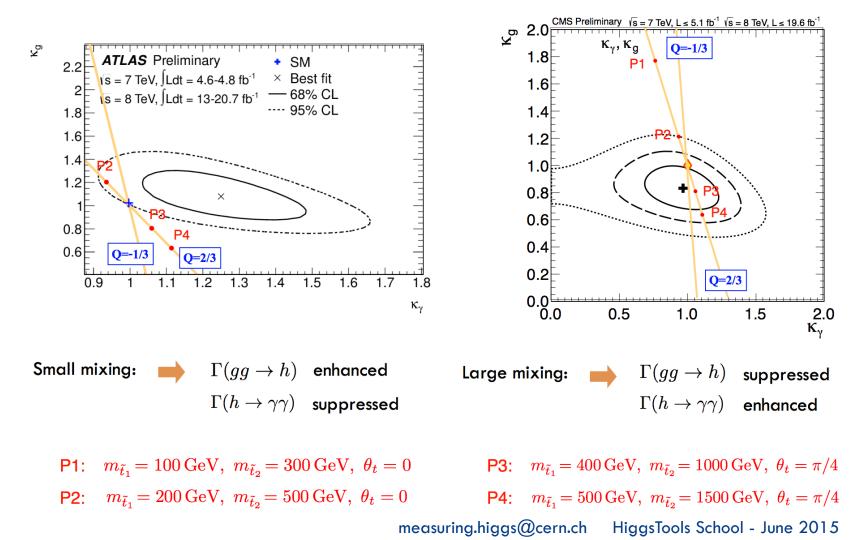


For the impatient ones here is a theorist's combination of ATLAS+CMS+Tevatron:

from: Azatov, Galloway Int. J. Mod. Phys. A28 (2013) 1330004

the current fit by CMS seems to favor the MSSM region, though errors are large

It would be nice to see the same plot by ATLAS and even nicer to see plot in the plane (κ_u, κ_d)


measuring.higgs@cern.ch

HiggsTools School - June 2015

[http://cern.ch/go/W96V]

358

Shifts to loop-induced couplings due to squarks

[http://cern.ch/go/W96V]

359

Implications on the masses of the heavier Higgses

In the decoupling limit: $\alpha
ightarrow$

$$k \to \beta - \pi/2$$

$$c_{V} = 1 - \Delta^{2} \frac{1}{\tan^{2}\beta} + O(\Delta^{3}) \qquad c_{t} = 1 - \Delta \frac{1}{\tan^{2}\beta} + O(\Delta^{2}) \qquad \Delta = O\left(\frac{m_{Z}^{2}}{m_{H}^{2}}\right)$$
starts at $O(m_{H}^{-4})$

$$c_{b} \text{ most sensitive probe of spectrum of Heavy Higgses} \qquad \frac{\delta c_{b}}{c_{b}} > 0.1 \qquad \longrightarrow \qquad m_{H} > 300 - 400 \text{ GeV}$$

Notice:

masses of Heavy Higgses are not linked to naturalness of m_h anyway Lighter masses (up to $m_H \sim 200$ GeV) however simple to obtain in explicit models (ex: NMSSM) with mild tuning of Δ

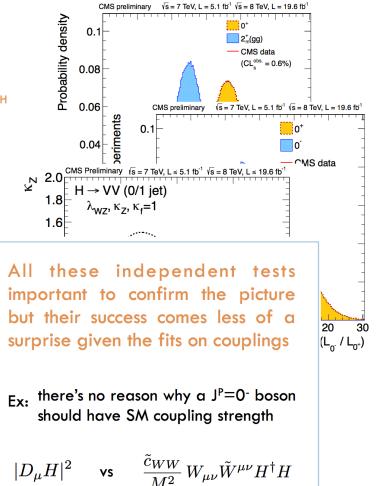
see for example: Barbieri et al. arXiv:1304.3670

The case for the SMH (R.Contino)

[http://cern.ch/go/W96V]

If one assumes that

- 1. The new boson is part of an $SU(2)_L$ doublet
- 2. There is a gap between the NP scale and $m_{\rm H}$


then it must follow:

- h has spin 0
- h is (mostly) CP=+ 🗸
- There exists a correlation among processes with 0,1,2 Higgs bosons
 - Ex: custodial symmetry

 $\frac{m_W}{m_Z \cos \theta_W} = 1 \quad \Longrightarrow \quad \lambda_{WZ} = \frac{c_W}{c_Z} = 1$

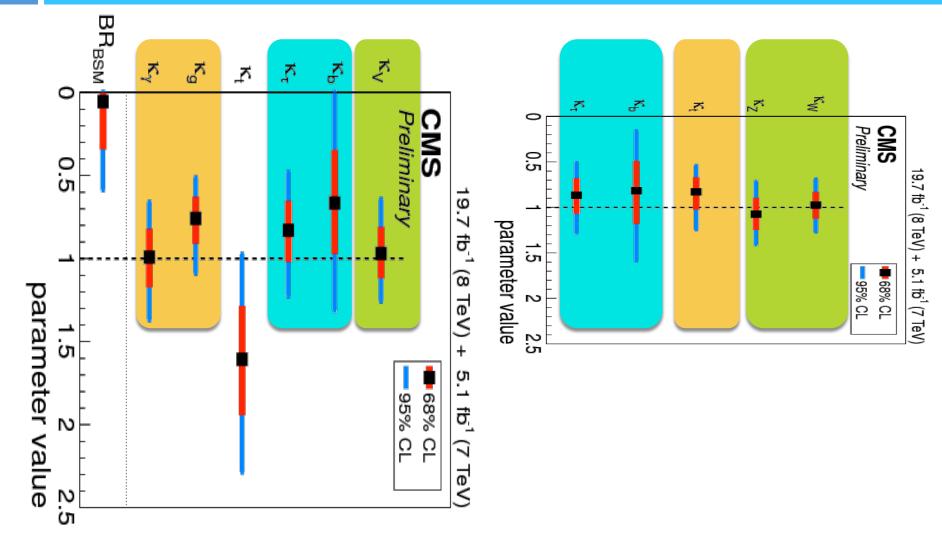
 There are no new light states to which the Higgs boson can decay

```
Ex: Invisible width=0
```


³⁶¹ To loop or not to loop

To loop or not to loop

Generic coupling fit


- Assume custodial symmetry (K v = K w = K z).
- Loops treated
 effectively (κ_γ, κ_g).
- □ Option to allow BSM decays, forcing $K_V \le 1$.

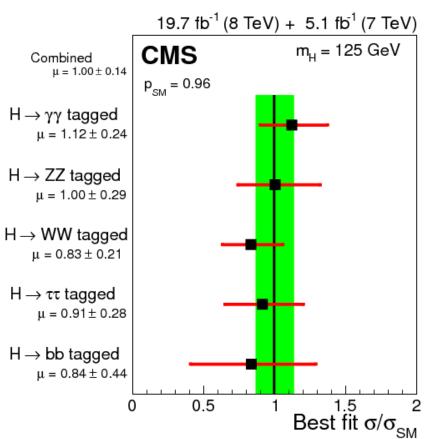
Resolved coupling fit

- Keep W and Z separate.
- Loops assuming SM structure:
 - $\square \mathcal{K}_{g}(\mathcal{K}_{b},\mathcal{K}_{t}).$
 - $\overset{\bullet}{} \quad \mathcal{K}_{\gamma} (\mathcal{K}_{W}, \mathcal{K}_{b}, \mathcal{K}_{t}, \mathcal{K}_{t}).$
- Only SM-like decays.

[arXiv:1412.8662]

363

³⁶⁴ More on scalar couplings

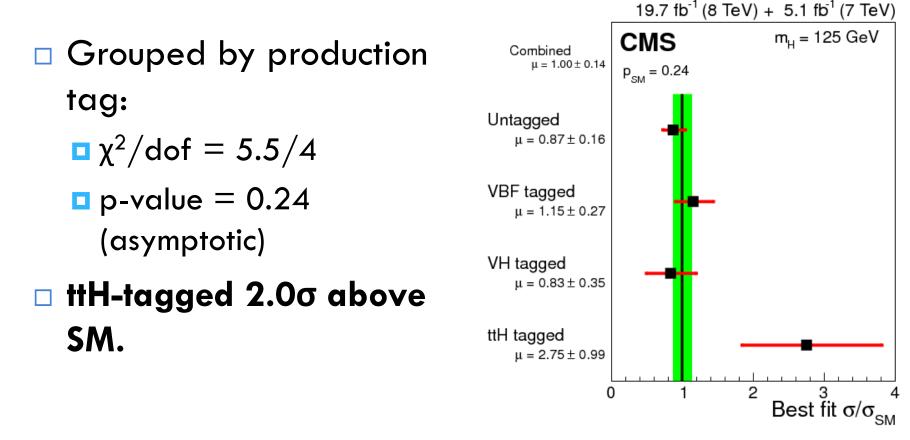


[arXiv:1412.8662]

365

$1.00 \pm 0.09 \text{ (stat.)}^{+0.08}_{-0.07} \text{ (theo.)} \pm 0.07 \text{ (syst.)}$

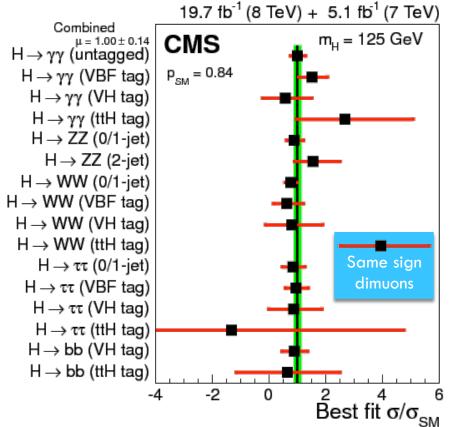
- Grouped by dominant decay:
 - $\chi^2/dof = 1.0/5$
 - p-value = 0.96 (asymptotic)



[arXiv:1412.8662]

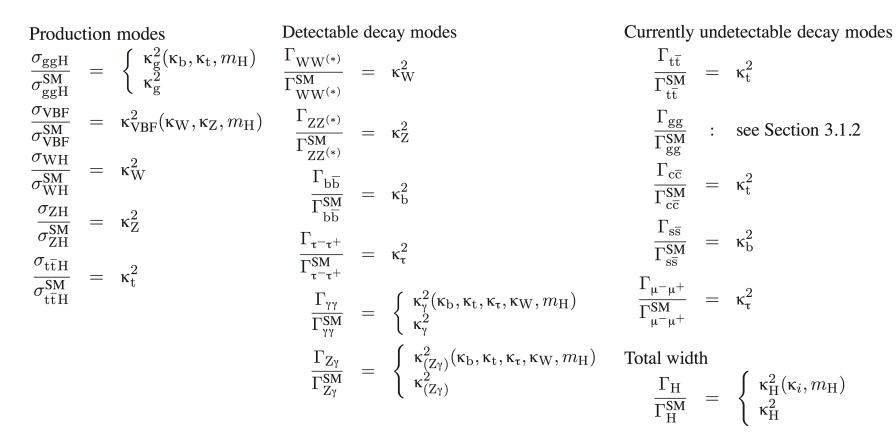
366

$1.00 \pm 0.09 \text{ (stat.)}^{+0.08}_{-0.07} \text{ (theo.)} \pm 0.07 \text{ (syst.)}$



367

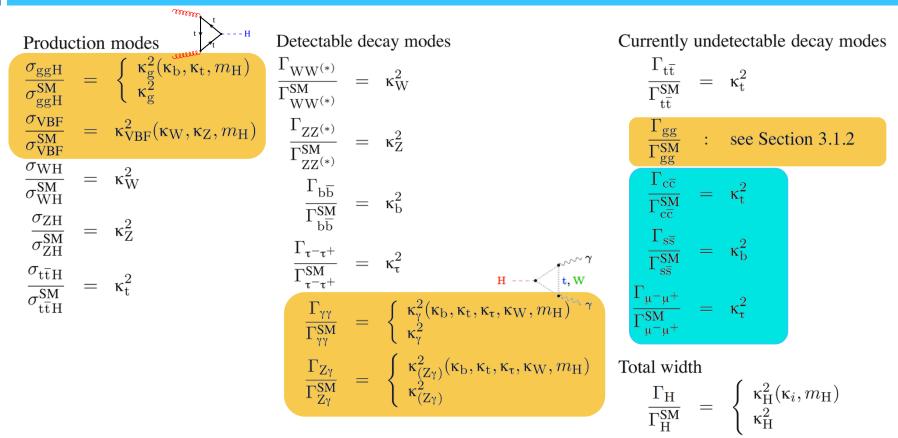
$1.00 \pm 0.09 \text{ (stat.)}^{+0.08}_{-0.07} \text{ (theo.)} \pm 0.07 \text{ (syst.)}$


- Grouped by production tag and dominant decay:
 - $\chi^2/dof = 10.5/16$
 - p-value = 0.84 (asymptotic)
- ttH-tagged 2.0σ above
 SM.
 - Driven by one channel.

