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QCD at the LHC

• Aim of the lecture:
➡ Introduction to the basics of QCD calculations for the LHC.
➡ Disclaimer: Had to make a (not unbiased!) choice of topics.
➡ Will not cover partons showers, etc. (See F. Krauss’s lecture)

• Part I:
➡ QCD @ LHC: Factorisation, LO, NLO and beyond.

➡ QCD for Higgs physics: large-mt limit, inclusive and 
differential ggF cross section, VBF.

• Part II:
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• The LHC is a proton collider.

QCD at the LHC

• Protons are bound-states of quarks and gluons.

• QCD Lagrangian:

➡ Need Quantum chromodynamics to describe LHC physics!

Chapter 1
Tree-level scattering amplitudes
in gauge theories

1.1 Feynman rules and diagrams in gauge the-

ories

The theory of strong interactions is a Yang-Mills gauge theory based on the

gauge group SU(3). In the following we give a short review of SU(Nc) gauge

theories in general, having Nf quark flavors in the fundamental representation.

The Lagrangian for an SU(Nc) gauge theory reads

L = −1

4
Tr (FµνF

µν)+ q̄f i /Dqf −mf q̄fqf +
1

2ξ

(

∂µGa
µ

)2
+ c̄a∂µDµca, (1.1)

where qf denotes the quark field with flavor f and mass mf
∗, Ga

µ is the gauge

field (the gluon in the case of QCD) and ca denote the ghost fields. The

covariant derivative Dµ and the field strength tensor Fµν are defined by

Dµ = ∂µ − igT aGa
µ

Fµν =
i

g
[Dµ, Dν ] =

(

∂µGa
ν − ∂νG

a
µ + g

√
2fabcGb

µGc
ν

)

T a,
(1.2)

∗In this work we only consider massless quarks, mf = 0.
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QCD Feynman rules

gs f
abc[gµ⌫(k � p)⇢ + g⌫⇢(p� q)µ + g⇢µ(q � k)⌫

+g⇢µ(q � k)⌫ ]

�ig2s [f
abef cde(gµ⇢g⌫� � gµ�g⌫⇢) + facef bde(gµ⌫g⇢� � gµ�g⌫⇢) + fadef bce(gµ⌫g⇢� � gµ⇢g⌫�)]

�ig2s [f
abef cde(gµ⇢g⌫� � gµ�g⌫⇢) + facef bde(gµ⌫g⇢� � gµ�g⌫⇢) + fadef bce(gµ⌫g⇢� � gµ⇢g⌫�)]

�ig2s [f
abef cde(gµ⇢g⌫� � gµ�g⌫⇢) + facef bde(gµ⌫g⇢� � gµ�g⌫⇢) + fadef bce(gµ⌫g⇢� � gµ⇢g⌫�)]

igs �
µ T a �gs f

abc pµ
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a, µ

a, µ a, µ

a, µ

b, ⌫

b, ⌫

b, µ

c, ⇢ c, ⇢
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QCD factorisation

d� =
X

i,j

Z 1

0
dx1 dx2 fi(x1, µ

2
F ) fj(x2, µ

2
F ) d�̂ij(µ

2
F )

• We need a way to connect protons to quarks and gluons.

P

P

p1

p2

x2 p2

x1 p1

i

j
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QCD factorisation

d� =
X

i,j

Z 1

0
dx1 dx2 fi(x1, µ

2
F ) fj(x2, µ

2
F ) d�̂ij(µ

2
F )

•        is the partonic cross section.
➡ calculable in perturbative QCD.	


➡ process-dependent.

d�̂ij

•       are the parton distribution functions (PDFs).fi

➡ non-perturbative, need to be extracted from measurements.	


➡ universal, process-independent.

• QCD factorisation is expected to hold up to terms                                       
t                      .  O(⇤QCD/

p
S)
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• The rhs of the factorisation formula depends on the 
factorisation scale       . µF

➡ Introduces a source of uncertainty order-by-order in 
perturbation theory.	


➡      typically of the order of the hard scale.µF

•        - dependence governed by DGLAP equation:µF

d

d logµF
fi(x, µ

2
F ) = as(µ

2
F )

X

j

Pij(x, as(µ
2
F ))⌦ fj(x, µ

2
F )

as(µ
2
F ) =

↵s(µ2
F )

⇡
[f ⌦ g](x) =

Z 1

x

dt f(t) g
⇣
x

t

⌘

➡ Coupled system of integro-differential equations.

PDFs & DGLAP evolution
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•      are the Altarelli-Parisi splitting functions:Pij

Pij(x, as) = P

(0)
ij (x) + as P

(1)
ij (x) + a

2
s P

(2)
ij (x) + . . .

P

(0)
qg (x) =

1

2
[x2 + (1� x)2]

p

x p

• They describe the collinear splitting of a parton j into a parton 
i carrying a fraction x of the original momentum. E.g.:

➡ Known up to a2s

• Intuitive picture:

PDFs & DGLAP evolution



!
!

!
!

• If you need PDFs at a certain scale… where to get them from?

• There are several collaborations that are specialised in

PDFs & DGLAP evolution

➡ fitting PDFs to data.	


➡ providing the evolution to arbitrary scales (up to a certain 
accuracy in     ).a2s

• Most common PDF set: MMHT, NNPDF, CTEQ, ABM,…

• Two public web sites that allow one to plot PDFs for different 
choices of x and the scale:

http://apfel.mi.infn.it/
http://hepdata.cedar.ac.uk/pdf/pdf3.html

http://apfel.mi.infn.it/
http://hepdata.cedar.ac.uk/pdf/pdf3.html
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PDFs
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QCD  @ leading order

• Consider total cross section for e+e- production via an off-shell 
photon at LO in QCD:

�+(p
2 �m2) ⌘ �(p2 �m2) ✓(p0)

�̂qq̄ =
1

2S

Z
d�1 |Mqq̄!�⇤ |2

|Mqq̄!�⇤ |2 =
4⇡↵e2q
Nc

Q2 �̂qq̄ =
8⇡2↵e2q
Nc Q2

�(1� z) z = Q2/ŝ

➡ Concentrate on QCD part, i.e., production of an off-shell 
photon with virtuality Q2.

d�1 = (2⇡)4 �(4)(p� � p1 � p2)
d4p�
(2⇡)3

�+(p
2
� �Q2)
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QCD  @ leading order

• We need to fold the partonic cross section with the PDFs.

�(S,Q2) =
X

i,j

Z 1

0
dx1 dx2 f1(x1, µ

2
F ) f2(x2, µ

2
F ) �̂ij(Q

2
, ŝ, µ

2
F )

= ⌧
X

i,j


Lij(⌧/z, µ

2
F )⌦

�̂ij(Q2, Q2/z, µ2
F )

z

�
(⌧)

Lij(z, µ
2
F ) = [fi(x, µ

2
F )⌦ fj(x, µ

2
F )](z) ⌧ = Q2/S

• Useful formula:

• Final result for hadronic cross section:

�LO(S,Q2) =
16⇡2↵

Nc S

X

f

e2fLqf q̄f (⌧, µ
2
F )

➡ Prove this!
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QCD  @ leading order

• We cannot fix the value of the factorisation scale at this point!

• We can also compute differential distributions of an observable.

➡ More on this later!

An observable     is given by a function                       of all 
momenta in the event. Its distribution is

O O(p1, . . . , pn)

• Nowadays, there is no need to compute LO cross sections and 
distributions by hand!
➡ Automated tools! MadGraph, Sherpa, CalcHep, …
➡ + PS Monte Carlo generators: Pythia, Sherpa, Herwig.
➡ See Frank’s lecture.

d�̂ij

dO =
1

2ŝ

Z
d�n�2 �(O �O(p1, . . . , pn)) |M|2
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Adding a jet

• Let us now add a jet to our process:

• Let’s compute the total cross section for this process:

�̂qq̄ =
1

2ŝ

Z
d�2 |Mqq̄!�⇤g|2 |Mqq̄!�⇤g|2 = �0

2↵s

3Nc


û

t̂
+

t̂

û
+

2Q2ŝ

ût̂

�

d�2 = (2⇡)4�(4)(p� + k � p1 � p2)
d4p�
(2⇡)3

�+(p
2
� �Q2)

d4k

(2⇡)3
�+(k

2)

=
⇡

2
dt̂ dû �(ŝ+ t̂+ û�Q2)

ˆt = �ŝ
1� z

2

(1� cos ✓)

The PS 
integral 

diverges!) �ŝ(1� z)  t̂  0
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IR divergences

• What is happening here?

1

ˆt
=

1

E1 Eg (1� cos ✓)

Singular if      	

or   Eg ! 0 ✓ ! 0

• This is a general feature: QCD amplitudes are singular 
whenever a gluon becomes soft or two (or more) massless 
partons becomes collinear.

• The divergence is universal, and does not depend on the 
details of the rest of the scattering process.
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IR divergences

• How to avoid this divergence?

• Solution 1: Simply do not go into the singular region!
Practically, apply phase-space cuts to restrict the integration to 
the non-singular region:

➡ The cross section depends on the cuts!

➡ This type of phase-space integrals is best handled using 
numerical methods.

�̂qq̄(pT,min) =
1

2ŝ

Z
d�2 |M|2 ✓(pT,g > pT,min)
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IR divergences
• Solution 2: Additional jets belong to higher orders in 

perturbation theory.

LO QCD
NLO QCD

�̂(qq̄ ! �⇤) = O(↵)

�̂(qq̄ ! �⇤g) = O(↵↵s)

➡ If the gluon is soft or collinear, then the external state 
coincides with the external state of the Born configuration.

➡ We need to add together the loop corrections to the Born 
and the emissions of soft and collinear partons.

➡ This is a particular instance of the Kinoshita-Lee-
Nauenberg (KLN) theorem: IR singularities cancel in 
inclusive-enough observables.
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IR divergences

➡ If                    , this logarithm can be large, at every order in 
perturbation theory.           

➡ Need to resum these logarithms.

➡ Need to include this channel.	


➡ QCD factorisation requires to 
sum over initial states!

• Comment 1:  There is a new channel opening!

• Comment 2:  PS cuts can give rise to large logarithms!

�̂qq̄(pT,min) =
1

2ŝ

Z
d�2 |M|2 ✓(pT,g > pT,min) ' log

p2T,min

Q2

p2T,min ⌧ Q2

➡ cf. Frank’s lectures.
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QCD @ NLO
• Ingredients for NLO: �̂NLO

ij = �̂V
ij + �̂R

ij

�̂R
ij =

1

2ŝ

Z
d�n+1

���M(0)
n+1

���
2

• For our example:

�̂V
ij =

1

2ŝ

Z
d�n 2ReM(0)

n M(1)⇤
n
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Virtual corrections
• The phase-space is trivial, and the computation of the loop is 

not too difficult:

�̂V
qq̄ = �0 �(1� z) as (4⇡)

✏ e��E✏

⇢
� 4

3✏2
+

1

✏


4

3

log

✓
Q2

µ2

◆
� 2

�
� 2

3

log

2

✓
Q2

µ2

◆
+ 2 log

✓
Q2

µ2

◆
+

7⇡2

9

� 16

3

�

• We used DimReg to regulate the divergences in the loop.

➡ Here only IR, because LO in     . as

➡ In principle UV and IR poles.

• How can we combine this with the real corrections…?

➡ The tree-level matrix element was independent of    .✏

➡ Result depends on arbitrary scale    introduced by DimReg.µ

�̂V
qq̄ = �0 �(1� z) as (4⇡)

✏ e��E✏

⇢
� 4

3✏2
+

1

✏


4

3

log

✓
Q2

µ2

◆
� 2

�
� 2

3

log

2

✓
Q2

µ2

◆
+ 2 log

✓
Q2

µ2

◆
+

7⇡2

9

� 16

3

�
+O(✏)

�



!
!

!
!

Dimensional regularisation
• We have to do everything in D-dimensions!

• D-dimensional phase space:
➡ Conventional dimensional regularisation (CDR).

➡ Phase space divergences regulated because                      .

d�2 = µ4✏ (2⇡)D �(D)(p� + k � p1 � p2)
dDp�

(2⇡)D�1
�+(p

2
� �Q2)

dDk

(2⇡)D�1
�+(k

2)

d�2 =
⇡1�✏

2�(1� ✏)
dt̂ dû

✓
ût̂

µ4

◆�✏

�(ŝ+ t̂+ û�Q2)

vs.                                     in D = 4.=
⇡

2
dt̂ dû �(ŝ+ t̂+ û�Q2)

Z 1

0

dt̂

t̂1+✏
= �1

✏

• N.B.: We need everything in D dimensions, also the Born! 	


(D-dimensional metric, Dirac matrices, etc.)
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Real corrections
• Real corrections in D dimensions:

➡ Finite in D-dimensions!

• This is supposed to cancel the poles of the virtuals:

�̂V
qq̄ = �0 �(1� z) as (4⇡)

✏ e��E✏

⇢
� 4

3✏2
+

1

✏


4

3

log

✓
Q2

µ2

◆
� 2

�
� 2

3

log

2

✓
Q2

µ2

◆
+ 2 log

✓
Q2

µ2

◆
+

7⇡2

9

� 16

3

�

➡ No double pole in   . ✏

➡ No distribution              .       �(1� z)

�̂R
qq̄ = ��0 as (4⇡)

✏

✓
Q2

µ2

◆�✏
4�(1� ✏)

3✏�(1� 2✏)

⇥
z✏ (1� z)1�2✏ + 2z1+✏ (1� z)�1�2✏

⇤

�̂V
qq̄ = �0 �(1� z) as (4⇡)

✏ e��E✏

⇢
� 4

3✏2
+

1

✏


4

3

log

✓
Q2

µ2

◆
� 2

�
� 2

3

log

2

✓
Q2

µ2

◆
+ 2 log

✓
Q2

µ2

◆
+

7⇡2

9

� 16

3

�
+O(✏)

�



!
!

!
!

Real corrections
• The real corrections are not integrable for          because there 

is a pole at  
✏ = 0

z = 1

(1� z)�1�2✏
= � 1

2✏
�(1� z) +

1X

k=0

(�2✏)k

k!

"
log

k
(1� z)

1� z

#

+

➡ Additional pole is a soft singularity, because it happens for 
ŝ = Q2

• The partonic cross section is a distribution that needs to be 
convoluted with the parton luminosity!

�̂R
qq̄ = ��0 as (4⇡)

✏ e�E✏

(
4

3✏2
�(1� z) +

4

3✏

"
1 + z � 2


1

1� z

�

+

� �(1� z) log

✓
Q2

µ2

◆#
+O(✏0)

)
�̂R
qq̄ = �0 as (4⇡)

✏ e�E✏

(
4

3✏2
�(1� z) +

4

3✏

"
1 + z � 2


1

1� z

�

+

� �(1� z) log

✓
Q2

µ2

◆#
+O(✏0)

)

➡ + distribution:
Z 1

0
dz

"
log

k
(1� z)

1� z

#

+

f(z) = �
Z 1

0
dz

f(z)� f(1)

z � 1

log

k
(1� z)
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QCD @ NLO

�̂R
qq̄ = ��0 as (4⇡)

✏ e�E✏

(
4

3✏2
�(1� z) +

4

3✏

"
1 + z � 2


1

1� z

�

+

� �(1� z) log

✓
Q2

µ2

◆#
+O(✏0)

)

�̂V
qq̄ = �0 �(1� z) as (4⇡)

✏ e��E✏

⇢
� 4

3✏2
+

1

✏


4

3

log

✓
Q2

µ2

◆
� 2

�
� 2

3

log

2

✓
Q2

µ2

◆
+ 2 log

✓
Q2

µ2

◆
+

7⇡2

9

� 16

3

�

�̂R
qq̄ = �0 as (4⇡)

✏ e�E✏

(
4

3✏2
�(1� z) +

4

3✏

"
1 + z � 2


1

1� z

�

+

� �(1� z) log

✓
Q2

µ2

◆#
+O(✏0)

)

�̂R
qq̄ = ��0 as (4⇡)

✏ e�E✏

(
4

3✏2
�(1� z) +

4

3✏

"
1 + z � 2


1

1� z

�

+

� �(1� z) log

✓
Q2

µ2

◆#
+O(✏0)

)

�̂V
qq̄ + �̂R

qq̄ = �2�0 as (4⇡)
✏ e�E✏ 1

✏

"
4

3


1

1� z

�

+

+ �(1� z)� 4

3
(1 + z)

#
+O(✏0)

P (0)
qq (z)
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Mass factorisation

• We can ‘renormalise’ the PDFs such as to absorb this 
divergence

• The remaining divergence is proportional to a splitting 
function, and therefore process independent.

f

B
i (x) = (�ij ⌦ f

R
j )(x) �ij(x, as) = �ij +

as

✏

P

(0)
ij (x) + . . .

• After this procedure, the cross section is finite!

• The singularities have canceled, but there are still              the 
finite part.        

log

Q2

µ2

➡ After mass factorisation the cross section depends on the 
factorisation scale.

➡ Want to choose              , because otherwise these 
logarithms will be large!

µ2 ⇠ Q2
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Subtraction

• In practise, one exploits the fact that the IR limit of tree 
amplitudes is universal to build universal counterterms:

• If we had to work always with DimReg for the phase space, 
this would not be practical.

�NLO =

Z

n

✓
d�V

n + d�B
n

Z

1
C
◆
+

Z

n+1

�
d�R

n+1 � C d�B
n

�

• If the subtraction is local in phase space, we can also do 
distributions.
➡ Two popular schemes: Frixione-Kunszt-Signer and Catani-

Seymour dipoles.

d�NLO

dO =

Z

n

✓
d�V

n On + d�B
n On+1

Z

1
C
◆
+

Z

n+1

�
d�R

n+1 � C d�B
n

�
On+1
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IR and collinear safety

• There is a mismatch in the integrand in the virtual!

• An observable is IR and collinear safe if

➡ Will in general not get finite answers for arbitrary 
observables!

d�NLO

dO =

Z

n

✓
d�V

n On + d�B
n On+1

Z

1
C
◆
+

Z

n+1

�
d�R

n+1 � C d�B
n

�
On+1

lim
i||j

On(p1 . . . pi, pj . . . pn) = On�1(p1 . . . pi + pj . . . pn)

lim
pi!0

On(p1 . . . pi . . . pn) = On�1(p1 . . . pi�1, pi+1 . . . pn)

• If an observable is IR and collinear safe, then the previous 
construction gives a finite distribution.
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The ‘NLO revolution’
• At one-loop, we know the basis of integrals:

• A few years ago, several computer codes appeared that can 
compute the values of the coefficient numerically in an 
automated way!

• Combined with automation for LO and FKS/CS, one can 
automate the whole NLO business.