Scalar coupling deviations framework

[arXiv:1307.1347]

368

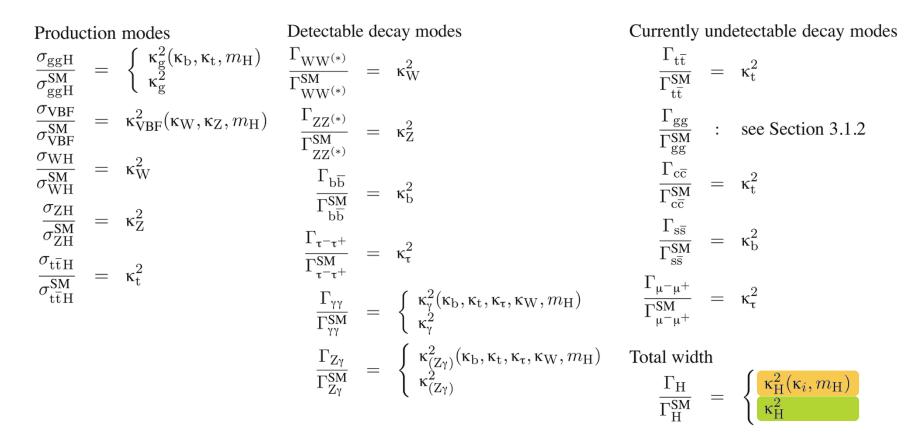


- Single state, spin 0, and CP-even.
- Narrow-width approximation: ($\sigma \times BR$) = $\sigma \cdot \Gamma / \Gamma_{\mu}$

Scalar coupling deviations framework

[arXiv:1307.1347]

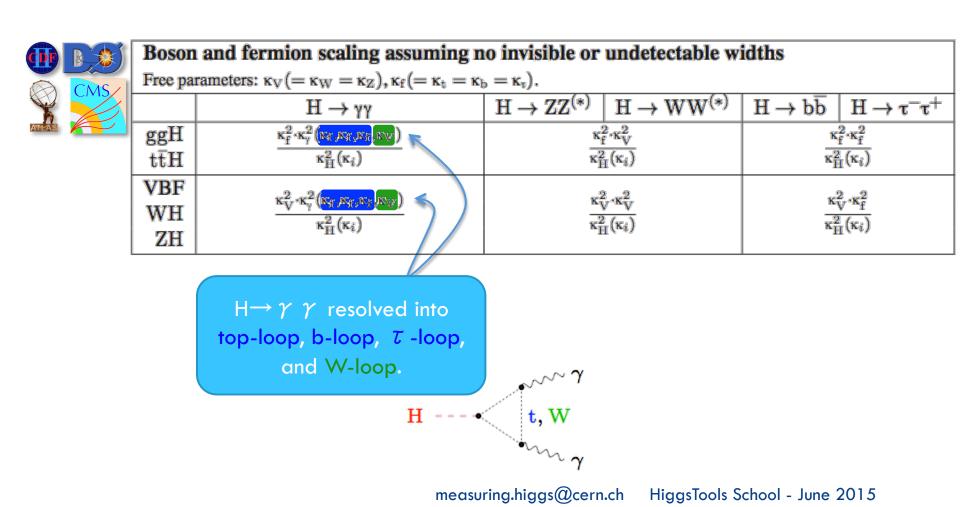
369



Loops resolved at NLO QCD and LO EWK accuracy.
 Peg the as-of-yet unmeasured to "closest of kin".

Scalar coupling deviations framework

[arXiv:1307.1347]

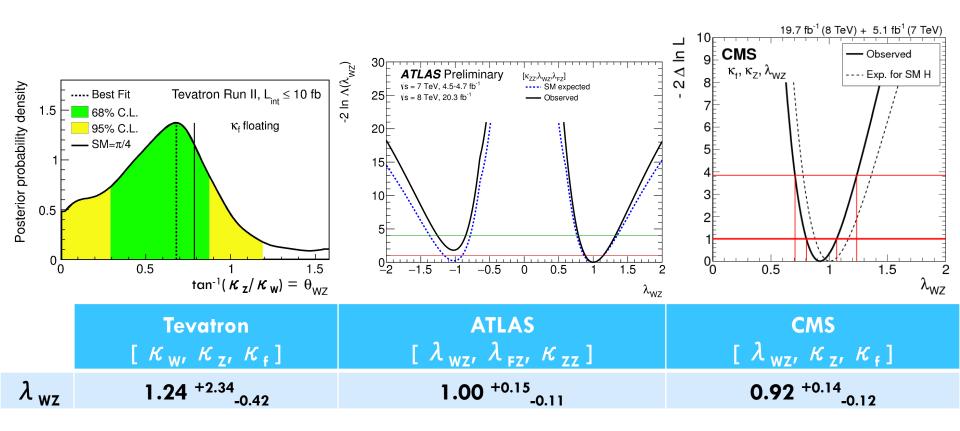

370

- \Box Total width as dependent function of all κ_i .
- □ Total width scaled as free parameter: K_H. (invisible decays) measuring.higgs@cern.ch HiggsTools School - June 2015

[arXiv:1307.1347]

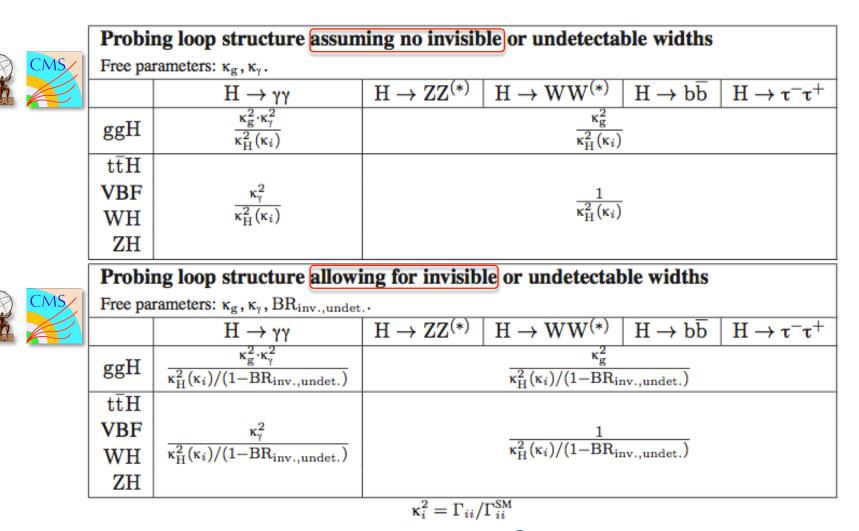
Probing custodial symmetry

372 [arXiv:1307.1347]


CERN

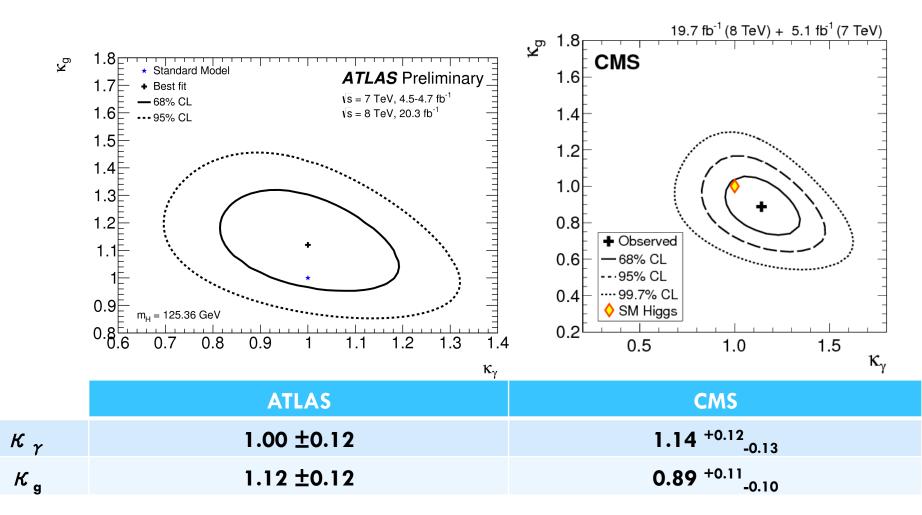
	Drohi	Probing custodial symmetry assuming no invisible or undetectable widths						
MS		$\kappa_{\rm z}$ parameters: $\kappa_{\rm Z}$, $\lambda_{\rm WZ}(=\kappa_{\rm W}/\kappa_{\rm Z})$, $\kappa_{\rm f}(=\kappa_{\rm t}=\kappa_{\rm b}=\kappa_{\rm t})$.						
	riee par		$\mathrm{H} \rightarrow \mathrm{ZZ}^{(*)}$	$H \rightarrow WW^{(*)}$	$H \rightarrow b\overline{b}$ $H \rightarrow \tau^{-}\tau^{+}$			
		$\mathrm{H} ightarrow \gamma\gamma$	-					
	ggH	$\kappa_{ m f}^2 \cdot \kappa_{\gamma}^2(\kappa_{ m f},\kappa_{ m f},\kappa_{ m f},\kappa_{ m Z}\lambda_{ m WZ})$	$\kappa_{f}^{2} \cdot \kappa_{Z}^{2}$	$\kappa_{\rm f}^2 \cdot (\kappa_{\rm Z} \lambda_{\rm WZ})^2$	$\kappa_f^2 \cdot \kappa_f^2$			
	$t\overline{t}H$	$\kappa_{ m H}^2(\kappa_i)$	$\kappa_{ m H}^2(\kappa_i)$	$\kappa_{ m H}^2(\kappa_i)$	$\overline{\kappa_{\mathrm{H}}^2(\kappa_i)}$			
	VBF	$\kappa_{\rm VBF}^2(\kappa_{\rm Z},\kappa_{\rm Z}\lambda_{\rm WZ})\cdot\kappa_{\gamma}^2(\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm Z}\lambda_{\rm WZ})$	$\kappa_{\rm VBF}^2(\kappa_{\rm Z},\kappa_{\rm Z}\lambda_{\rm WZ})\cdot\kappa_{\rm Z}^2$	$\kappa_{\rm VBF}^2(\kappa_{\rm Z}, \kappa_{\rm Z}\lambda_{\rm WZ}) \cdot (\kappa_{\rm Z}\lambda_{\rm WZ})^2$	$\kappa_{\rm VBF}^2(\kappa_{\rm Z},\kappa_{\rm Z}\lambda_{\rm WZ})\cdot\kappa_{\rm f}^2$			
	7.51	$\kappa_{ m H}^2(\kappa_i)$	$\kappa_{ m H}^2(\kappa_i)$	$\kappa_{\rm H}^2(\kappa_i)$	$\kappa_{\rm H}^2(\kappa_i)$			
	WH	$(\kappa_{\rm Z}\lambda_{\rm WZ})^2 \cdot \kappa_{\gamma}^2(\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm Z}\lambda_{\rm WZ})$	$(\kappa_Z \lambda_{WZ})^2 \cdot \kappa_Z^2$	$(\kappa_Z \lambda_{WZ})^2 \cdot (\kappa_Z \lambda_{WZ})^2$	$(\kappa_Z \lambda_{WZ})^2 \cdot \kappa_f^2$			
	vvп	$\kappa_{ m H}^2(\kappa_i)$	$\kappa_{ m H}^2(\kappa_i)$	$\kappa_{\rm H}^2(\kappa_i)$	$\kappa_{\mathrm{H}}^{2}(\kappa_{i})$			
	ZH	$\kappa_{\rm Z}^2 \cdot \kappa_{\gamma}^2(\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm f},\kappa_{\rm Z}\lambda_{\rm WZ})$	$\kappa_Z^2 \cdot \kappa_Z^2$	$\kappa_{\rm Z}^2 \cdot (\kappa_{\rm Z} \lambda_{\rm WZ})^2$	$\kappa_Z^2 \cdot \kappa_f^2$			
	211	$\kappa_{ m H}^2(\kappa_i)$	$\kappa_{ m H}^2(\kappa_i)$	$\kappa_{ m H}^2(\kappa_i)$	$\kappa_{\rm H}^2(\kappa_i)$			
\bigcirc	Probing custodial symmetry without assumptions on the total width							
	Free par	parameters: $\kappa_{ZZ}(=\kappa_Z \cdot \kappa_Z/\kappa_H), \lambda_{WZ}(=\kappa_W/\kappa_Z), \lambda_{FZ}(=\kappa_f/\kappa_Z).$						
ATEAS		${ m H} ightarrow \gamma\gamma$	$H \to ZZ^{(*)}$	${ m H} ightarrow { m WW}^{(*)}$	$H \rightarrow b\overline{b}$ $H \rightarrow \tau^{-}\tau^{+}$			
	ggH	$\kappa_{\mathrm{ZZ}}^2 \lambda_{FZ}^2 \cdot \kappa_{\mathrm{Y}}^2 (\lambda_{FZ},\lambda_{FZ},\lambda_{FZ},\lambda_{\mathrm{WZ}})$	r ² 1 ²	$\kappa_{ZZ}^2 \lambda_{FZ}^2 \cdot \lambda_{WZ}^2$	$\kappa^2_{ZZ}\lambda^2_{FZ}\cdot\lambda^2_{FZ}$			
	$t\overline{t}H$	$\kappa_{ZZ} \kappa_{FZ} \cdot \kappa_{\gamma}(\kappa_{FZ}, \kappa_{FZ}, \kappa_{FZ}, \kappa_{WZ})$	$\kappa^2_{ZZ}\lambda^2_{FZ}$	$\kappa_{ZZ} \kappa_{FZ} \cdot \kappa_{WZ}$	$\kappa_{ZZ} \kappa_{FZ} \cdot \kappa_{FZ}$			
	VBF	$\kappa_{\mathrm{ZZ}}^2\kappa_{\mathrm{VBF}}^2(1,\lambda_{\mathrm{WZ}}^2)\cdot\kappa_{\gamma}^2(\lambda_{FZ},\lambda_{FZ},\lambda_{FZ},\lambda_{\mathrm{WZ}})$	$\kappa_{ m ZZ}^2\kappa_{ m VBF}^2(1,\lambda_{ m WZ}^2)$	$\kappa^2_{ m ZZ}\kappa^2_{ m VBF}(1,\lambda^2_{ m WZ})\cdot\lambda^2_{ m WZ}$	$\kappa^2_{ m ZZ}\kappa^2_{ m VBF}(1,\lambda^2_{ m WZ})\cdot\lambda^2_{FZ}$			
	WH	$\kappa_{\mathrm{ZZ}}^2\lambda_{\mathrm{WZ}}^2\cdot\kappa_{\gamma}^2(\lambda_{FZ},\lambda_{FZ},\lambda_{FZ},\lambda_{\mathrm{WZ}})$	$\kappa^2_{ m ZZ} \cdot \lambda^2_{ m WZ}$	$\kappa^2_{ m ZZ}\lambda^2_{ m WZ}\cdot\lambda^2_{ m WZ}$	$\kappa^2_{ m ZZ}\lambda^2_{ m WZ}\cdot\lambda^2_{FZ}$			
	ZH	$\kappa_{\mathrm{ZZ}}^2 \cdot \kappa_{\gamma}^2(\lambda_{FZ},\lambda_{FZ},\lambda_{FZ},\lambda_{\mathrm{WZ}})$	$\kappa^2_{ m ZZ}$	$\kappa^2_{ m ZZ} \cdot \lambda^2_{ m WZ}$	$\kappa_{ZZ}^2 \cdot \lambda_{FZ}^2$			