➡ Blackhat, Rocket, MadLoops, NJet, OpenLoops, 
GoSam,…
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H + 3j @ NLO
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Figure 3: Scale dependence of the total cross section for scale choices A, B and C for different PDF
sets with a center of mass energy of 8 TeV (upper row) and 13 TeV (lower row), and for H + 2 jets
(left column) and H + 3 jets (right column).

estimation of the theoretical uncertainties. The plots show the results for three different
PDF sets, CT10nlo [117], MSTW08 [119] and NNPDF23 [120]. This is compared to the
scale choices A, B and C. For scale C we show the result only for one PDF set. Although
the different PDF sets lead to slightly different results, their effect is considerably smaller
than a different choice of the scale. If we compare the 2-jet result and the 3-jet result we see
that for the former the effects of scale and PDF choice leads to a broader range of results,
i.e. the spread between the single curves is bigger compared to the 3-jet case, where the
curves (except for scale C) seem to be more bundled. For the 2-jet process the scale C is
in quite good agreement with the other scales, which is clearly not the case for the 3-jet
process. This indicates that this scale (i.e. the Higgs mass) is smaller than the other scales
hence shifting curves to higher values of x. Another interesting point is that for both jet
multiplicities the shapes are almost independent of the center of mass energy, the plots for 8
TeV and 13 TeV are very similar. Only for scale choice C we find a visible deviation, which
is not surprising as it is a fixed scale and therefore does not account for a change in the
center of mass energy.

Fig. 4 shows the exclusive jet cross sections for Higgs plus one, two and three jets for
both 8 and 13 TeV. At NLO a H+n jets process contributes of course to two jet multiplicities,

– 10 –

production process it is not obvious that this scale should be adopted for all strong couplings.
Because the top quark has been integrated out, one could argue that the strong coupling
associated to the effective Higgs-gluon vertex should be fixed to the natural scale of this
vertex, and that this would be of the order of mH. Furthermore it is not obvious whether one
should vary this scale together with the scales for the other powers of ↵s when performing
the usual scale variation to assess the theoretical uncertainties. We note that there is no
’correct’ choice and that the differences between the choices are formally of higher order. It
is therefore interesting to investigate their effect on phenomenological results.

We consider three different scale choices, defined as

A : ↵s

✓
x · Ĥ 0

T

2

◆3

↵s (x · mH)2 (2.8a)

B : ↵s

✓
x · Ĥ 0

T

2

◆5

(2.8b)

C : ↵s (x · mH)5 . (2.8c)

The presence of the factor x indicates that this scale is varied in the range x 2 [0.5 . . . 2].
A variant of scale A, where the two powers of ↵s evaluated at mH do not change with
varying x was used in previous computations of H + 3 jets [54, 58]. This however leads to a
somewhat artificial reduction of the scale uncertainty, and therefore we do not consider the
corresponding scale in the following.

3 Higgs boson plus jets phenomenology

In this section we discuss the results that have been obtained with the set of basic gluon
fusion cuts as described in Eq. (2.5).

3.1 Cross sections, scale dependence and technicalities

We start our analysis by presenting the results for the inclusive cross sections using basic
gluon fusion cuts and the different scale choices shown above. Fig. 1 shows the total cross
sections for H+1 jet, H+2 jets and H+3 jets for both LO and NLO at 8 TeV (left plot) and
13 TeV (right plot). The cross sections are calculated for the three different scale choices A,
B, and C defined in Eq. (2.8). The upper part of the plot displays the LO and NLO results
for the H + n jets process for the central scale and the variations around the central scale as
defined in the corresponding scale choices. The lower plot shows the ratios

rn/n�1 = �tot(H + nj)/�tot(H + (n � 1)j) , (3.1)

for n + 2, 3, 4 at LO and n = 2, 3 at NLO accuracy.
Independent of the scale choice and order in perturbation theory we see that the ratio

r2/1 is larger than the ratio r3/2. One might expect this behavior for two reasons: On the
one hand the H+2 jets process has new kinematical topologies compared to H+1 jet. In
particular, it is possible that the Higgs boson is (almost) at rest in a H+2 jets final state,
while it must always carry some transverse momentum in a H + 1 jet final state, at least

– 6 –

[Greiner, Hösche, Luisoni, Schönherr, Winter, Yundin]
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Figure 7: The pT -distribution of the Higgs in the H + 3 jets process for 8 TeV presented for the
three scales A, B and C of Eq. (2.8). The subplot 7a shows the same distributions normalized to the
NLO result for scale A.

10, the third jet by a factor of 0.1, the second jet is shown unchanged. On a logarithmic
scale this leads to a vertical shift of the different curves, preserving however their shapes and
the size of the uncertainty bands. It is therefore possible to better appreciate the different
behavior of the curves over the considered kinematical range. In the ratio plots below we
show the NLO/LO ratio for each pair of curves, this means that each jet distribution is
normalized to its own LO distribution. Looking at the distributions we observe to a larger
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Figure 7: The pT -distribution of the Higgs in the H + 3 jets process for 8 TeV presented for the
three scales A, B and C of Eq. (2.8). The subplot 7a shows the same distributions normalized to the
NLO result for scale A.

10, the third jet by a factor of 0.1, the second jet is shown unchanged. On a logarithmic
scale this leads to a vertical shift of the different curves, preserving however their shapes and
the size of the uncertainty bands. It is therefore possible to better appreciate the different
behavior of the curves over the considered kinematical range. In the ratio plots below we
show the NLO/LO ratio for each pair of curves, this means that each jet distribution is
normalized to its own LO distribution. Looking at the distributions we observe to a larger
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Scale choice A Scale choice C

[Greiner, Hösche, Luisoni, Schönherr, Winter, Yundin]
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QCD @ NNLO

�̂V V
ij =

1

2ŝ

Z
d�n (2ReM(0)

n M(2)⇤
n + |M(1)

n |2)

�̂RV
ij =

1

2ŝ

Z
d�n+1 2ReM(0)

n+1M
(1)⇤
n+1

�̂RR
ij =

1

2ŝ

Z
d�n+2 |M(0)

n+2|2

• In principle, the whole story generalises in a straightforward 
manner.

• In practise, there is a huge jump in complexity when going 
from NLO to NNLO.
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Virtual corrections
• At one loop, we know a complete basis of integrals in 4 

dimensions.

• Apart from these integrals, we only know a few very specific 
two-loop integrals:

• At two loops, we only know very few and specific integrals.
➡ 2-to-2 massless, 2 scales (e.g. dijets): ~1999
➡ 2-to-2 one leg off shell, 3 scales (e.g. Z+j): ~2000-01

➡ 2-to-2 two legs off shell, 4 scales (e.g. ZZ): ~2014

➡ We do not know any two-loop 2-to-3 integrals…

➡ ttbar (num.)	


➡ some integrals for electroweak corrections
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Virtual corrections
• At one loop, all integrals can be expressed in terms of 

logarithms and dilogarithms:

Li2(z) = �
Z z

0

dt

t
log(1� t)

• Beyond one loop, more general functions appear:
➡ multiple polylogarithms:

G(a1, . . . , an; z) =

Z z

0

dt

t� a1
G(a2, . . . , an; t)

G(a; z) = log

⇣
1� z

a

⌘
G(0, 1; z) = �Li2(z)

➡ elliptic polylogarithms:

Ln(z, q) =
1X

k=�1
Lin(z q

k) q = e2⇡i⌧
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Virtual corrections

• Beyond one loop, we do not know the basis of integrals.

• Consider Feynman integrals with arbitrary powers of the 
propagators:

➡ We would still like to find a minimal set of integrals that we 
need to compute!

I(n1, . . . , nk) =

Z
dDk1 . . . dDkL
Dn1

1 . . . Dnk
k

ni 2 Z

➡ defines a function on a lattice    . Zk

➡ Find recursion relations on this lattice.	


➡ Solve these recursions to express all integrals in terms of a 
small set of ‘master integrals’.

• Goal:
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IBP identities

• We can shift exponents by differentiation!

• What is the rhs of the recursion…?

In DimReg, integrals of total derivatives always vanish.	

• Theorem:

@

@kµi

1

[(ki + p)2]n
= �2n

kiµ + pµ
[(ki + p)2]n+1

• N.B.:
For recursions to close, we must be able to express all scalar 
products in terms of denominators (=topology).	


? =

Z
dDki

@

@kµi

⇣
. . .

⌘
0 =

Z
dDki

@

@kµi

⇣
. . .

⌘
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IBP identities
• Example:

Bub(n1, n2) =

Z
dDk

[k2]n1 [(k + p)2]n2

➡ IBP relations: 

0 =

Z
dDk

@

@kµ
kµ

⇣
. . .

⌘
0 =

Z
dDk

@

@kµ
pµ

⇣
. . .

⌘

Bub(n1, n2) =
n1 + n2 � 1�D

p2 (n2 � 1)
Bub(n1, n2 � 1) +

1

p2
Bub(n1 � 1, n2)

=
1

p2
Bub(n1, n2 � 1) +

n1 + n2 � 1�D

p2 (n1 � 1)
Bub(n1 � 1, n2)

➡ N.B.: The integral vanishes unless                . n1, n2 > 0
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IBP identities

➡ This topology has 
exactly one master 
integral!

Zero

Z
ero
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IBP identities

• Solving the recursions in the general case with many 
propagators is rather cumbersome.

➡ Turns recursion relations into a finite-sized linear system.	


➡ Laporta’s algorithm.

• Other approach: Use the recursion relations to generate 
linear relations among integrals, and truncate the tower of 
relations.

• There are several public (and private) computer codes that 
allow one to solve IBP relations.

➡ FIRE, Reduze, LiteRed,…
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Differential equations
• We can also differentiate a master integral w.r.t an external 

scale, e.g.
@

@m2
i

1

[q2i �m2
i ]

ni
=

ni

[q2i �m2
i ]

ni+1

• We can IBP-reduce the lhs to master integrals.

Master integrals satisfy systems of 1st order DEs among 
themselves!	


• Conclusion:

• This gives an effective way to compute the master integrals.
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IR divergences @ NNLO

• Even if we can compute the virtual amplitudes, we still need 
to combine them with the real radiation contributions.

➡ Antenna subtraction.	


➡ qT subtraction.	


➡ Colourful NNLO	


➡ Stripper.	


➡ N-jettiness subtraction.