Probing custodial symmetry



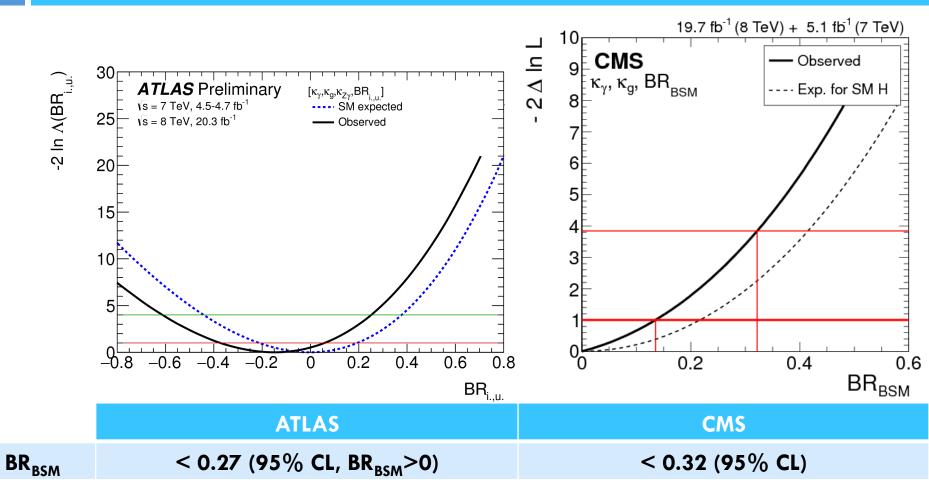
[arXiv:1303.6346][ATLAS-CONF-2015-007][arXiv:1412.8662]

Looking for new particles


374 [arXiv:1307.1347]

Looking for new particles in loops

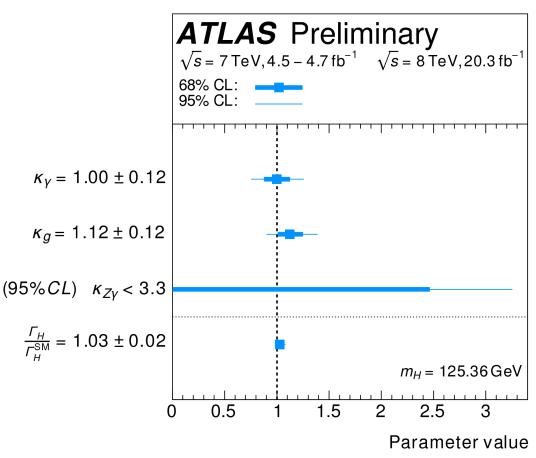
[ATLAS-CONF-2015-007][arXiv:1412.8662]


375

Looking for new particles

[ATLAS-CONF-2015-007][arXiv:1412.8662]

376



A further take on loops

[ATLAS-CONF-2015-007]

Effective $H \rightarrow \gamma \gamma$, $H \rightarrow Z \gamma$, and ggH loops.

 Waiting for more data.

Probing the fermion sector

378 [arXiv:1307.1347]

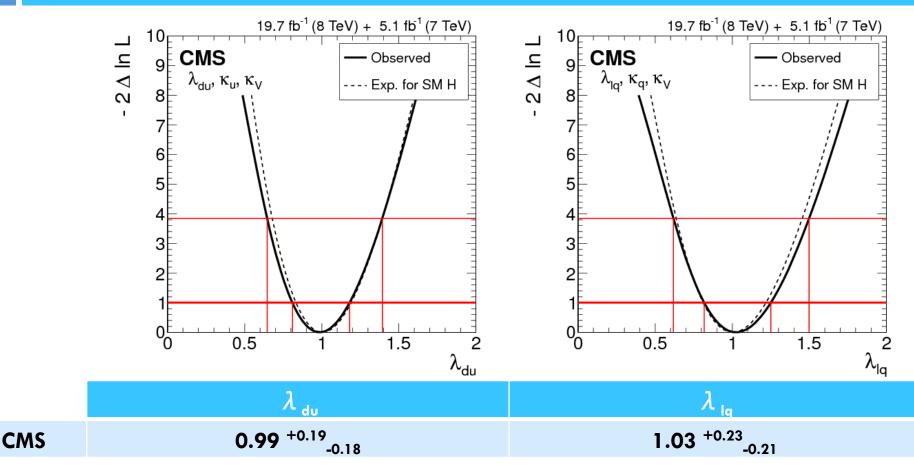
		u-type	d-type	lepton	
	Ι	$rac{\cos lpha}{\sin eta}$	$rac{\cos lpha}{\sin eta}$	$rac{\cos lpha}{\sin eta}$	SM-like
DM	I'	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{-\sin\alpha}{\cos\beta}$	
2HI	II	$\frac{\cos \alpha}{\sin \beta}$	$\frac{-\sin \alpha}{\cos \beta}$	$\frac{-\sin \alpha}{\cos \beta}$	
	II'	$\left(\frac{\cos\alpha}{\sin\beta}\right)$	$\frac{-\sin\alpha}{\cos\beta}$	$\left(\frac{\cos\alpha}{\sin\beta}\right)$	Probing

Probing up-type and down-type fermion symmetry assuming no invisible or undetectable widths							
MS/	Free parameters: $\kappa_V (= \kappa_Z = \kappa_W), \lambda_{du} (= \kappa_d / \kappa_u), \kappa_u (= \kappa_t).$						
	Probing up-type and down-type fermion symmetry without assumptions on the total width						
	ee parameters: $\kappa_{uu}(=\kappa_u \cdot \kappa_u/\kappa_H), \lambda_{du}(=\kappa_d/\kappa_u), \lambda_{Vu}(=\kappa_V/\kappa_u).$						
- ¹		$\mathrm{H}\to\gamma\gamma$	$H \to ZZ^{(*)}$ $H \to WW^{(*)}$	$H \rightarrow b\overline{b}$ $H \rightarrow \tau^{-}\tau^{+}$			
	h gH	$\kappa_{uu}^2\kappa_g^2(\lambda_{du},1)\cdot\kappa_{\gamma}^2(\lambda_{du},1,\lambda_{du},\lambda_{Vu})$	$\kappa_{uu}^2 \kappa_g^2(\lambda_{du}, 1) \cdot \lambda_{Vu}^2$	$\kappa_{\mathrm{uu}}^2\kappa_{\mathrm{g}}^2(\lambda_{\mathrm{du}},1)\cdot\lambda_{\mathrm{du}}^2$			
V		$\kappa_{\mathrm{uu}}^2 \cdot \kappa_{\gamma}^2(\lambda_{\mathrm{du}}, 1, \lambda_{\mathrm{du}}, \lambda_{\mathrm{Vu}})$	$\kappa_{\mathrm{uu}}^2\cdot\lambda_{\mathrm{Vu}}^2$	$\kappa_{ m uu}^2\cdot\lambda_{ m du}^2$			
	VBF						
	ZI WH	$\kappa_{\mathrm{uu}}^2\lambda_{\mathrm{Vu}}^2\cdot\kappa_{\gamma}^2(\lambda_{\mathrm{du}},1,\lambda_{\mathrm{du}},\lambda_{\mathrm{Vu}})$	$\kappa^2_{ m uu}\lambda^2_{ m Vu}\cdot\lambda^2_{ m Vu}$	$\kappa_{ m uu}^2\lambda_{ m Vu}^2\cdot\lambda_{ m du}^2$			

Pro	Probing quark and lepton fermion symmetry assuming no invisible or undetectable widths						
CMS/ ree	Free parameters: $\kappa_{\rm V}(=\kappa_{\rm Z}=\kappa_{\rm W}), \lambda_{\rm lq}(=\kappa_{\rm l}/\kappa_{\rm q}), \kappa_{\rm q}(=\kappa_{\rm t}=\kappa_{\rm b}).$						
	Probing quark and lepton fermion symmetry without assumptions on the total width						
	ee parameters: $\kappa_{qq}(=\kappa_q \cdot \kappa_q/\kappa_H), \lambda_{lq}(=\kappa_l/\kappa_q), \lambda_{Vq}(=\kappa_V/\kappa_q).$						
- 4		$\mathrm{H}\to\gamma\gamma$	$H \to ZZ^{(*)} \mid H \to WW^{(*)}$	$H \rightarrow b\overline{b}$	${\rm H} \rightarrow \tau^- \tau^+$		
ATT	gH tH	$\kappa_{qq}^2\cdot\kappa_{\gamma}^2(1,1,\lambda_{lq},\lambda_{Vq})$	$\kappa_{qq}^2\cdot\lambda_{Vq}^2$	$\kappa_{ m qq}^2$	$\kappa_{qq}^2\cdot\lambda_{lq}^2$		
	VBF						
	WH	$\kappa_{ m qq}^2\lambda_{ m Vq}^2\cdot\kappa_{ m \gamma}^2(1,1,\lambda_{ m lq},\lambda_{ m Vq})$	$\kappa_{ m qq}^2\lambda_{ m Vq}^2\cdot\lambda_{ m Vq}^2$	$\kappa_{\rm qq}^2 \cdot \lambda_{\rm Vq}^2$	$\kappa^2_{ m qq}\lambda^2_{ m Vq}\cdot\lambda^2_{ m lq}$		
	\mathbf{ZH}						

measuring.higgs@cern.ch

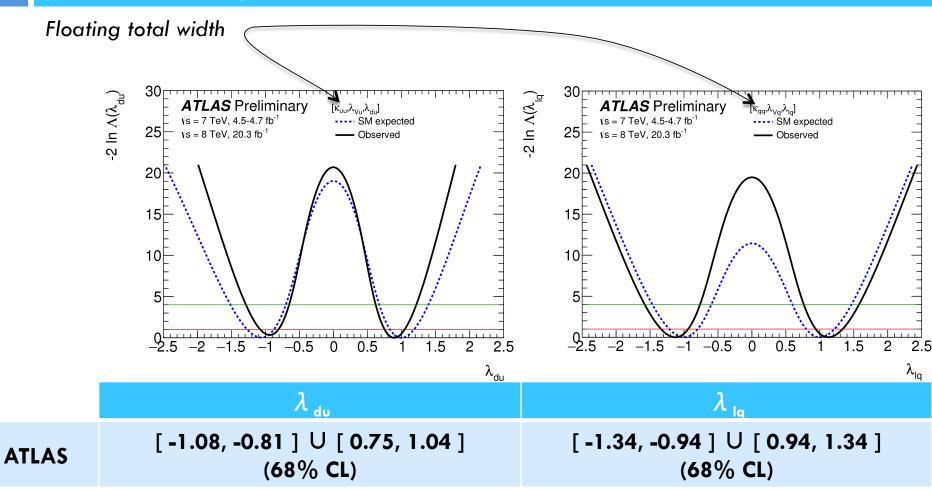
 \mathbf{ZH}


 \mathbf{Z}

HiggsTools School - June 2015

Probing the fermion sector

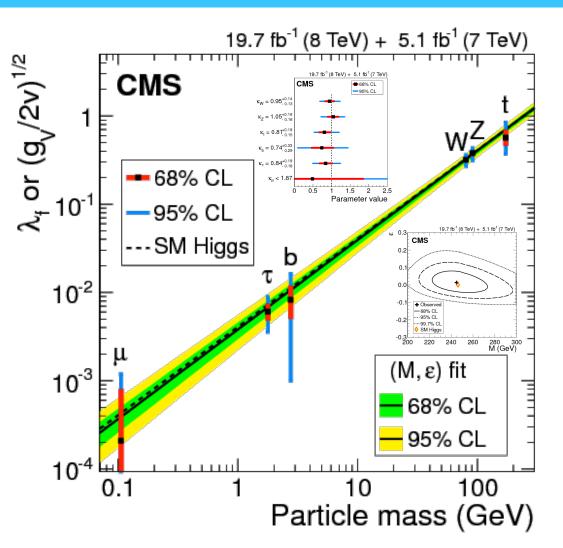
379 [arXiv:1412.8662]


CÉRN

Probing the fermion sector

[ATLAS-CONF-NOTE-2015-007]

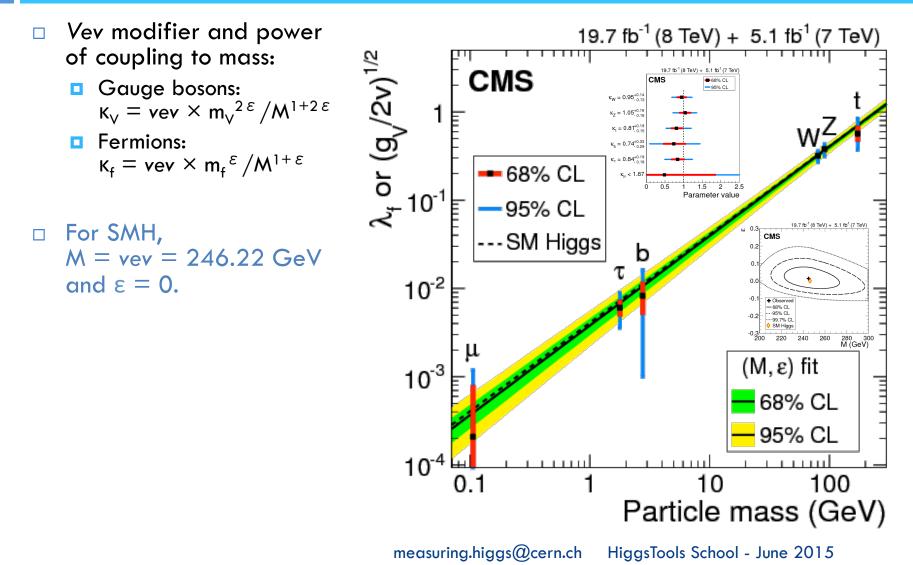
380



Resolving SM contributions

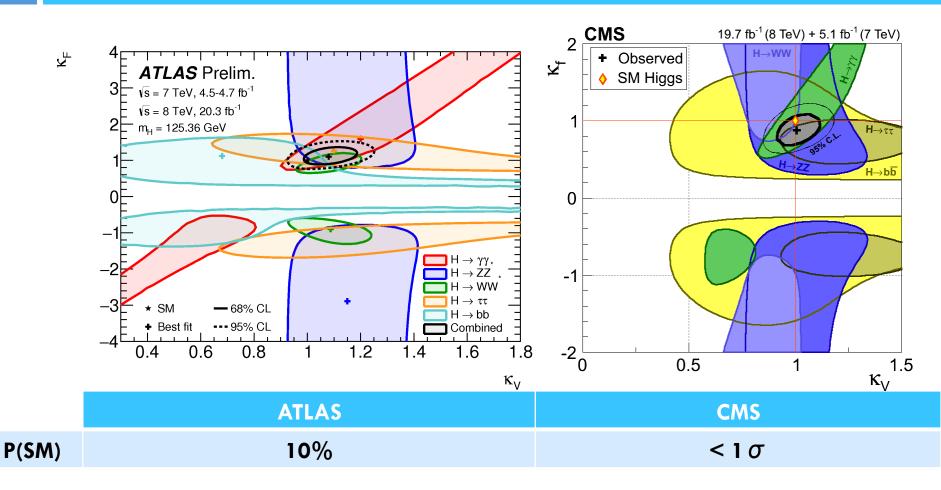
[arXiv:1412.8662][arxiv:1303.3570]

381


- Individual coupling scaling factors:
 - $\square K_{W'} K_{Z'} K_{b'} K_{t'} K_{\tau}.$
 - All loops resolved:
 - κ_γ(κ_W, κ_t)
 - κ_g(κ_t, κ_b)
 - SMH width scaled.
- "Reduced" couplings as function of "mass":
 λ_f = κ_f (m_f/vev)
 - $(g_{v}/2vev)^{1/2} = \kappa_{v}^{1/2}$ (m_{v}/vev)

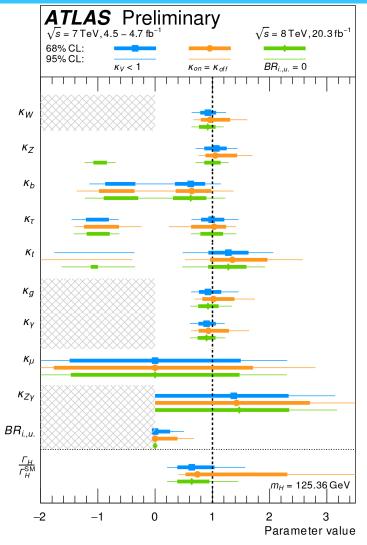
[arXiv:1412.8662][arxiv:1207.1693]

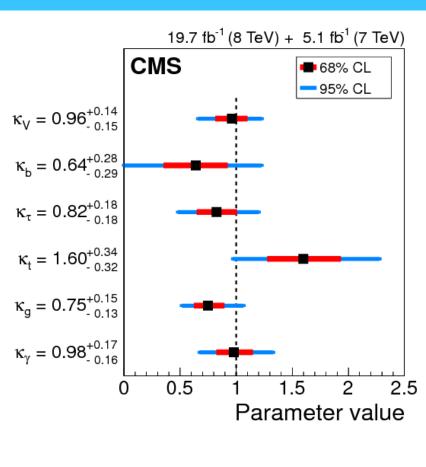
382



Weak bosons and fermions

[ATLAS-CONF-2015-007][arXiv:1412.8662]

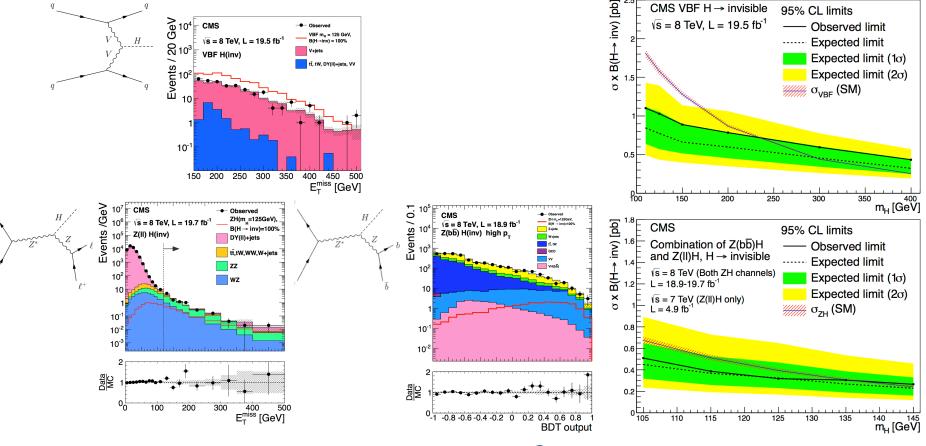

CÉRN


383

The deviations that we do not (yet) see

[ATLAS-CONF-2015-007][arXiv:1412.8662]

measuring.higgs@cern.ch Higg

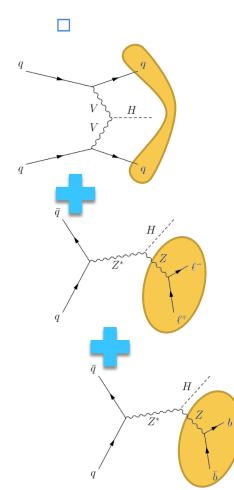

HiggsTools School - June 2015

Dark matter: invisible Higgs decay search

[EPJC 74 (2014) 2980]

□ VBF and ZH topologies combined; Z→ll and Z→bb.
 □ BR(H→inv.) < 0.58 (0.44 exp.) at 95% CL

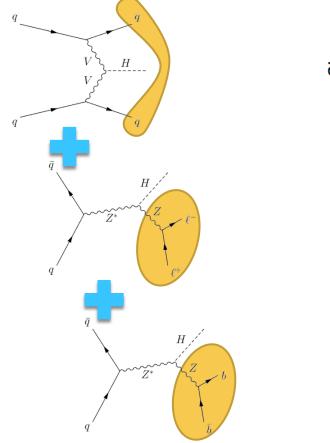
measuring.higgs@cern.ch

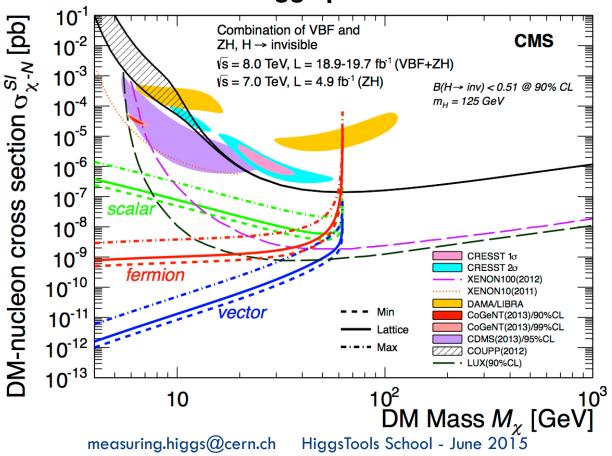

HiggsTools School - June 2015

Invisible Higgs search combination

[EPJC 74 (2014) 2980]

□ Combination of VBF, Z(ll)H, and Z(bb)H searches: BR(H→inv) < 0.58 (0.44 exp.) at 95% CL.</p>

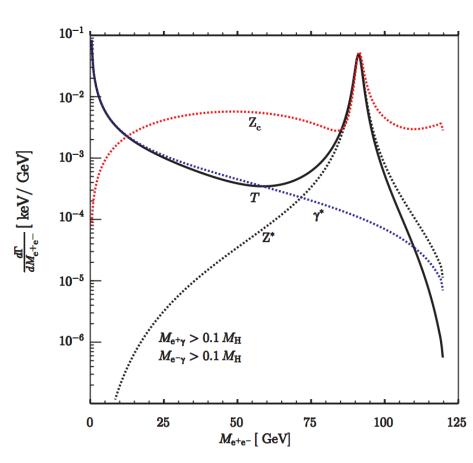




Invisible Higgs search combination

[EPJC 74 (2014) 2980]

- Combination of VBF, Z(ℓℓ)H, and Z(bb)H searches: BR(H→inv) < 0.58 (0.44 exp.) at 95% CL.</p>
- Competitive limits for low mass DM in "Higgs portal" models.

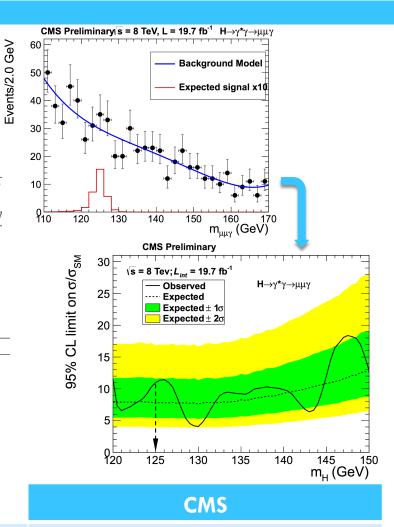


Rare decays: full Dalitz analysis

[arXiv:1308.0422]

388

- Υ Υ and Z Υ loops sensitive to different physics because of V-A structure for Z.
- More information from full m_{QQ} spectrum.
 - Need to clearly define the phase-space used in analysis.


 $\blacksquare H \longrightarrow \gamma^* \gamma \longrightarrow \varrho \varrho \gamma$

[CMS-PAS-HIG-14-003]

389

 $m_{\mu\mu}$ < 20 GeV. \Box Veto out J/ ψ and Y.

Requirement	Observed event yield	Expected number of signal events
	J	for $m_{\rm H} = 125~{\rm GeV}$
Trigger, photon selection, $p_T^{\gamma} > 25 \text{ GeV}$	0.6M	6.2
Muon selection, $p_T^{\mu 1} > 23$ GeV and $p_T^{\mu 2} > 4$ GeV	55836	4.7
$110 \text{ GeV} < m_{\mu\mu\gamma} < 170 \text{ GeV}$	7800	4.7
$m_{\mu\mu} < 20 { m GeV}$	1142	3.9
$\Delta \mathbf{R}(\gamma,\mu) > 1$	1138	3.9
Removal of resonances	1020	3.7
$p_T^\gamma/m_{\mu\mu\gamma}>0.3~{ m and}~p_T^{\mu\mu}/m_{\mu\mu\gamma}>0.3$	665	3.3
$122 \text{ GeV} < m_{\mu\mu\gamma} < 128 \text{ GeV}$	99	2.9

 μ at 125 GeV (95% CL)

Obs. (exp.)

< 11 (8)

measuring.higgs@cern.ch

HiggsTools School - June 2015

Statistics interlude

391 [ATL-PHYS-PUB-2011-11, CMS NOTE-2011/005]

	Test statistic	Profiled?	Test statistic sampling
LEP	$q_{\mu} \;=\; -2 \ln rac{\mathcal{L}(data \mu, ilde{ heta})}{\mathcal{L}(data 0, ilde{ heta})}$	no	Bayesian-frequentist hybrid
Tevatron	$q_{\mu} \;=\; -2\lnrac{\mathcal{L}(data \mu,\hat{ heta}_{\mu})}{\mathcal{L}(data 0,\hat{ heta}_{0})}$	yes	Bayesian-frequentist hybrid
LHC	$\widetilde{q}_{\mu} \;=\; -2\lnrac{\mathcal{L}(data \mu,\hat{ heta}_{\mu})}{\mathcal{L}(data \hat{\mu},\hat{ heta})}$	yes $(0 \le \hat{\mu} \le \mu)$	frequentist

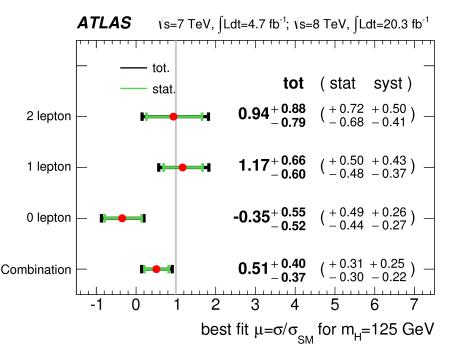
- **LEP:** nuisances parameters (θ) kept at nominal values (\sim).
- Tevatron: maximise likelihood against nuisances (^).
 - Denominator considers background-only hypothesis (µ=0).
- □ **LHC**: frequentist profiled likelihood.
 - Denominator considers global best-fit likelihood with floating signal strength.
 - Nice asymptotic properties, savings in computational power.

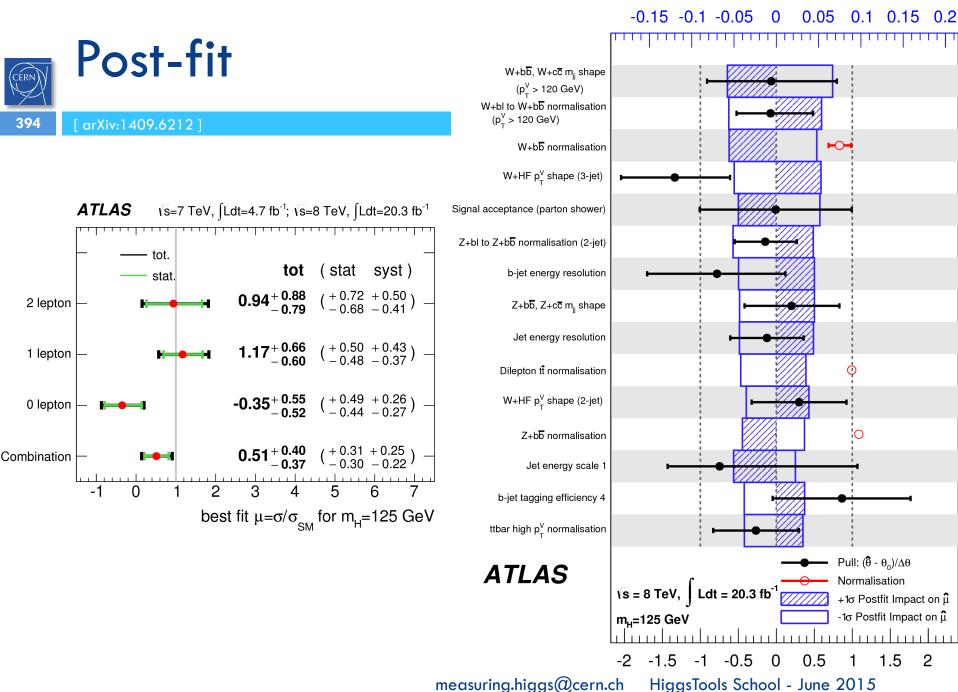
On the shoulders of giants

392 [arXiv:1412.8662]

The overall statistical methodology used in this combination was developed by the ATLAS and CMS Collaborations in the context of the LHC Higgs Combination Group and is described in Refs. [15, 180, 181]. The chosen test statistic, q, is based on the profile likelihood ratio and is used to determine how signal-like or background-like the data are. Systematic uncertainties are incorporated in the analysis via nuisance parameters that are treated according to the frequentist paradigm. Below we give concise definitions of statistical quantities that we use for characterizing the outcome of the measurements. Results presented herein are obtained using asymptotic formulae [182], including routines available in the ROOSTATS package [183].