[Gehrmann, Gehrmann-de Ridder, Glover]

[Catani, Grazzini]

[Somogyi, Tróscányi]

[Czakon]

• We do not have a fully general subtraction scheme as we 
have at NLO, but a lot of progress in the last years:

[Boughezal, Focke, Liu, Petriello; 
Gaunt, Stahlhofen, Tackmann, Walsh]
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IR divergences @ NNLO

Analytic FS Colour IS Colour Local

Antenna

qT

Colourful

Stripper

N-jettiness

NNLO dijets at the LHC

The NNLO Marketplace

In recent years many new tools developed for NNLO

I all have advantages and disadvantages

analytic FS colour IS colour local
antenna subtraction 3 3 3 7
STRIPPER 7 3 3 3
qT subtraction 3 7 3 3
reverse unitarity 3 7 3 -
Trócsányi et al 7 3 7 3

Antenna subtraction is the only method for computing cross sections with:

I hadronic initial-states

I jets in the final-state (especially more than one jet)

I analytic pole cancellation
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QCD @ higher orders
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QCD @ higher orders

[Czakon, Fiedler, Mitov]

NNLO dijets at the LHC

NNLO dijets

Inclusive jet pT scale dependence

Full colour gluons only contribution
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4

too, and a consistent NNLO treatment would require the
analysis of Ref. [35] to be extended to NNLO, which is
now possible with the help of the results derived in this
letter as well as Ref. [12]. Given the numerical effect is
small (a 0.7% shift at LHC 8 TeV and a 0.4% shift at the
Tevatron), in this work we take A = 0.
As can be concluded from table I the precision of the

theoretical prediction at full NNLO+NNLL is very high.
At the Tevatron, the scale uncertainty is as low as 2.2%
and just slightly larger, about 3%, at the LHC. The inclu-
sion of the NNLO correction to the gg-initiated reaction
increases the Tevatron prediction of Ref. [12] by about
1.4%, which agrees well with what was anticipated in
that reference.

Collider σtot [pb] scales [pb] pdf [pb]

Tevatron 7.009 +0.259(3.7%)
−0.374(5.3%)

+0.169(2.4%)
−0.121(1.7%)

LHC 7 TeV 167.0 +6.7(4.0%)
−10.7(6.4%)

+4.6(2.8%)
−4.7(2.8%)

LHC 8 TeV 239.1 +9.2(3.9%)
−14.8(6.2%)

+6.1(2.5%)
−6.2(2.6%)

LHC 14 TeV 933.0 +31.8(3.4%)
−51.0(5.5%)

+16.1(1.7%)
−17.6(1.9%)

TABLE II: Pure NNLO theoretical predictions for various
colliders and c.m. energies.

To assess the numerical impact from soft gluon re-
summation, in table II we present results analogous to
the ones in table I but without soft gluon resummation,
i.e. at pure NNLO. Comparing the results in the two
tables we conclude that the effect of the resummation
is a (2.2, 2.9, 2.7, 2.2)% increase in central values and
(2.4, 2.2, 2.1, 1.5)% decrease in scale dependence for, re-
spectively, (Tevatron, LHC7, LHC8, LHC14).
Next we compare our predictions with the most precise

experimental data available from the Tevatron and LHC.
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FIG. 3: Theoretical prediction for the Tevatron as a function
of the top quark mass, compared to the latest combination of
Tevatron measurements.
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FIG. 4: Theoretical prediction for the LHC as a function of
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The comparison with the latest Tevatron combination
[36] is shown in fig. 3. The measured value σtot = 7.65±
0.42 pb is given, without conversion, at the best top mass
measurement [37] m = 173.18 ± 0.94 GeV. From this
comparison we conclude that theory and experiment are
in good agreement at this very high level of precision.
In fig. 4 we show the theoretical prediction for the

tt̄ total cross-section at the LHC as a function of the
c.m. energy. We compare with the most precise avail-
able data from ATLAS at 7 TeV [38], CMS at 7 [39] and
8 TeV [40] as well as the ATLAS and CMS combination
at 7 TeV [41]. We observe a good agreement between
theory and data. Where conversion is provided [39], the
measurements have been converted to m = 173.3 GeV.
Finally, we make available simplified fits for the top

mass dependence of the NNLO+NNLL cross-section, in-
cluding its scale and pdf uncertainties:

σ(m) = σ(mref )
(mref

m

)4
(16)

×

(

1 + a1
m−mref

mref
+ a2

(

m−mref

mref

)2
)

.

The coefficient a1,2 can be found in table III.

CONCLUSIONS AND OUTLOOK

In this work we compute the NNLO corrections to
gg → tt̄ + X . With this last missing reaction included,
the total inclusive top pair production cross-section at
hadron colliders is now known exactly through NNLO
in QCD. We also derive estimates for the two-loop hard
matching coefficients which allows NNLL soft-gluon re-
summation matched consistently to NNLO. All results
are implemented in the program Top++ (v2.0) [33].

[Currie, Glover, Gehrmann, 
Gehrmann-de Ridder, Pries, Wells]
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QCD for Higgs physics
• So far all considerations were generic and apply to 

arbitrary LHC processes.

• The biggest success of the LHC Run I was the 
discovery of a resonance which looks very much like 
the SM Higgs boson.

• Studying the properties of this new particle is of outmost 
importance for Run II.
➡ Coupling measurements.	


➡ Total and differential cross sections.	


➡ SM vs. BSM?

• Aim: Use the concepts of the 1st part of the lecture to make 
precise predictions for SM Higgs physics at the LHC.
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Higgs physics at the LHC

µATLAS = 1.18+0.15
�0.14

µCMS = 1.00± 0.14

stat. = +0.10
�0.10

sys. (inc. theo.) =

+0.11
�0.10

theory =

+0.08
�0.07

[M. Dührssen @ Moriond EW 2015]
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Higgs physics at the LHC

• Higgs-boson production modes at the LHC:

Gluon fusion TTH  Higgs strahlungVBF
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Higgs physics at the LHC
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Higgs physics at the LHC

• Higgs-boson production modes at the LHC:

Gluon fusion TTH  Higgs strahlungVBF

• Gluon fusion dominates, followed by VBF.
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� = ⌧
X

ij

Z 1

⌧

dz

z
Lij(⌧/z)

�̂ij(z)

z ⌧ =
m2

H

S
' 10�4z =

m2
H

ŝ
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Higgs physics at the LHC
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• Gluon-fusion is a loop-induced process.

The gluon fusion cross section

• Luckily, the Higgs boson is lighter than the top-pair 
threshold.

• At NNLO, need double box with top-quark loop!

➡ LO is one loop.	


➡ NLO is two loops.	


➡ etc.

➡ Currently unknown.

➡ Try to integrate out the top quark and work with an 
effective theory
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The large mt limit

• Real radiation could spoil this naive picture:

• Effective field theory approach:

�̂gg(ŝ,m
2
H ,m2

t ,↵s) =
1X

`=2

1X

k=1

↵`
s

mk
t

�̂`,k(ŝ,m
2
H) m2

H ⌧ 4m2
t

L = LQCD,5 �
1
4v

C1 H Ga
µ⌫ Gµ⌫

a + . . .

➡ Hard gluon emissions at                        beyond leading 
order!

4m2
t ' ŝ > m2

H

• How well can this work?

➡ Higgs mass is not that much below top mass.
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dz

z
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m2

H

S
' 10�4z =

m2
H

ŝ

➡ Main 
contribution 
from region 
where tttttttt.      z ' 1

➡ Physically:	

production at 
threshold + 
emission of soft 
partons.
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The large mt limit
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Figure 3: Partonic cross section at NLO for Mt = 170.9 and MH = 130 GeV
at various orders in the expansion parameters (increasing order corresponds to
decreasing dash size of the lines). Left column: O(1/M10

t ) and O((1 − x)n),
n = 0, . . . , 8. Right column: O((1 − x)8) and O(1/M2n

t ), n = 0, . . . , 5. Solid:
exact. The dashed vertical line indicates the threshold.
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• The inclusive gluon-fusion cross section was computed 

The gluon fusion cross section

• 1/mt corrections at NNLO were found to be very small.

[Harlander, Ozeren; Pak, Rogal, Steinhauser; Ball, Del Duca, 
Marzani, Forte, Vicini; Harlander, Mantler, Marzani, Ozeren]

➡ at LO and NLO. [Dawson; Djouadi, Graudenz, 

➡ at NNLO in the large mt EFT, including 1/mt 
corrections.

[Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven
Harlander, Mantler, Marzani, Ozeren]

➡ at N3LO in the large mt EFT.
[Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger

• What motivated such a high order computation?
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The gluon fusion cross section
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p
S = 13TeV

LO NLO NNLO NNNLO

0.5 1.0 1.5 2.0
10

20

30

40

50

�/mh

�
/p
b

LHC@ 13TeV
pp�h+X gluon fusion
MSTW08 68cl
�=�R=�F

Scale variation



!
!

!
!

Energy variation
LO NLO NNLO NNNLO
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Energy variation
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• How to perform such a high-order computation..?

NNLO and N3LO

•                       Can proceed in exactly the same way as at for 
LO and NLO discussed in the first part of the lecture.
In principle:

➡ Parametrise D-dimensional phase space.	


➡ IR singularities show up as poles in epsilon.

•                      This is not feasible, because we have to deal with 
multi-body phase space integrals.
In practise:

➡ Phase space parametrisations are not really suitable 
for analytic integration

➡ Need some new technology
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Reverse - Unitarity
• Optical theorem:

➡ Discontinuities of amplitudes are phase-

=
Z

d�Im

1
p2 �m2 + i"

! �+(p2 �m2) = �(p2 �m2) ✓(p0)

• Discontinuities of loop integrals are given by Cutkosky’s 
rule:

• Read optical theorem ‘backwards’: inclusive phase-
integrals as unitarity cuts of loop integrals.

[Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]

➡ Makes phase-space integrals accessible to loop technology!
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IBPs and master integrals
• Loop integrals are not independent, but they are related by 

various relations.
➡ Integration-by-parts identities (IBPs). [Chetyrkin, Tkachov]

• IBPs can be solved algorithmically. [Laporta]leading-order cross sections for H plus five partons. More details about the construction of

the amplitude in this limit will be given in Section 7. Here it suffices to say that we have

computed the squared amplitude and we have checked that in the limit where we only keep

the first two terms in the threshold expansion, all the phase space integrals can be reduced

to linear combinations of the following ten soft master integrals,

1
2

1
2

=

∫
dΦS

4 = ΦS
4 (ϵ) , (6.1)

1

2

1
2

=

∫
dΦS

4

(s13 + s15)s34
= ΦS

4 (ϵ)F2(ϵ) , (6.2)

2

1

2

1

=

∫
dΦS

4

s14s23s34
= ΦS

4 (ϵ)F3(ϵ) , (6.3)

1

2

1

2

=

∫
dΦS

4

s13s15s34s45
= ΦS

4 (ϵ)F4(ϵ) , (6.4)

2
1

2

1

=

∫
dΦS

4

(s14 + s15)s23s345
= ΦS

4 (ϵ)F5(ϵ) , (6.5)

1

21

2

=

∫
dΦS

4

(s13 + s14)(s14 + s15)s23s34
= ΦS

4 (ϵ)F6(ϵ) , (6.6)

1

2 2

1

=

∫
dΦS

4

s15s24s34s35
= ΦS

4 (ϵ)F7(ϵ) , (6.7)

2

11

2

=

∫
dΦS

4

(s13 + s15)(s23 + s24)s34s35
= ΦS

4 (ϵ)F8(ϵ) , (6.8)

1

2

1
2

=

∫
dΦS

4

s15(s14 + s15)s23s34s345
= ΦS

4 (ϵ)F9(ϵ) , (6.9)

– 15 –

= � (✏� 1)(2✏� 1)(3✏� 2)(3✏� 1)(6✏� 5)(6✏� 1)
✏4(✏ + 1)(2✏� 3)

➡ All integrals are linear combination of a small set of master 
integrals.
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Differential equations
• We can use reverse-unitarity to differentiate with respect to 

the Higgs mass:

• Can use IBP relations to reduce back to master integrals.

@

@m2
H

�+(p
2
H �m2

H) ! @

@m2
H

1

p2H �m2
H

=
1

(p2H �m2
H)2

➡ Master integrals satisfy a system of 1st order ODEs.
@

@z̄
~I = A(z̄, ✏) ~I z̄ = 1� z

• Boundary conditions are given by the soft limit           .z̄ ! 0

[Beneke, Smirnov]

➡ Limits of Feynman integrals can be obtained from 
momentum space expansions and expansion by regions.
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➡ Huge system of coupled differential equations!
• Solving the differential equations can still be very tough!

The threshold expansion

�̂ij(z)

z
= �̂SV �ig �jg +

1X

N=0

�̂(N)
ij z̄N

• We know that the cross section is dominated by           .       z ! 1

➡ Approximated the cross section by a series around         .z = 1

• The coefficients in the expansion are not constants, but 
they are polynomials in                  . log(1� z)

➡ At N3LO: �̂(N)
ij =

5X

k=0

c(N)
ijk log

k
(1� z)

• The first term is called the                     term and is 
distribution-valued:

soft-virtual

➡ At N3LO: �̂SV
= a �(1� z) +

5X

k=0

bk

"
log

k
(1� z)

1� z

#

+
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➡ Single-emission contributions can be computed exactly.

• One can compute the master integrals as an expansion 
around threshold.

The threshold expansion

• Remaining contributions can be obtained by

➡ Writing an ansatz for each master integral

Mi =
X

j

6X

k=2

cijk(1� z)(j�k✏)

➡ Insert ansatz into differential equations.

➡ Solve a huge linear system for the coefficients.
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Scale vs. PDF uncertainty
2

range 56–99%.
In the binned maximum-likelihood fit, the statisti-

cal uncertainty of the H ! �� event yield is modeled
using a Gaussian distribution, while the event yield
in the H ! ZZ⇤ ! 4` channel follows a Poisson dis-
tribution due to the small sample size. Experimen-
tal and theoretical systematic uncertainties a↵ecting the
signal yields, detector e�ciencies, branching fractions
and fiducial acceptance corrections are taken into ac-
count in the likelihood as constrained nuisance param-
eters. Nuisance parameters describing the same uncer-
tainty sources are treated as fully correlated between
bins and channels. Systematic uncertainties on the
H ! �� and H ! ZZ⇤ ! 4` background estimates and
e�ciency correction factors, as well as the uncertainty
on the integrated luminosity, are described in detail in
Refs. [8, 9]. The branching fraction uncertainty due to
the assumed quark masses and other theoretical uncer-
tainties are evaluated following the recommendations of
Ref. [16], considering uncertainty correlations between
the H ! �� and H ! ZZ⇤ ! 4` decay channels. Un-
certainties on the acceptance correction related to the
choice of PDF set are evaluated by taking the envelope
of the sum in quadratures of eigenvector variations of
the baseline (CT10 [17]) and the central values of alter-
native (MSTW2008NLO [18] and NNPDF2.3 [19]) PDF
sets. Uncertainties on the acceptance correction asso-
ciated with missing higher-order corrections are evalu-
ated by varying the renormalization and factorization
scales coherently and individually by factors of 0.5 and
2 from their nominal values, and by reweighting the pHT
distribution from Powheg-box to the prediction of the
HRes 2.2 calculation [20, 21]. The envelope of the max-
imum deviation of the combined scale variations and the
pHT reweighting is used as the systematic variation. To
account for the uncertainty in the mass measurement,
the Higgs boson mass is varied by ±0.4 GeV. To as-
sess the systematic uncertainty due to the assumption of
SM cross-section fractions of the Higgs boson production
modes, the VBF and VH fractions are varied by factors of
0.5 and 2 from the SM prediction and the fraction of tt̄H
is varied by factors of 0 and 5. These factors are based
on current experimental bounds [22–26]. The total un-
certainties on the acceptance correction range from 1%
to 6%, depending on the channel, distribution and bin.

The total systematic uncertainties on the combined dif-
ferential cross sections range from 4% to 12%, depending
on the distribution and bin. For the kinematic variables
pHT and |yH|, the largest systematic uncertainties on the
di↵erential cross sections are due to the luminosity and
the background estimates in both channels. For the jet
variables Njets and pj1T , the largest systematic uncertain-
ties on the di↵erential cross sections are due to the jet en-
ergy scale and resolution. In the shape combination, the
normalization uncertainties including luminosity, branch-
ing fractions, and e�ciency uncertainties do not apply.

Data LHC-XS ADDFGHLM
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b]
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FIG. 1. Measured total cross section of Higgs boson produc-
tion compared to two calculations of the ggF cross section.
Contributions from other relevant Higgs boson production
modes (VBF, VH, tt̄H, bb̄H) are added using cross sections
and uncertainties from Ref. [10]. Details of the predictions
are presented in Table I.

Statistical uncertainties dominate all resulting distribu-
tions, ranging from 23% to 75%.

TABLE I. Summary of the ggF predictions used in the
comparison with the measured cross sections. The second
column states the order in QCD perturbation theory and
which threshold resummation is applied, if any. Further de-
tails are provided in the footnotes. All predictions are for
mH = 125.4 GeV and

p
s = 8 TeV.

Total cross-section calculations

LHC-XS [10] NNLO+NNLL a,b,c

ADDFGHLM [27–30] N3LO a,b,c

Analytical di↵erential cross-section predictions

HRes 2.2 [20, 21] NNLO+NNLL a,e,f

STWZ [31], BLPTW [32] NNLO+NNLL c,d,e,g,h

JetVHeto 2.0 [33–35] NNLO+NNLL a,c,e

Monte Carlo event generators

SHERPA 2.1.1 [36, 37] H + 0, 1, 2 jets @NLO i,j

MG5 aMC@NLO [38, 39] H + 0, 1, 2 jets @NLO i,k,l

Powheg Nnlops [40, 41] NNLO�0j , NLO e,l,m
�1j

a Considers b- (and c-) quark masses in the gg ! H loop
b Includes electroweak corrections
c Based on MSTW2008nnlo [18] (↵s from PDF set)
d Uses ⇡2-resummed gg ! H form factor
e NNLO refers to the total cross section
f Based on the CT10nnlo PDF set
g In the notation of Ref. [31], this corresponds to NNLL0
h Includes 1-jet resummation included at NLL0+NLO
i Based on the CT10nlo PDF set
j Uses MEPS@NLO method and CKKW merging scheme [42–44]
k Software version 2.2.1, NLO merged using FxFx scheme [39]
l Interfaced with Pythia8 for parton showering
m Uses Minlo method & yH reweighting to HNNLO [41, 45, 46].
The total pp ! H cross section is determined in the

H ! �� channel to be 31.4±7.2 (stat)±1.6 (sys) pb and
in the H ! ZZ⇤ ! 4` channel to be 35.0 ± 8.4 (stat) ±
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Scale vs. PDF uncertainty

gg → H (pb), PDF unc., αs = 0.118 8 TeV 13 TeV

68% C.L. (Hessian) 18.7 + 2.1% − 2.3% 42.7 + 2.0% − 2.4%

68% C.L. (LM) +2.3% − 2.3% +2.4% − 2.5%

gg → H (pb), PDF+αs 8 TeV 13 TeV

68% C.L. (Hessian) 18.7 + 2.9% − 3.0% 42.7 + 3.0% − 3.2%

68.0% C.L. (LM) +3.0% − 2.9% +3.2% − 3.1%

TABLE III: Uncertainties of σH(gg → H) computed by the LM method and by the Hessian

method, with Tier-2 penalty included. The 68% C.L. errors are given as percentage of the central

value, and the PDF-only uncertainties are for αs = 0.118.