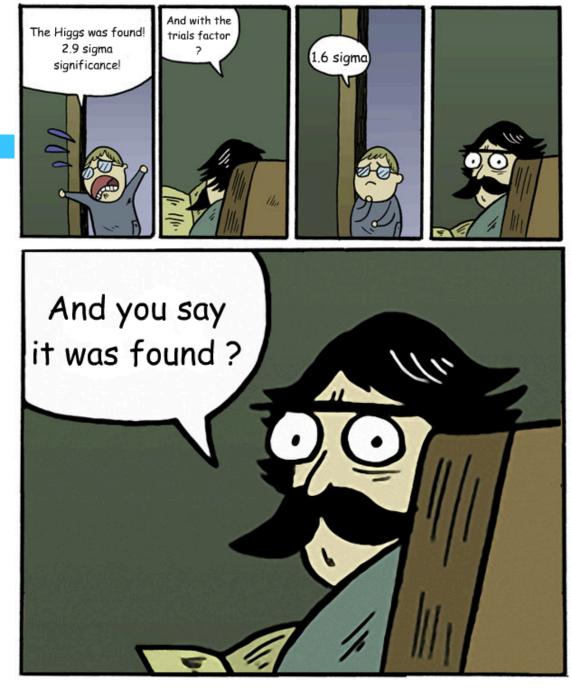
Signal model parameters *a*, such as the signal strength modifier μ , are evaluated from scans of the profile likelihood ratio *q*(*a*):


$$q(a) = -2\Delta \ln \mathcal{L} = -2\ln rac{\mathcal{L}(ext{data} \,|\, s(a) + b, \, \hat{ heta}_a)}{\mathcal{L}(ext{data} \,|\, s(\hat{a}) + b, \, \hat{ heta})}.$$

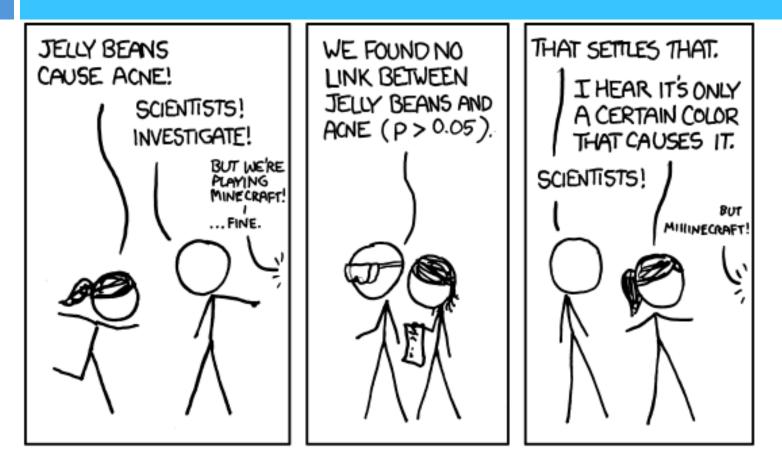

The parameter values \hat{a} and $\hat{\theta}$ correspond to the global maximum likelihood and are called the best-fit set. The post-fit model, obtained using the best-fit set, is used when deriving expected quantities. The post-fit model corresponds to the parametric bootstrap described in the statistics literature and includes information gained in the fit regarding the values of all parameters [184, 185].

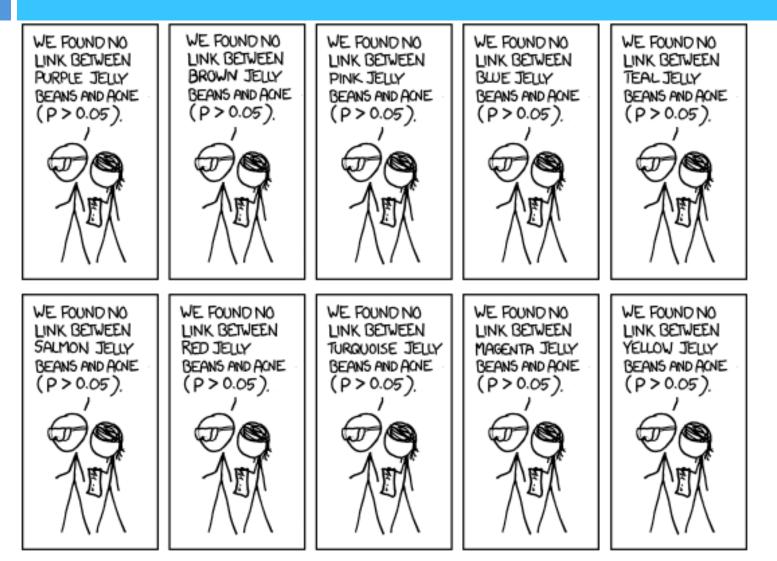
The 68% and 95% confidence level (CL) confidence intervals for a given parameter of interest, a_i , are evaluated from $q(a_i) = 1.00$ and $q(a_i) = 3.84$, respectively, with all other unconstrained model parameters treated in the same way as the nuisance parameters. The twodimensional (2D) 68% and 95% CL confidence regions for pairs of parameters are derived from $q(a_i, a_j) = 2.30$ and $q(a_i, a_j) = 5.99$, respectively. This implies that boundaries of 2D confidence regions projected on either parameter axis are not identical to the one-dimensional (1D) confidence interval for that parameter. All results are given using the chosen test statistic, leading to approximate CL confidence intervals when there are no large non-Gaussian uncertainties [186– 188], as is the case here. If the best-fit value is on a physical boundary, the theoretical basis for computing intervals in this manner is lacking. However, we have found that for the results in this paper, the intervals in those conditions are numerically similar to those obtained by the method of Ref. [189].

- [180] ATLAS and CMS Collaborations, LHC Higgs Combination Group, "Procedure for the LHC Higgs boson search combination in Summer 2011", Technical Report ATL-PHYS-PUB 2011-11, CMS NOTE 2011/005, 2011.
- [181] CMS Collaboration, "Combined results of searches for the standard model Higgs boson in pp collisions at √s = 7 TeV", Phys. Lett. B 710 (2012) 26, doi:10.1016/j.physletb.2012.02.064, arXiv:1202.1488.
 - [182] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, "Asymptotic formulae for likelihood-based tests of new physics", *Eur. Phys. J. C* 71 (2011) 1554, doi:10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727.
 - [183] L. Moneta et al., "The RooStats Project", in 13th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2010). SISSA, 2010. arXiv:1009.1003. PoS(ACAT2010)057.
 - [184] B. Efron, "Bootstrap Methods: Another Look at the Jackknife", Ann. Statist. 7 (1979) 1, doi:10.1214/aos/1176344552. See "Remark K".
 - [185] S. M. S. Lee and G. A. Young, "Parametric bootstrapping with nuisance parameters", *Stat. Probab. Lett.* **71** (2005) 143, doi:10.1016/j.spl.2004.10.026.
 - [186] S. S. Wilks, "The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses", Ann. Math. Statist. (1938) 60, doi:10.1214/aoms/1177732360.
 - [187] A. Wald, "Tests of statistical hypotheses concerning several parameters when the number of observations is large", *Trans. Amer. Math. Soc.* 54 (1943) 426, doi:10.1090/S0002-9947-1943-0012401-3.
 - [188] R. F. Engle, "Chapter 13 Wald, likelihood ratio, and Lagrange multiplier tests in econometrics", in *Handbook of Econometrics*, Z. Griliches and M. D. Intriligator, eds., volume 2, p. 775. Elsevier, 1984. doi:10.1016/S1573-4412(84)02005-5.
 - [189] G. J. Feldman and R. D. Cousins, "Unified approach to the classical statistical analysis of small signals", *Phys. Rev. D* 57 (1998) 3873, doi:10.1103/PhysRevD.57.3873, arXiv:physics/9711021.

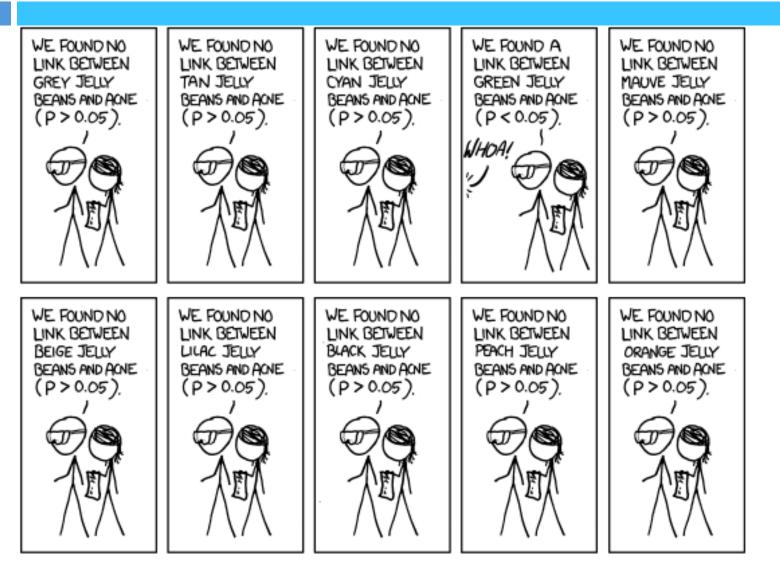


Some


a.david@cern.ch - #CERNPhil2014 April 2014

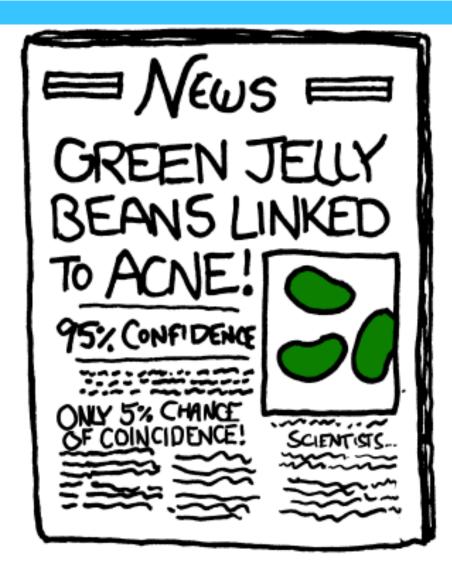

a.david@cern.ch - #CERNPhil2014 April 2014

397



a.david@cern.ch - #CERNPhil2014

April 2014



a.david@cern.ch - #CERNPhil2014

April 2014

Breaking down uncertainties

Nuisances grouped into stat, theo, other.

- **stat** includes $H \rightarrow \gamma \gamma$ background parameters.
- **theo** includes QCD scales, PDF+ α_s , UEPS, and BR.
- **syst** = theo \cup other.
- Procedures:

40

For (stat)+(syst):

- σ_{all} from scan floating
 all nuisances.
- σ_{stat} from scan
 floating stat group
 only.

$$\bullet \sigma_{syst} = \sigma_{all} \ominus \sigma_{stat}.$$

For (stat)+(theo)+(other)

- σ_{all} from scan floating all nuisances.
- σ_{stat} from scan floating
 stat group only.
- σ_{stat+other} from scan
 floating stat and other.

•
$$\sigma_{\text{theo}} = \sigma_{\text{all}} \ominus \sigma_{\text{stat+other}}$$

$$\bullet \sigma_{\mathsf{other}} = \sigma_{\mathsf{all}} \ominus \sigma_{\mathsf{stat}} \ominus \sigma_{\mathsf{theo}}.$$

measuring.higgs@cern.ch

HiggsTools School - June 2015

A 2012 hit

403

[http://goo.gl/ShJJG]

Breakthrough of the Year, 2012

Every year, crowning one scientific achievement as Breakthrough of the Year is no easy task, and 2012 was no exception. The year saw leaps and bounds in physics, along with significant advances in genetics, engineering, and many other areas. In keeping with tradition, Science's editors and staff have selected a winner and nine runners-up, as well as highlighting the year's top news stories and areas to watch in 2013.

FREE ACCESS The Discovery of the Higgs Boson

A. Cho

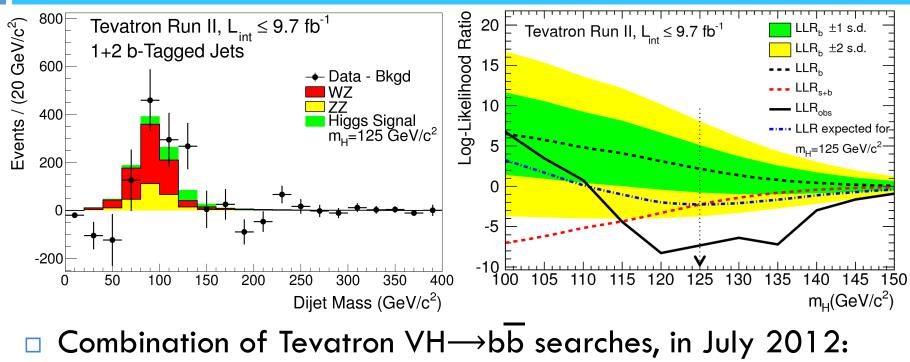
Exotic particles made headlines again and again in 2012, making it no surprise that the breakthrough of the year is a big physics finding: confirmation of the existence of the Higgs boson. Hypothesized more than 40 years ago, the elusive particle completes the standard model of physics, and is arguably the key to the explanation of how other fundamental particles obtain mass. The only mystery that remains is whether its discovery marks a new dawn for particle physics or the final stretch of a field that has run its course.

Read more about the Higgs boson from the research teams at CERN.

Runners-Up FREE WITH REGISTRATION

This year's runners-up for Breakthrough of the Year underscore feats in engineering, genetics, and other fields that promise to change the course of science.