CT14 MMHT2014 NNPDF3.0 CT10

8 TeV 18.66+2.1%
−2.3% 18.65+1.4%

−1.9% 18.77+1.8%
−1.8% 18.37+1.7%

−2.1%

13 TeV 42.68+2.0%
−2.4% 42.70+1.3%

−1.8% 42.97+1.9%
−1.9% 42.20+1.9%

−2.5%

TABLE IV: The Higgs boson production cross sections (in pb) for the gluon fusion channel at

the LHC, at 8 and 13 TeV center-of-mass energies, using the CT14, MMHT2014, NNPDF3.0, and

CT10 PDFs, with a common value of αs(mZ) of 0.118. The errors given are the PDF errors at the

68% confidence level.

shown in Fig. 33. Both the central values for the gg luminosity and the uncertainty bands

agree very well among the 3 global PDFs, in the x range sensitive to Higgs production. In

Table IV, we compare the predictions and uncertainties for Higgs boson production through

gg fusion at 8 and 13 TeV from CT14 with those from MMHT2014, NNPDF3.0, and CT10.

There are minor increases in the cross section predictions when going from CT10 to CT14,

on the order of 1-1.5%. Along with the changes present in the updated PDFs from the two

other PDF groups, the result is a remarkably good agreement observed for both the central

predictions and the uncertainties for the 3 global PDF groups. This will result in a total

PDF uncertainty for the gluon fusion cross section at 13 TeV that will be of the order of

the scale uncertainties derived from the new NNNLO cross section calculation.

Another advantage of the LM analysis is that it allows us to identify which experimental

data sets are most sensitive to different values of the Higgs cross section. We display this in
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Threshold logarithms

• The cross section is dominated by            . z ! 1

�̂ij(z)

z
= �̂SV �ig �jg +

1X

N=0

�̂(N)
ij z̄N

�̂SV
= a �(1� z) +

5X

k=0

bk

"
log

k
(1� z)

1� z

#

+

• At each order in perturbation theory there are ‘large 
logarithms’ (plus distributions) that we might want to resum.

• It is possible to resum threshold logarithms to all orders, but 
we need to go to Mellin space:

�̂(z) =

Z c+i1

c�i1

dN

2⇡i
z�N �̂(N)�̂(N) =

Z 1

0
dz zN�1 �̂(z)
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Mellin space

• Let us consider threshold resummation in QED.
➡ Consider                     soft gluons.q q̄ ! Z + n

• Using eikonal Feynman rules, one can see that the eikonal 
matrix element factorises:

Meik.
n =

1

n!

⇥
Meik.

1

⇤n

• The phase space contains a delta function �(z � z1 . . . zn)

➡ Spoils naive factorisation.

• Phase space factorises in Mellin space:
Z 1

0
dz zN�1 �(z � z1 . . . zn) = zN�1

1 . . . zN�1
n

• Then: 1X

n=0

1

n

⇥
Meik.

n (N)

⇤n
= exp

⇥
Meik.

n (N)

⇤
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Threshold resummation

• The             limit corresponds to             .  

• One can show that in this limit the cross section in Mellin 
space takes the form

z ! 1 N ! 1

�̂gg = g0(as) exp


1

as
g1(�) + g2(�) + as g3(�) + . . .

�

� = as logNLL NLL NNLL

Z 1

0
dz zN�1

"
log

k
(1� z)

1� z

#

+

=

(�1)

k

k + 1

log

k+1 N +O(1/N)

Z 1

0
dz zN�1

"
log

k
(1� z)

1� z

#

+

=

(�1)

k

k + 1

log

k+1 N +O(1/N)

• The function in the exponent are known up to i=4 (N4LL), 
up to one constant.
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Threshold resummation

Order Coe�cients Tower of logs (ansL
k, 8n)

LL g1 k = 2n
NLL g1, g2 2n� 1  k  2n
NLL0

g1, g2, g0,1 2n� 2  k  2n
NNLL g1, g2, g3, g0,1 2n� 3  k  2n
NNLL0

g1, g2, g3, g0,1, g0,2 2n� 4  k  2n
N3LL g1, g2, g3, g4, g0,1, g0,2 2n� 5  k  2n
N3LL0

g1, g2, g3, g4, g0,1, g0,2, g0,3 2n� 6  k  2n

Table 1: Towers of logarithms included in a given logarithmic accuracy.

2. NkLL0 accuracy, if the Sudakov exponent S if included to nkll accuracy, and the hard coe�cient
g0 is included up to NkLO accuracy.

Let us denote the the resummed coe�cient at NkLL(0) accuracy by CNkLL(0) . The di↵erence between
NkLL and NkLL0 lies in the fact whether the hard corrections are exactly included at a given order in
pQCD. Indeed, if the Sudakov exponent is included at nkll, then the terms we neglect are O(ak+1

s ),
because

S(as, L)�
k+1X

n=1

a

k�2
s gk(�) = a

k
s gk+2(�) + . . . = O(ak+1

s ) , (67)

Going from NkLL to NkLL0 we therefore include the hard coe�cient at the same order as the contri-
butions form the Sudakov exponent. It also has some other e↵ect, which becomes visible if one counts
the towers of large logarithms that are resummed NkLL to NkLL0. In Table 1 we show which towers of
logarithms are correctly included to all order in perturbation theory if one includes the hard coe�cient
and the Sudakov exponent at a certain order. In more detail, let us spell out explicitly the expansion
of the resummed coe�cient function (putting all coe�cients to 1 for clarity),

Cresum =1 + ↵s L
2 + ↵

2
s L

4 + ↵

3
s L

6 + ↵

4
s L

8 + . . . LL

+ ↵s L + ↵

2
s L

3 + ↵

3
s L

5 + ↵

4
s L

7 + . . . NLL

+ ↵s + ↵

2
s L

2 + ↵

3
s L

4 + ↵

4
s L

6 + . . . NLL0

+ ↵

2
s L + ↵

3
s L

3 + ↵

4
s L

5 + . . . NNLL

+ ↵

2
s + ↵

3
s L

2 + ↵

4
s L

4 + . . . NNLL0

+ ↵

3
s L + ↵

4
s L

3 + . . . N3LL

+ ↵

3
s + ↵

4
s L

2 + . . . N3LL0

+ ↵

4
s L + . . . N4LL

+ ↵

4
s + . . . N4LL0

+ . . . N5LL

(68)

It is now easy to see that

Cresum = CNkLL +O(↵k
sL

0) = CNkLL0 +O(↵k+1
s L

1) . (69)
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N3LL threshold resummation
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Uncertainties (1)
• We need to go from Mellin-space back to the ‘physical space’.

f(z) =

Z

C

dN

2⇡i
⌧�N f(N)

C
➡ Left most pole corresponds to Landau pole!	


➡ Inverse transform exists order by order, but series 
diverges (asymptotic series).

• There are different prescriptions to deal with this:

➡ Minimal prescription.	


➡ Borel prescription.

C’ C
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Uncertainties (2)

• There is an ambiguity what to exponentiate:

• If I truncate the perturbative series in the exponent and in the 
hard coefficient    , I get different answers!

➡ Can produce different results for fixed log-accuracy 

�̂gg = g0(as) exp


1

as
g1(�) + g2(�) + as g3(�) + . . .

�

= g̃0(as) exp


1

as
g̃1(�) + g̃2(�) + as g̃3(�) + . . .

�

g̃0(as) = g0(as) e
f(as) g̃i(�) = gi(�)� fi f(as) =

1X

k=0

aks fk

g0
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Figure 5. Result for N -soft resummation. On the left we show the resummation at different accuracies,
always matched to the same NNLO result, for µF = mH, as a function of µR. On the right we focus on the
NNLO+N3LL result and we also vary µF.

Figure 6. Ratios of different resummed results to our best prediction A-soft2 with the exponentiated
constant ¯G0, plotted as a function of µR, for different choices of µF.

A quantitative comparison between the different resummed results is shown in Fig. 6, where
ratios to our best prediction, namely A-soft

2

with the exponentiated constant ¯

G

0

, are plotted as a
function of µR, for different choices of µF. As previously observed, we confirm here quantitatively
that the result obtained with  -soft

2

with g

0

exponentiated (solid red line) is almost identical to
our best prediction, the difference being always below 1%, and confirming that this prescription can
be indeed used as a numerically convenient alternative to A-soft

2

with ¯

G

0

. We also observe that for
a wide choice of scales not exponentiating ḡ

0

in A-soft
2

(dashed black line) leads to a result which
only differs from the result with ¯

G

0

by a few percent. In contrast, the difference between resummed

– 13 –

Uncertainties (2)
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Uncertainties (3)

• There is an ambiguity which logarithms to resum:

� = as logN

�̂gg = g0(as) exp


1

as
g1(�) + g2(�) + as g3(�) + . . .

�Z 1

0
dz zN�1

"
log

k
(1� z)

1� z

#

+

=

(�1)

k

k + 1

log

k+1 N +O(1/N)

log(1 +N) = logN +O(1/N)

✓
1 +

1

N

◆
logN = logN +O(1/N)

 (N) = logN +O(1/N)  (N) =

d

dN
log�(N)

. . .

• All these choices are formally equivalent, but can lead to 
different predictions.

➡ Some choices motivated by, e.g., analyticity.
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Uncertainties (3)
Figure 5. Result for N -soft resummation. On the left we show the resummation at different accuracies,
always matched to the same NNLO result, for µF = mH, as a function of µR. On the right we focus on the
NNLO+N3LL result and we also vary µF.

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 0.06  0.1  0.2  0.3  0.5  1  2  3
µR / mH

Ratio to A-soft2 with  -g0 exponentiated,  mH = 125 GeV,  LHC 8 TeV

µF = 2 mH

A-soft2 �-soft2 (g0 exp) �-soft2 N-soft 

 0.06  0.1  0.2  0.3  0.5  1  2  3
µR / mH

µF = mH/4

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 1.15

µF = mH µF = mH/2

Figure 6. Ratios of different resummed results to our best prediction A-soft2 with the exponentiated
constant ¯G0, plotted as a function of µR, for different choices of µF.

A quantitative comparison between the different resummed results is shown in Fig. 6, where
ratios to our best prediction, namely A-soft

2

with the exponentiated constant ¯

G

0

, are plotted as a
function of µR, for different choices of µF. As previously observed, we confirm here quantitatively
that the result obtained with  -soft

2

with g

0

exponentiated (solid red line) is almost identical to
our best prediction, the difference being always below 1%, and confirming that this prescription can
be indeed used as a numerically convenient alternative to A-soft

2

with ¯

G

0

. We also observe that for
a wide choice of scales not exponentiating ḡ
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➡ Stripper.	


➡ N-jettiness subtraction.	


➡ Antenna subtraction.

• We now even have fully differential distributions for H+j 
at NNLO!

H+j @ NNLO

• Three independent computations:
[Boughezal, Caola, Melnikov, Petriello, Schulze

[Boughezal, Focke, Giele, Liu, Petriello

[Chen, Gehrmann, Glover, Jaquier

• Computation is done in the large-mt limit.

• Fully differential!

➡ Allows for arbitrary cuts on the final state.
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H+j @ NNLO
2
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Figure 1: Cancellation of 1/✏ poles in the qg channel. Note
that individual contributions have been rescaled by a factor
of 0.1, while the sum of them is not rescaled.

detail in our previous work on Higgs plus jet production
in pure gluodynamics [9], we only sketch here the salient
features of the calculation. We then present the numer-
ical results of the computation including NNLO results
for cross sections of Higgs plus jet production at various
collider energies and for various values of the transverse
momentum cut on the jet. We also discuss the NNLO
QCD corrections to the transverse momentum distribu-
tion of the Higgs boson. Finally, we present our conclu-
sions.

We begin by reviewing the details of the computation.
Our calculation is based on the e↵ective theory obtained
by integrating out the top quark. For values of the Higgs
p
?

below 150 GeV, this approximation is known to work
to 3% or better at NLO [13, 14]. Since the Higgs boson re-
ceives its transverse momentum by recoiling against jets,
we expect that a similar accuracy of the large-mt ap-
proximation can be expected for observables where jet
transverse momenta do not exceed O(150) GeV as well.

The e↵ective Lagrangian is given by

L = �1

4
G(a)

µ⌫ G
(a),µ⌫ +

X

i

q̄ii/Dqi�C1
H

v
G(a)

µ⌫ G
(a),µ⌫ , (1)

where G
(a)
µ⌫ is the gluon field-strength tensor, H is the

Higgs boson field and qi denotes the light quark field
of flavor i. The flavor index runs over the values i =
u, d, s, c, b, which are all taken to be massless. The co-
variant derivative /D contains the quark-gluon coupling.
The Higgs vacuum expectation value is denoted by v,
and C1 is the Wilson coe�cient obtained by integrating
out the top quark. The calculation presented here re-
quires C1 through O(↵3

s), which can be obtained from
Ref. [15]. Both the Wilson coe�cient and the strong
coupling constant require ultraviolet renormalization; the
corresponding renormalization constants can be found
e.g. in Ref. [16].

Partonic cross sections computed according to the
above prescription are still not finite physical quantities.

NNPDF2.3, 8 TeV

�
[fb

]
µ [GeV]

LO

NLO

NNLO

40 60 80 100 120 140 160 180 200 220 240
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Figure 2: Dependence of the total LO, LO and NNLO cross-
sections on the unphysical scale µ. See text for details.

Two remaining issues must be addressed. First, contribu-
tions of final states with di↵erent number of partons must
be combined in an appropriate way to produce infrared-
safe observables. This requires a definition of final states
with jets. We use the anti-kT jet algorithm [17] to com-
bine partons into jets. Second, initial-state collinear sin-
gularities must be absorbed into the parton distribution
functions (PDFs) by means of standard MS PDF renor-
malization. A detailed discussion of this procedure can
be found in Ref. [18].
The finite cross sections for each of the partonic chan-

nels ij obtained in this way have an expansion in the MS
strong coupling constant ↵s ⌘ ↵s(µ), defined in a theory
with five active flavors,

�ij = �
(0)
ij +

↵s

2⇡
�
(1)
ij +

⇣↵s

2⇡

⌘2

�
(2)
ij +O(↵6

s). (2)

Here, the omitted terms indicated by O(↵6
s) include the

↵3
s factor that is contained in the leading order cross sec-

tion �
(0)
ij . Our computation will include the gg and qg

partonic cross sections at NNLO, �(2)
gg and �

(2)
qg , where q

denotes any light quark or anti-quark. At NLO, it can be
checked using MCFM [19] that these channels contribute
over 99% of the cross section for typical jet transverse
momentum cuts, p

?

⇠ 30 GeV. We therefore include the
partonic channels with two quarks or anti-quarks in the
initial state only through NLO.
In addition to the ultraviolet and collinear renormal-

izations described above, we need the following ingre-

dients to determine �
(2)
gg and �

(2)
qg : the two-loop vir-

tual corrections to the partonic channels gg ! Hg and
qg ! Hq; the one-loop virtual corrections to gg ! Hgg,
gg ! Hqq̄ and qg ! Hqg; the double real emission
processes gg ! Hggg, gg ! Hgqq̄, qg ! Hqgg and
qg ! HqQQ̄, where the QQ̄ pair in the last process can
be of any flavor. The helicity amplitudes for all of these
processes are available in the literature. The two-loop
amplitudes were computed in Ref. [20]. The one-loop cor-
rections to the four-parton processes are known [21] and

4

Figure 3: The transverse momentum of the leading jet at LO,
NLO, and NNLO in the strong coupling constant. The lower
inset shows the ratios of NLO over LO cross sections, and
NNLO over NLO cross sections. The red vertical error bars
in the lower inset indicate the scale-variation error, while the
shaded regions in the upper panel indicate the scale-variation
errors.

Figure 4: The transverse momentum of the Higgs boson at
LO, NLO, and NNLO in the strong coupling constant. The
lower inset shows the ratios of NLO over LO cross sections,
and NNLO over NLO cross sections. The red vertical er-
ror bars in the lower inset indicate the scale-variation error,
while the shaded regions in the upper panel indicate the scale-
variation errors.

CONCLUSIONS

We have presented in this manuscript a complete cal-
culation of Higgs production in association with a jet
through NNLO in perturbative QCD. Our computation
uses the recently proposed method of jettiness subtrac-

tion, a general technique for obtaining higher-order cor-
rections to processes containing final-state jets. We con-
firm and extend a recent calculation of the dominant
gg and qg partonic channels through NNLO [11], and
present additional phenomenological results for 8 TeV
LHC collisions. We also present several distributions for
the Higgs and the leading jet that can be measured with
LHC data. Our results indicate that the perturbative se-
ries is under good control after the inclusion of the NNLO
corrections. We look forward to the comparison of our
theoretical prediction with the upcoming data from Run
II of the LHC.
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Beyond large mt

• We expect the large-mt approximation to break down for 
large pT’s!
➡ There is a new scale, which may be as large as the top 

mass!

• The full NLO corrections to H+j are currently beyond 
reach.
➡ Requires the computation of double boxes with top-

quark loop.

• The same reasoning applies to double (triple, etc) Higgs 
production.

➡ Here the large-mt is not even supposed to work for the 
total cross section.
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Beyond large mt

HH production in gluon-gluon fusion at 14 TeV Cross section [fb]

HEFT 19.2+35.2+2.8%
−24.3−2.9%

LO FT, Γt = 0 GeV 23.2+32.3+2.0%
−22.9−2.3%

FT, Γt = 1.5 GeV 22.7+32.3+2.0%
−22.9−2.3%

NLO

HEFT 32.9+18.1+2.9%
−15.5−3.7%

HEFT Born-improved 38.5+18.4+2.0%
−15.1−2.4%

FTapprox (virtuals: Born-rescaled HEFT ) 34.3+15.0+1.5%
−13.4−2.4%

FT′

approx (virtuals: estimated from single Higgs in FT) 35.0+15.7+2.0%
−13.7−2.4%

Table 1: Cross section results (in fb) for Higgs pair production in gluon-gluon fusion at 14 TeV.
LO results in the Full Theory are given without and with top-quark width effects. The first NLO
result corresponds to the HEFT, while the second to the Born-improved HEFT. The third NLO
result, FTapprox, corresponds to our baseline approach where all known top-quark mass corrections
coming from one-loop amplitudes are included and the HEFT Born-rescaled approximation for the
two-loop amplitudes is used. In the last result, FT′

approx , the information from the known two-loop
triangles is also used to estimate the full two-loop contributions. More details are given in the
text. All NLO results feature a finite top-quark width. The first uncertainty quoted refers to scale
variations, while the second to PDFs. Uncertainties are in percent. No cuts are applied to final
state particles and no branching ratios are included.

functions (PDFs) are evaluated by using the MSTW2008 (LO and NLO) parametrisation

in the five-flavour scheme [84]. The renormalisation and factorisation scales µR,F are set to

µR = µF = µ0 = mHH/2. The dependence of the predictions on scale and PDF variations

can be estimated at no extra computational cost via a reweighting technique [77]. Scales

are varied independently in the range µ0/2 < µR, µF < 2µ0 and PDF uncertainties at the

68% C.L. are obtained following the prescription given by the MSTW collaboration [84].