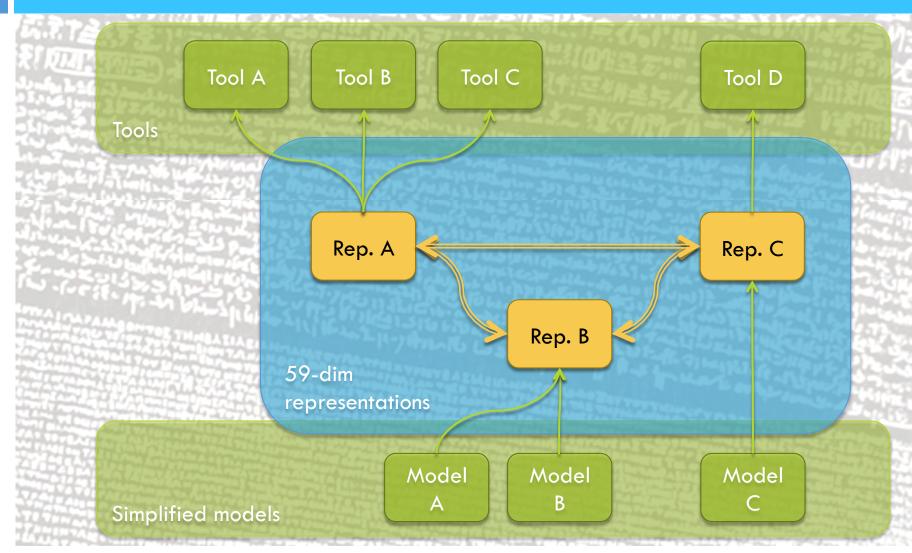
Oct 2013: boson becomes Nobel


404

405

From the other side of the pond

[arXiv:1207.6436]



2.8 σ local significance at m_H=125 GeV.

A Rosetta stone for Higgs EFT

406

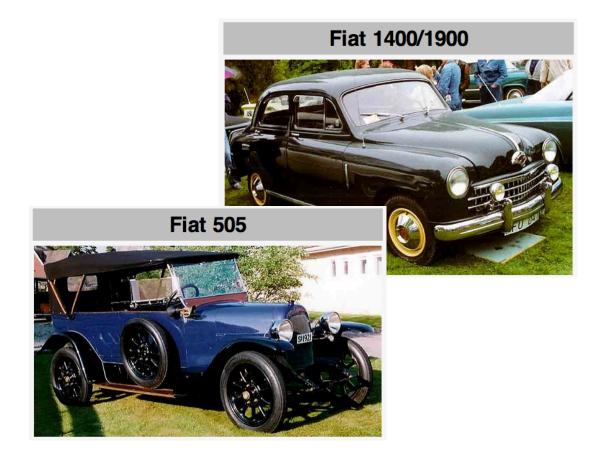
First steps in YR3

Table 52: Dimension-6 operators involving Higgs doublet fields or gauge-boson fields. For all $\psi^2 \Phi^3$, $\psi^2 X \Phi$ operators and for $\mathcal{O}_{\Phi ud}$ the hermitian conjugates must be included as well.

Φ^6 and $\Phi^4 D^2$	$\psi^2 \Phi^3$	X ³
$\mathcal{O}_{\Phi} = (\Phi^{\dagger}\Phi)^3$	$\mathcal{O}_{\mathrm{e}\Phi} = (\Phi^{\dagger}\Phi)(\overline{1}\Gamma_{\mathrm{e}}\mathrm{e}\Phi)$	$\mathcal{O}_G = f^{ABC} G^{A\nu}_\mu G^{B\rho}_\nu G^{C\mu}_\rho$
$\mathcal{O}_{\Phi\Box} = (\Phi^{\dagger}\Phi)\Box(\Phi^{\dagger}\Phi)$	$\mathcal{O}_{u\Phi} = (\Phi^\dagger \Phi) (\bar{q}\Gamma_u u \widetilde{\Phi})$	$\mathcal{O}_{\widetilde{G}} = f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$
$\mathcal{O}_{\Phi D} = (\Phi^{\dagger} D^{\mu} \Phi)^* (\Phi^{\dagger} D_{\mu} \Phi)$	$\mathcal{O}_{d\Phi} = (\Phi^\dagger \Phi) (\bar{q} \Gamma_d d\Phi)$	$\mathcal{O}_{\mathrm{W}} = \varepsilon^{IJK} \mathrm{W}^{I\nu}_{\mu} \mathrm{W}^{J\rho}_{\nu} \mathrm{W}^{K\mu}_{\rho}$
		$\mathcal{O}_{\widetilde{\mathbf{W}}} = \varepsilon^{IJK} \widetilde{\mathbf{W}}_{\mu}^{I\nu} \mathbf{W}_{\nu}^{J\rho} \mathbf{W}_{\rho}^{K\mu}$
$X^2 \Phi^2$	$\psi^2 \mathrm{X} \Phi$	$\psi^2 \Phi^2 D$
$\mathcal{O}_{\Phi G} = (\Phi^{\dagger} \Phi) G^A_{\mu\nu} G^{A\mu\nu}$	$\mathcal{O}_{\mathrm{u}G} = (\bar{\mathrm{q}}\sigma^{\mu\nu}\frac{\lambda^{A}}{2}\Gamma_{\mathrm{u}}\mathrm{u}\widetilde{\Phi})G^{A}_{\mu\nu}$	$\mathcal{O}_{\Phi l}^{(1)} = (\Phi^{\dagger} i \overleftrightarrow{D}_{\mu} \Phi)(\bar{l} \gamma^{\mu} l)$
$\mathcal{O}_{\Phi \widetilde{G}} = (\Phi^\dagger \Phi) \widetilde{G}^A_{\mu\nu} G^{A\mu\nu}$	$\mathcal{O}_{\mathrm{d}G} = (\bar{\mathrm{q}}\sigma^{\mu\nu}\frac{\lambda^A}{2}\Gamma_{\mathrm{d}}\mathrm{d}\Phi)G^A_{\mu\nu}$	$\mathcal{O}^{(3)}_{\Phi \mathrm{l}} = (\Phi^\dagger \mathrm{i} \overleftrightarrow{D}^I_\mu \Phi) (\overline{\mathrm{l}} \gamma^\mu \tau^I \mathrm{l})$
$\mathcal{O}_{\Phi\mathrm{W}} = (\Phi^{\dagger}\Phi)\mathrm{W}^{I}_{\mu u}\mathrm{W}^{I\mu u}$	$\mathcal{O}_{\mathrm{eW}} = (\bar{\mathrm{l}}\sigma^{\mu\nu}\Gamma_{\mathrm{e}}\mathrm{e}\tau^{I}\Phi)\mathrm{W}^{I}_{\mu\nu}$	$\mathcal{O}_{\Phi \mathrm{e}} = (\Phi^\dagger \mathrm{i} \stackrel{\leftrightarrow}{D}_\mu \Phi) (\bar{\mathrm{e}} \gamma^\mu \mathrm{e})$
$\mathcal{O}_{\Phi \widetilde{\mathbf{W}}} = (\Phi^{\dagger} \Phi) \widetilde{\mathbf{W}}_{\mu \nu}^{I} \mathbf{W}^{I \mu \nu}$	$\mathcal{O}_{\mathrm{uW}} = (\bar{\mathbf{q}}\sigma^{\mu\nu}\Gamma_{\mathrm{u}}\mathbf{u}\tau^{I}\widetilde{\Phi})\mathbf{W}_{\mu\nu}^{I}$	$\mathcal{O}^{(1)}_{\Phi \mathrm{q}} = (\Phi^\dagger \mathrm{i} \overleftrightarrow{D}_\mu \Phi) (\bar{\mathrm{q}} \gamma^\mu \mathrm{q})$
$\mathcal{O}_{\Phi B} = (\Phi^{\dagger} \Phi) B_{\mu \nu} B^{\mu \nu}$	$\mathcal{O}_{\rm dW} = (\bar{\mathbf{q}}\sigma^{\mu\nu}\Gamma_{\rm d}\mathbf{d}\tau^I\Phi)\mathbf{W}^I_{\mu\nu}$	$\mathcal{O}_{\Phi\mathbf{q}}^{(3)} = (\Phi^{\dagger}\mathbf{i} \overset{\leftrightarrow}{D}{}^{I}_{\mu} \Phi)(\bar{\mathbf{q}}\gamma^{\mu}\tau^{I}\mathbf{q})$
$\mathcal{O}_{\Phi \widetilde{\mathbf{B}}} = (\Phi^\dagger \Phi) \widetilde{\mathbf{B}}_{\mu\nu} \mathbf{B}^{\mu\nu}$	$\mathcal{O}_{eB} = (\bar{l}\sigma^{\mu\nu}\Gamma_{e}e\Phi)B_{\mu\nu}$	$\mathcal{O}_{\Phi \mathrm{u}} = (\Phi^\dagger \mathrm{i} \overleftrightarrow{D}_\mu \Phi) (\bar{\mathrm{u}} \gamma^\mu \mathrm{u})$
$\mathcal{O}_{\Phi \rm WB} = (\Phi^{\dagger} \tau^{I} \Phi) \mathbf{W}^{I}_{\mu\nu} \mathbf{B}^{\mu\nu}$	$\mathcal{O}_{uB} = (\bar{q}\sigma^{\mu\nu}\Gamma_{u}u\widetilde{\Phi})B_{\mu\nu}$	$\mathcal{O}_{\Phi\mathrm{d}} = (\Phi^\dagger \mathrm{i} \overleftrightarrow{D}_\mu \Phi) (\mathrm{d} \gamma^\mu \mathrm{d})$
$\mathcal{O}_{\Phi \widetilde{\mathbf{W}} \mathbf{B}} = (\Phi^{\dagger} \tau^{I} \Phi) \widetilde{\mathbf{W}}_{\mu \nu}^{I} \mathbf{B}^{\mu \nu}$	$\mathcal{O}_{dB} = (\bar{q}\sigma^{\mu\nu}\Gamma_{d}d\Phi)B_{\mu\nu}$	$\mathcal{O}_{\Phi \mathrm{ud}} = \mathrm{i}(\widetilde{\Phi}^{\dagger} D_{\mu} \Phi)(\bar{\mathrm{u}} \gamma^{\mu} \Gamma_{\mathrm{ud}} \mathrm{d})$

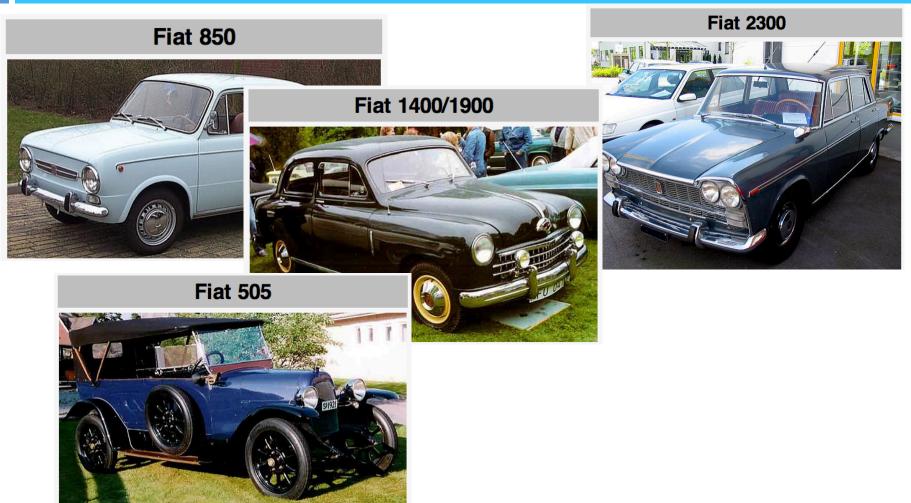
Table 53: Alternative basis of dimension-6 operators involving Higgs doublet fields or gauge-boson fields.

Φ^6 and $\Phi^4 D^2$	$\psi^2 \Phi^3$	X ³
$\mathcal{O}_6' = (\Phi^\dagger \Phi)^3$	$\mathcal{O}_{e\Phi}' = (\Phi^{\dagger}\Phi)(\bar{l}\Gamma_{e}e\Phi)$	$\mathcal{O}_G' = f^{ABC} G^{A\nu}_\mu G^{B\rho}_\nu G^{C\mu}_\rho$
$\mathcal{O}'_{\Phi} = \partial_{\mu}(\Phi^{\dagger}\Phi)\partial^{\mu}(\Phi^{\dagger}\Phi)$	$\mathcal{O}_{u\Phi}^{\prime}=(\Phi^{\dagger}\Phi)(\bar{q}\Gamma_{u}u\widetilde{\Phi})$	$\mathcal{O}_{\widetilde{G}}' = f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$
$\mathcal{O}_{\mathrm{T}}' = (\Phi^{\dagger} \stackrel{\leftrightarrow}{D_{\mu}} \Phi) (\Phi^{\dagger} \stackrel{\leftrightarrow}{D^{\mu}} \Phi)$	$\mathcal{O}_{\mathrm{d}\Phi}^{\prime} = (\Phi^{\dagger}\Phi)(\bar{\mathrm{q}}\Gamma_{d}d\Phi)$	$\mathcal{O}'_{\mathrm{W}} = \varepsilon^{IJK} \mathrm{W}^{I\nu}_{\mu} \mathrm{W}^{J\rho}_{\nu} \mathrm{W}^{K\mu}_{\rho}$
		$\mathcal{O}'_{\widetilde{\mathbf{W}}} = \varepsilon^{IJK} \widetilde{\mathbf{W}}_{\mu}^{I\nu} \mathbf{W}_{\nu}^{J\rho} \mathbf{W}_{\rho}^{K\mu}$
$X^2 \Phi^2$	$\psi^2 \mathrm{X} \Phi$	$\psi^2 \Phi^2 D$
$\mathcal{O}_{\mathrm{D}W}^{\prime} = \left(\Phi^{\dagger} \tau^{I} \mathrm{i} \overleftrightarrow{D^{\mu}} \Phi \right) \left(D^{\nu} \mathrm{W}_{\mu\nu} \right)^{I}$	$\mathcal{O}'_{\mathrm{u}G} = (\bar{\mathrm{q}}\sigma^{\mu\nu}\frac{\lambda^A}{2}\Gamma_{\mathrm{u}}\mathrm{u}\widetilde{\Phi})G^A_{\mu\nu}$	$\mathcal{O}_{\Phi \mathbf{l}}^{\prime(1)} = (\Phi^{\dagger} \mathbf{i} \overset{\leftrightarrow}{D}_{\mu} \Phi) (\bar{\mathbf{l}} \gamma^{\mu} \mathbf{l})$
$\mathcal{O}_{D\mathrm{B}}^{\prime} = \left(\Phi^{\dagger} \mathrm{i} \overleftrightarrow{D^{\mu}} \Phi \right) \left(\partial^{\nu} \mathrm{B}_{\mu\nu} \right)$	$\mathcal{O}'_{\mathrm{d}G} = (\bar{\mathrm{q}}\sigma^{\mu\nu}\frac{\lambda^A}{2}\Gamma_{\mathrm{d}}\mathrm{d}\Phi)G^A_{\mu\nu}$	$\mathcal{O}_{\Phi \mathbf{l}}^{\prime(3)} = (\Phi^{\dagger} \mathbf{i} \overset{\leftrightarrow}{D}{}^{I}_{\mu} \Phi)(\bar{\mathbf{l}} \gamma^{\mu} \tau^{I} \mathbf{l})$
$\mathcal{O}_{D\Phi\mathbf{W}}^{\prime} = \mathbf{i}(D^{\mu}\Phi)^{\dagger}\tau^{I}(D^{\nu}\Phi)\mathbf{W}_{\mu\nu}^{I}$	$\mathcal{O}_{\rm eW}^{\prime} = (\bar{\mathbf{l}}\sigma^{\mu\nu}\Gamma_{\rm e}\mathbf{e}\tau^{I}\Phi)\mathbf{W}_{\mu\nu}^{I}$	$\mathcal{O}'_{\Phi \mathrm{e}} = (\Phi^{\dagger} \mathrm{i} \overset{\leftrightarrow}{D}_{\mu} \Phi) (\bar{\mathrm{e}} \gamma^{\mu} \mathrm{e})$
$\mathcal{O}_{D\Phi\widetilde{W}}' = \mathrm{i}(D^{\mu}\Phi)^{\dagger}\tau^{I}(D^{\nu}\Phi)\widetilde{W}_{\mu\nu}^{I}$	$\mathcal{O}'_{\mathrm{uW}} = (\bar{\mathbf{q}} \sigma^{\mu\nu} \Gamma_{\mathrm{u}} \mathbf{u} \tau^{I} \widetilde{\Phi}) \mathbf{W}^{I}_{\mu\nu}$	$\mathcal{O}_{\Phi \mathbf{q}}^{\prime(1)} = (\Phi^{\dagger} \mathbf{i} \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{\mathbf{q}} \gamma^{\mu} \mathbf{q})$
$\mathcal{O}_{D\Phi \mathbf{B}}^{\prime}=\mathbf{i}(D^{\mu}\Phi)^{\dagger}(D^{\nu}\Phi)\mathbf{B}_{\mu\nu}$	$\mathcal{O}_{\mathrm{dW}}^{\prime} = (\bar{\mathbf{q}} \sigma^{\mu\nu} \Gamma_{\mathrm{d}} \mathbf{d} \tau^{I} \Phi) \mathbf{W}_{\mu\nu}^{I}$	$\mathcal{O}_{\Phi \mathbf{q}}^{\prime(3)} = (\Phi^{\dagger} \mathbf{i} \overset{\leftrightarrow}{D}{}^{I}_{\mu} \Phi) (\bar{\mathbf{q}} \gamma^{\mu} \tau^{I} \mathbf{q})$
$\mathcal{O}_{D\Phi\widetilde{\mathbf{B}}}^{\prime}=\mathbf{i}(D^{\mu}\Phi)^{\dagger}(D^{\nu}\Phi)\widetilde{\mathbf{B}}_{\mu\nu}$	$\mathcal{O}_{\rm eB}' = (\bar{l}\sigma^{\mu\nu}\Gamma_{\rm e}\mathrm{e}\Phi)B_{\mu\nu}$	$\mathcal{O}'_{\Phi \mathbf{u}} = (\Phi^{\dagger} \mathbf{i} \overset{\leftrightarrow}{D}_{\mu} \Phi)(\bar{\mathbf{u}} \gamma^{\mu} \mathbf{u})$
$\mathcal{O}_{\Phi \mathrm{B}}^{\prime} = (\Phi^{\dagger} \Phi) B_{\mu\nu} \mathrm{B}^{\mu\nu}$	$\mathcal{O}'_{uB} = (\bar{q}\sigma^{\mu\nu}\Gamma_{u}u\widetilde{\Phi})B_{\mu\nu}$	$\mathcal{O}'_{\Phi \mathrm{d}} = (\Phi^{\dagger} \mathrm{i} \overleftrightarrow{D}_{\mu} \Phi) (\bar{\mathrm{d}} \gamma^{\mu} \mathrm{d})$
$\mathcal{O}_{\Phi\widetilde{\mathbf{B}}}^{\prime}=(\Phi^{\dagger}\Phi)\mathbf{B}_{\mu\nu}\widetilde{\mathbf{B}}^{\mu\nu}$	$\mathcal{O}_{dB}^{\prime}=(\bar{q}\sigma^{\mu\nu}\Gamma_{d}d\Phi)B_{\mu\nu}$	$\mathcal{O}'_{\Phi \mathrm{ud}} = \mathrm{i}(\widetilde{\Phi}^{\dagger} D_{\mu} \Phi)(\bar{\mathrm{u}} \gamma^{\mu} \Gamma_{\mathrm{ud}} \mathrm{d})$
$\mathcal{O}_{\Phi G}^{\prime}=\Phi^{\dagger}\Phi G^{A}_{\mu\nu}G^{A\mu\nu}$		
$\mathcal{O}_{\Phi \widetilde{G}}^{\prime} = \Phi^{\dagger} \Phi G^A_{\mu\nu} \widetilde{G}^{A\mu\nu}$		


408 [http://cern.ch/go/X6rC]

Fiat 505

409 [http://cern.ch/go/X6rC]

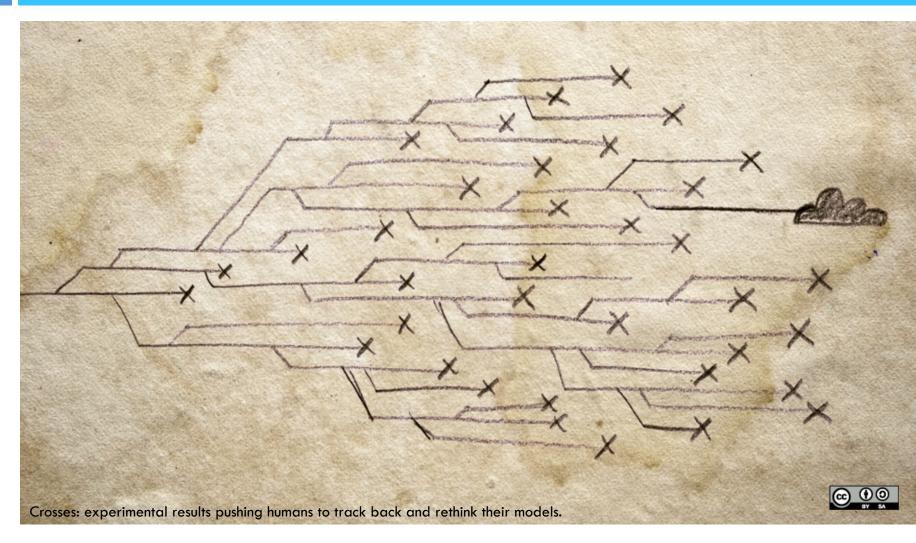

[http://cern.ch/go/X6rC]

Fiat 850

411 [http://cern.ch/go/X6rC]

2 [http://cern.ch/go/X6rC]

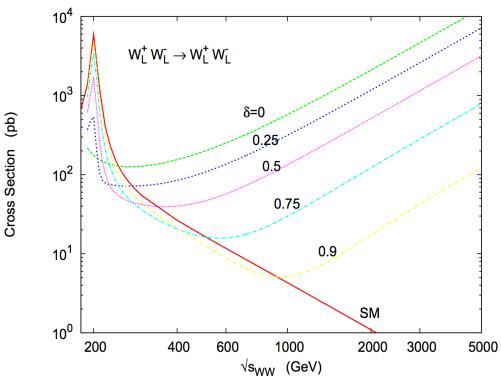
measuring.higgs@cern.ch HiggsTools School - June 2015


412

The experimental method

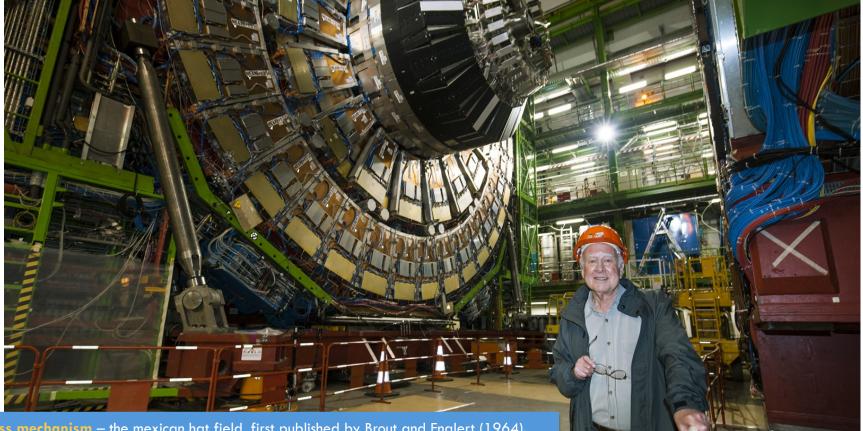
falsifying theories since the dawn of reason

413 [opensource.com]



Delayed unitarization: until when?

[http://cern.ch/go/q8Gq]


- Assume that WW scattering is δ^{-1/2} that of SM.
- Things can look like the SM for a long time.
 - **Time** ~ Energy.

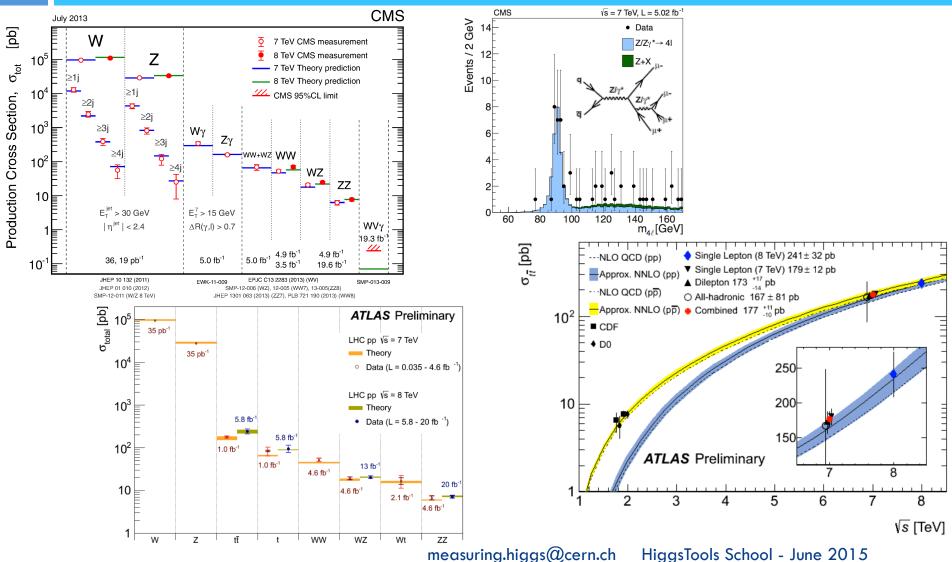
Higgs in CMS – ca. 2008

[http://cern.ch/go/dJf7] [http://cern.ch/go/Sx8m]

Mass mechanism – the mexican hat field, first published by Brout and Englert (1964).
Higgs basan – the field's massive radial excitation, tacit to Brout and Englert, massless via approximations in Guralnik et al., and explicitly mentioned by Higgs (1964).

• Viability – photons and massive weak bosons can coexist was shown by Kibble (1967).

measuring.higgs@cern.ch

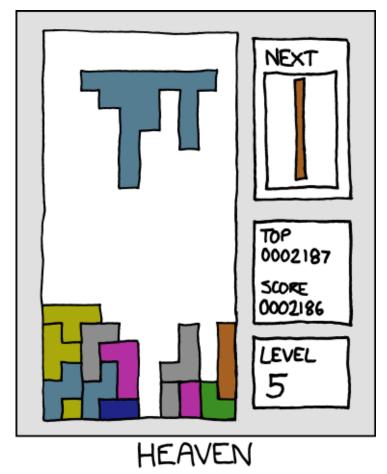

HiggsTools School - June 2015

415

A tribute to those doing SM calculations

416

"Yesterday's discovery is today's calibration, and tomorrow's background." – V. L. Telegdi


417

LHC Higgs Cross Section WG

[http://xkcd.com/888/]

Experimentalists and theorists.

- Together since 2010.
- Produce the best pieces for a common Higgs puzzle.

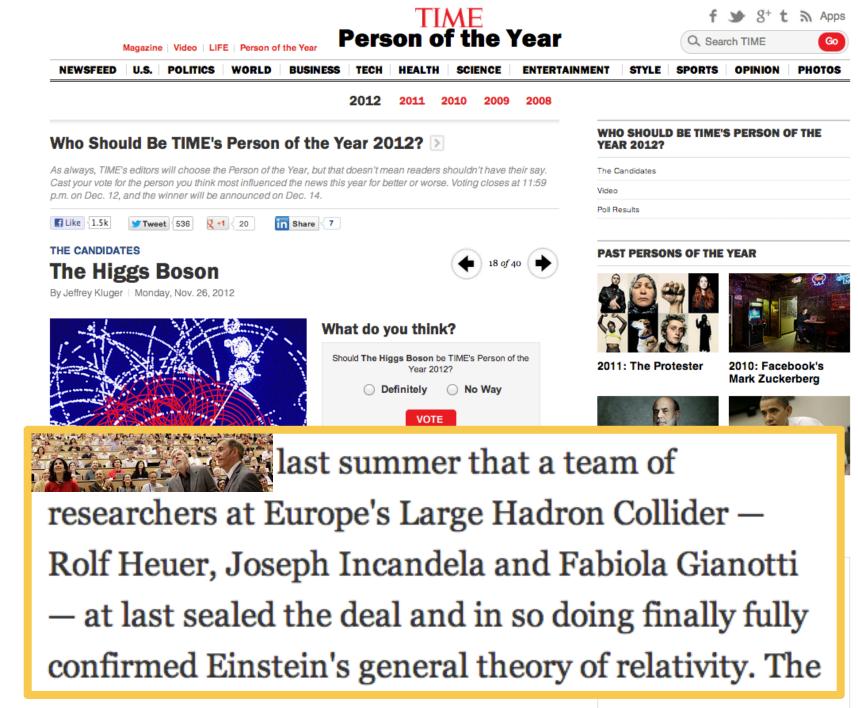
measuring.higgs@cern.ch H

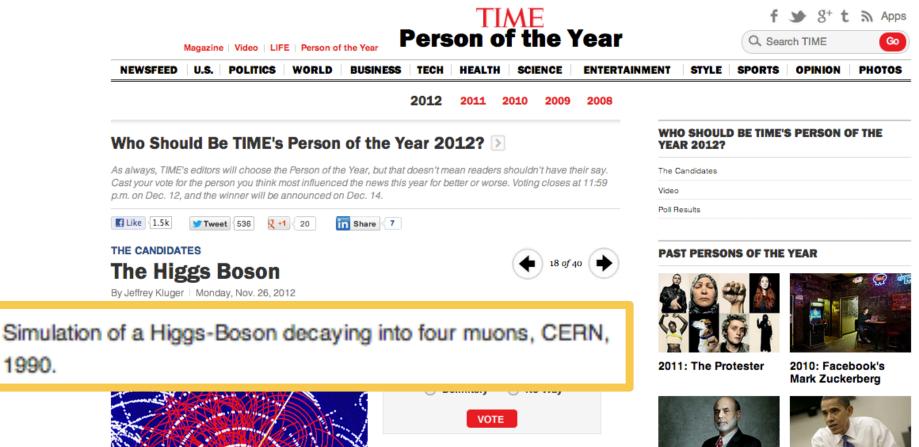
HiggsTools School - June 2015

	TIME Person of the Year	f 🎐 8+ t 🕷 /
Magazine Video LIFE Person of the Year	Person of the fear	Q, Search TIME
NEWSFEED U.S. POLITICS WORLD BUSIN	ESS TECH HEALTH SCIENCE ENTERTAIN	MENT STYLE SPORTS OPINION PHOT
	2012 2011 2010 2009 2008	
Who Should Be TIME's Person of the	e Year 2012? ▷	WHO SHOULD BE TIME'S PERSON OF THE YEAR 2012?
As always, TIME's editors will choose the Person of the Year, bu		The Candidates
Cast your vote for the person you think most influenced the new o.m. on Dec. 12, and the winner will be announced on Dec. 14.		Video
Like 1.5k Tweet 536 2+1 20 in Share	7	Poll Results
		PAST PERSONS OF THE YEAR
The Higgs Boson	(♦) 18 of 40	FAST FERSONS OF THE TEAR
By Jeffrey Kluger Monday, Nov. 26, 2012	\bigcirc \bigcirc	
-,,		
A WAR	What do you think?	
I KATA DE A	Should The Higgs Boson be TIME's Person of the	
	Year 2012?	2011: The Protester 2010: Facebook's Mark Zuckerberg
	Definitely O No Way	
	VOTE	
	Take a moment to thank this little particle for all the	
A REAL PROPERTY AND ADDRESS AND ADDRESS ADDRES	work it does, because without it, you'd be just inchoate energy without so much as a bit of mass.	
	What's more, the same would be true for the entire	2009: Ben Bernanke 2008: Barack Oba
	universe. It was in the 1960s that Scottish physicist	
	Peter Higgs first posited the existence of a particle that causes energy to make the jump to matter. But it	Most Read Most Emailed
	was not until last summer that a team of researchers	
	at Europe's Large Hadron Collider – Rolf Heuer,	1 Who Should Be TIME's Person of the Year 2012?
	Joseph Incandela and Fabiola Gianotti — at last sealed the deal and in so doing finally fully	2 LIFE Behind the Picture: The Photo That Changed
	confirmed Einstein's general theory of relativity. The	the Face of AIDS
	Higgs — as particles do — immediately decayed to	

SSPL/GETTY IMAGES

Simulation of a Higgs-Boson decaying into four muons, CERN, 1990.


would surely be happy to collect any honors or awards in its stead.


more-fundamental particles, but the scientists

3 Nativity-Scene Battles: Score One for the Atheists

4 The \$7 Cup of Starbucks: A Logical Extension of the

Coffee Chain's Long-Term Strategy

SSPL/GETTY IMAGES

Simulation of a Higgs-Boson decaying into four muons, CERN, 1990.

Take a moment to thank this little particle for all the work it does, because without it, you'd be just inchoate energy without so much as a bit of mass. What's more, the same would be true for the entire universe. It was in the 1960s that Scottish physicist Peter Higgs first posited the existence of a particle that causes energy to make the jump to matter. But it was not until last summer that a team of researchers at Europe's Large Hadron Collider - Rolf Heuer, Joseph Incandela and Fabiola Gianotti - at last sealed the deal and in so doing finally fully confirmed Einstein's general theory of relativity. The Higgs - as particles do - immediately decayed to more-fundamental particles, but the scientists would surely be happy to collect any honors or awards in its stead.

Photos: Step inside the Large Hadron Collider.

2008: Barack Obama

2009: Ben Bernanke

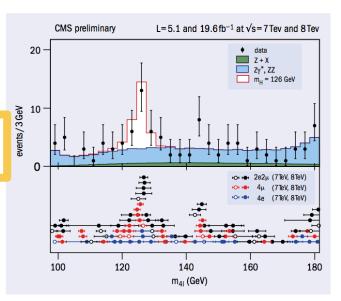
Most Read Most Emailed Who Should Be TIME's Person of the Year 2012? LIFE Behind the Picture: The Photo That Changed the Face of AIDS Nativity-Scene Battles: Score One for the Atheists The \$7 Cup of Starbucks: A Logical Extension of the Coffee Chain's Long-Term Strategy

LHC discovery

Birth of a Higgs boson

Results from ATLAS and CMS now provide enough evidence to identify the new particle of 2012 as 'a Higgs boson'.

In the history of particle physics, July 2012 will feature prominently as the date when the ATLAS and CMS collaborations announced that they had discovered a new particle with a mass near 125 GeV in studies of proton-proton collisions at the LHC. The discovery followed just over a year of dedicated searches for the Higgs boson, the particle linked to the Brout-Englert-Higgs mechanism that endows elementary particles with mass. At this early stage, the phrase "Higgs-like boson" was the recognized shorthand for a boson whose properties were yet to be fully investigated (*CERN Courier* September 2012 p43 and p49). The outstanding performance of the LHC in the second half of 2012 delivered four times as much data at 8 TeV in the centre of mass as were used in the "discovery" analyses. Thus equipped, the experiments were able to present new results at the 2013 Rencontres de Moriond in March, giving the particle-physics community enough evidence to


March, giving the particle-physics community enough evidence to name this new boson "a Higgs boson".

results that further elucidate the nature of the particle discovered just eight months earlier. The collaborations find that the new particle is looking more and more like a Higgs boson. However, it remains an open question whether this is *the* Higgs boson of the Standard Model of particle physics, or one of several such bosons predicted in theories that go beyond the Standard Model. Finding the answer to this question will require more time and data.

This brief summary provides an update of the measurements

compa	ved CL _s red with =0+	0 ⁻ (gg) pseudo- scalar	2 _m (gg) minimal couplings	2 ⁺ _m (qq̄) minimal couplings	1 ⁻ (qq̄) exotic vector	1+ (qq̄) exotic pseudo-vector
ZZ ^(*)	ATLAS	2.2%	6.8%	16.8%	6.0%	0.2%
	CMS	0.16%	1.5%	<0.1%	<0.1%	<0.1%
WW ^(*)	ATLAS	-	5.1%	1.1%	-	-
	CMS	-	14%	-	-	-
γγ	ATLAS	-	0.7%	12.4%	-	-

Table 1. Summary of preliminary results of the hypothesis tests compared with the Standard Model hypothesis of no spin, positive parity ($J^P = 0^+$). All alternatives are disfavoured using the CL_s ratio of probabilities that takes into account how the observation relates to both the Standard Model and the alternative hypotheses.

Entry in the PDG

H^0 (Higgs Boson)

The observed signal is called a Higgs Boson in the following, although its detailed properties and in particular the role that the new particle plays in the context of electroweak symmetry breaking need to be further clarified. The signal was discovered in searches for a Standard Model (SM)-like Higgs. See the following section for mass limits obtained from those searches.

H^0 MASS

INSPIRE search

Value (GeV)	Document ID		TECN	Comment	
125.9 ±0.4	OUR AVERAGE				
$125.8 \pm 0.4 \pm 0.4$	CHATRCHYAN ¹	2013J	CMS	pp , 7 and 8 TeV	
$126.0 \pm 0.4 \pm 0.4$	AAD ²	2012AI	ATLS	pp , 7 and 8 TeV	
*** We do not use the following data for averages, fits, limits, etc ***					
$126.2 \pm 0.6 \pm 0.2$	CHATRCHYAN ³	2013J	CMS	pp , 7 and 8 TeV	
$125.3 \pm 0.4 \pm 0.5$	CHATRCHYAN ⁴	2012N	CMS	pp , 7 and 8 TeV	
¹ Combined value from ZZ and $\gamma\gamma$ final states.					
² AAD 2012AI obtain results based on 4.6 – 4.8 fb ⁻¹ of <i>pp</i> collisions at $E_{\rm cm}$ = 7 TeV and 5.8 – 5.9 fb ⁻¹ at $E_{\rm cm}$ = 8 TeV. An excess of events over background with a local significance of 5.9 σ is observed at m_{H^0} = 126 GeV. See also AAD 2012DA.					
³ Result based on final states in 5.1 fb ⁻¹ of pp collisions at $E_{\rm cm}$ = 7 TeV and 12.2 fb ⁻¹ at $E_{\rm cm}$ = 8 TeV.					

⁴ CHATRCHYAN 2012N obtain results based on 4.9 – 5.1 fb⁻¹ of pp collisions at $E_{\rm cm}$ = 7 TeV and 5.1 – 5.3 fb⁻¹ at $E_{\rm cm}$ = 8 TeV. An excess of events over background with a local significance of 5.0 σ is observed at about m_{H^0} = 125 GeV. See also CHATRCHYAN 2012BY.

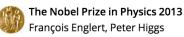
References

Document Id		Journal Name
CHATRCHYAN	2013J	PRL 110 081803
AAD	2012AI	PL B716 1
CHATRCHYAN	2012N	PL B716 30

NB: the mass measurement alone "cleared up" a huge chunk of BSM space.

measuring.higgs@cern.ch

HiggsTools School - June 2015


2013: "killer" news

["Lawrence of Arabia" idea from C. Grojean]

SM-like: the Swedish academy shot the prize at Englert and Higgs.

Share this: 📑 👫 🔽 🔂 🚺

The Nobel Prize in Physics 2013

Photo: A. Mahmoud François Englert Prize share: 1/2

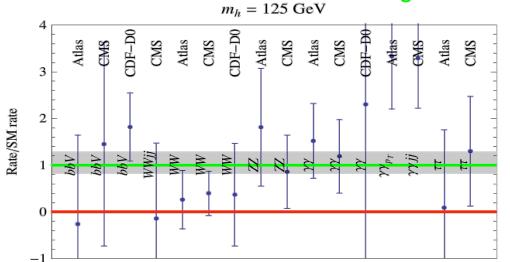
Photo: A. Mahmoud Peter W. Higgs Prize share: 1/2

The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"

...and knighthoods.

425

by Deborah Evanson, Colin Smith, Gail Wilson 16 June 2014

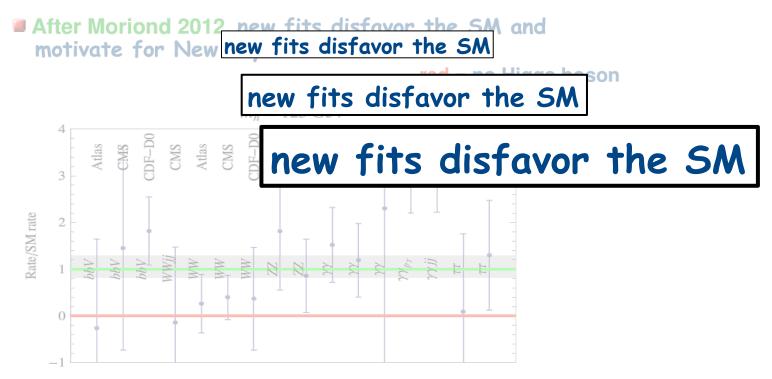

Two of Imperial's physicists, best known for predicting and finding the Higgs boson, have been knighted in this year's Queen's Birthday honours list.

In 2012 some theorists speculated...

426 [http://goo.gl/CVm6s]

After Moriond 2012, new fits disfavor the SM and motivate for New Physics

> red = no Higgs boson green = SM

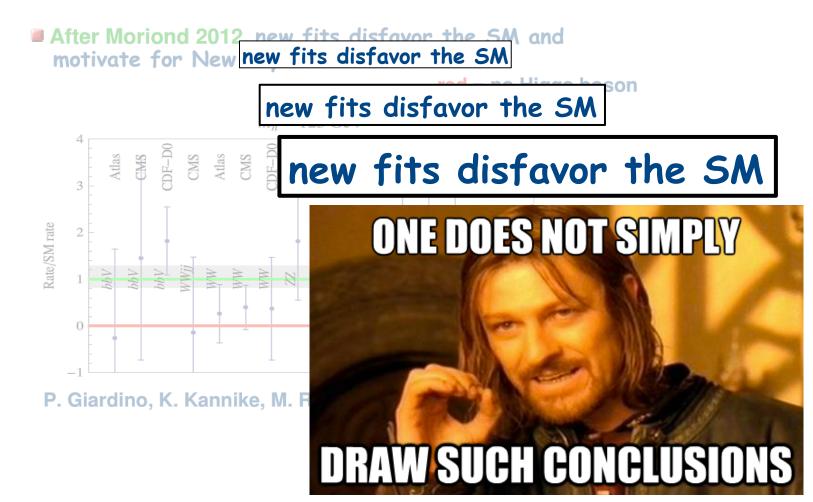


P. Giardino, K. Kannike, M. Raidal, A. Strumia, 1203.4254

427

In 2012 some theorists speculated...

[http://goo.gl/CVm6s]



P. Giardino, K. Kannike, M. Raidal, A. Strumia, 1203.4254

428

In 2012 some theorists speculated...

[http://goo.gl/CVm6s]

Things you can't "unsee"

429 [http://cern.ch/go/Dxh7]

Things you can't "unsee"

430 [http://cern.ch/go/Dxh7]

Things you can't "unsee"

431 [http://cern.ch/go/Dxh7]