Even though b-quark loops can be computed in our setup, b-quark masses as well as their

tiny (∼0.3%) contribution to the HH cross section are neglected in the following.

Table 1 collects our results. We first verify that the effect of the non–zero top-quark

width on the total cross section at LO, a ∼ 2% decrease, directly follows from the results

shown in fig. 3 and the fact that the invariant mass distribution peaks at ∼400 GeV. We

also note the well-known fact that the process receives large QCD corrections as well as the

expected reduction of the theoretical uncertainties for the NLO computations. We then

show three NLO results: i) the Born-improved HEFT result through a local event-by-event

reweighting, ii) the NLO FTapprox result, obtained by combining the exact real emission

matrix elements, with the Born-rescaled HEFT results for the virtual corrections and iii)

the NLO FT′

approx result obtained by combining the exact real emission matrix elements,

with the exact results of single Higgs production for the virtual corrections, as described

previously. For all NLO results we keep the finite top-quark width of 1.5 GeV.

We can now compare the different approximations of the FT NLO result. The first

– 10 –

[Maltoni, Vryonidou, Zaro
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Vector-boson-fusion

• If we want to probe the coupling of the Higgs boson to 
gauge bosons, then ggF is not adequate.

• It is more advantageous to use the VBF process in this case.

• However, VBF is ‘buried’ underneath ggF!

Singlet exchange Octet exchange
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• We can suppress the contribution from ggF by requiring 2 
forward jets, and low hadronic activity in the central 
detector.

➡ At least to jets with                    .
• Typical VBF cuts:

pT > 25GeV

➡ The two hardest jets satisfy 
|y| < 4.5 �yj1j2 < 4.5 M2

j1j2 > (600GeV)2

• Imposing VBF cuts, one can reduce the ggF contamination 
to ~10%.

• NNLO corrections to VBF would require the computation 
of pentaboxes with massive propagators.

➡ Beyond the reach of current technology.

Vector-boson-fusion
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Structure function approach
• Assume that there is no colour exchange at all between the 

upper and lower lines

➡ Exact at LO and NLO.
➡ Beyond NLO, non-factorisable diagrams are suppressed by 

colour, and by kinematics (angular ordering)

• QCD corrections completely factorise into DIS form factors!
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Inclusive cross section
3

σ (pb) at LHC
√s = 7 TeV

scale choice:
Q/4 ≤ µR,µF ≤ 4Q
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FIG. 4: The total cross section at LO, NLO and NNLO as a
function of mH for a

√
S = 7 TeV LHC employing the MSTW

PDF set [22]. The uncertainty bands are obtained by scale
variation as explained in the text.
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FIG. 5: The PDF uncertainty of the total cross section at
NNLO as a function of mH at a

√
S = 7 TeV LHC for the 68%

CL MSTW PDF set [22]. For ABKM [23] and JR09VF [24]
the ratio of the central value is plotted.

boson loop. This class of diagrams is gauge invariant but
not infrared safe and as it is not a VBF process, it is
not included in our calculation. Its contribution to typi-
cal VBF final states with a Higgs and two jets has been
found to be negligible [21].
We now turn to the discussion of the results. For the

sake of illustration we consider only a
√
S = 7 TeV LHC,

keeping in mind that the conclusions presented here are
qualitatively the same for a

√
S = 14 TeV LHC, and also

for Tevatron, see [20]. Our reference parton distribution
functions (PDFs) set is MSTW [22] and the electroweak
parameters (GF ,MZ ,MW , sin2 θW ) are set to their re-

√
S = 7 TeV

Higgs mass LO NLO NNLO

120 1.235+0.131
−0.116 1.320+0.054

−0.022 1.324+0.025
−0.024

160 0.857+0.121
−0.099 0.915+0.046

−0.016 0.918+0.019
−0.015

200 0.614+0.106
−0.082 0.655+0.038

−0.012 0.658+0.015
−0.010

300 0.295+0.070
−0.049 0.314+0.022

−0.010 0.316+0.008
−0.004

400 0.156+0.045
−0.030 0.166+0.013

−0.007 0.167+0.005
−0.001

TABLE I: Cross sections (pb) at a
√
S = 7 TeV LHC with

the uncertainty due to independent scale variations µR, µF ∈
[Q/4, 4Q] at LO, NLO and NNLO in QCD as obtained with
the MSTW PDF sets [22].

spective PDG values [25].

Fig. 4 presents the cross section as a function of the
Higgs mass at LO, NLO and NNLO in QCD, together
with the uncertainties coming from (uncalculated) higher
orders. These are estimated by an independent varia-
tion of the factorization and renormalization scales in
the range µR, µF = ξR,FQ with ξR,F ∈ [1/4, 4], where
Q is the virtuality of the vector-boson probing the corre-
sponding structure function to which we apply a technical
cutoff of 1 GeV. The lower inlay of Fig. 4 zooms in on the
relative variations normalized to the NNLO cross section
at µR, µF = Q, so that the exceptionally good conver-
gence of the perturbation series can be appreciated. For
NNLO this is at the 2% level and in principle, could be
pushed even further within the structure function ap-
proach by incorporating the available hard corrections at
order α3

s [26–28]. Numbers for our best estimate, i.e.,
NNLO in QCD, are presented in Table (I).
The most natural choice µR, µF = ξR,FQ as a refer-

ence scale is also supported by kinematics arguments,
i.e., the observation that the average gauge boson vir-
tuality in VBF amounts only to ⟨Q⟩ ≃ 20 GeV for a√
S = 7 TeV LHC. Of course, other scale choices, e.g.

µR, µF ∈ [mH/4, 4mH], are equally valid. However, they
typically exhibit a much poorer convergence of the per-
turbative expansion and lead to sizable deviations in the
lower order predictions, especially for heavy Higgs bosons
(e.g. a 7% difference formH = 400 GeV at NLO). Only at
NNLO, both the central values and the uncertainty band
for the latter choice agree within the 2% level with those
in Table (I). This clearly demonstrates the markedly im-
proved scale stability of our NNLO predictions.
In Fig. 5 the dependence on the parton distribu-

tions and their errors is studied, which estimates the
uncertainty of the total cross section due to the non-
perturbative parton dynamics inside the proton. To this
aim we employ the MSTW 68% confidence level PDF
sets [22] through NNLO and compare also with the cen-
tral predictions obtained with the other available PDF
sets based on complete NNLO QCD predictions, i.e.,
ABKM [23] and JR09VF [24]. The results are consistent
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FIG. 4: The total cross section at LO, NLO and NNLO as a
function of mH for a

√
S = 7 TeV LHC employing the MSTW

PDF set [22]. The uncertainty bands are obtained by scale
variation as explained in the text.
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NNLO as a function of mH at a

√
S = 7 TeV LHC for the 68%

CL MSTW PDF set [22]. For ABKM [23] and JR09VF [24]
the ratio of the central value is plotted.

boson loop. This class of diagrams is gauge invariant but
not infrared safe and as it is not a VBF process, it is
not included in our calculation. Its contribution to typi-
cal VBF final states with a Higgs and two jets has been
found to be negligible [21].
We now turn to the discussion of the results. For the

sake of illustration we consider only a
√
S = 7 TeV LHC,

keeping in mind that the conclusions presented here are
qualitatively the same for a

√
S = 14 TeV LHC, and also

for Tevatron, see [20]. Our reference parton distribution
functions (PDFs) set is MSTW [22] and the electroweak
parameters (GF ,MZ ,MW , sin2 θW ) are set to their re-

√
S = 7 TeV

Higgs mass LO NLO NNLO

120 1.235+0.131
−0.116 1.320+0.054

−0.022 1.324+0.025
−0.024

160 0.857+0.121
−0.099 0.915+0.046

−0.016 0.918+0.019
−0.015

200 0.614+0.106
−0.082 0.655+0.038

−0.012 0.658+0.015
−0.010

300 0.295+0.070
−0.049 0.314+0.022

−0.010 0.316+0.008
−0.004

400 0.156+0.045
−0.030 0.166+0.013

−0.007 0.167+0.005
−0.001

TABLE I: Cross sections (pb) at a
√
S = 7 TeV LHC with

the uncertainty due to independent scale variations µR, µF ∈
[Q/4, 4Q] at LO, NLO and NNLO in QCD as obtained with
the MSTW PDF sets [22].

spective PDG values [25].

Fig. 4 presents the cross section as a function of the
Higgs mass at LO, NLO and NNLO in QCD, together
with the uncertainties coming from (uncalculated) higher
orders. These are estimated by an independent varia-
tion of the factorization and renormalization scales in
the range µR, µF = ξR,FQ with ξR,F ∈ [1/4, 4], where
Q is the virtuality of the vector-boson probing the corre-
sponding structure function to which we apply a technical
cutoff of 1 GeV. The lower inlay of Fig. 4 zooms in on the
relative variations normalized to the NNLO cross section
at µR, µF = Q, so that the exceptionally good conver-
gence of the perturbation series can be appreciated. For
NNLO this is at the 2% level and in principle, could be
pushed even further within the structure function ap-
proach by incorporating the available hard corrections at
order α3

s [26–28]. Numbers for our best estimate, i.e.,
NNLO in QCD, are presented in Table (I).
The most natural choice µR, µF = ξR,FQ as a refer-

ence scale is also supported by kinematics arguments,
i.e., the observation that the average gauge boson vir-
tuality in VBF amounts only to ⟨Q⟩ ≃ 20 GeV for a√
S = 7 TeV LHC. Of course, other scale choices, e.g.

µR, µF ∈ [mH/4, 4mH], are equally valid. However, they
typically exhibit a much poorer convergence of the per-
turbative expansion and lead to sizable deviations in the
lower order predictions, especially for heavy Higgs bosons
(e.g. a 7% difference formH = 400 GeV at NLO). Only at
NNLO, both the central values and the uncertainty band
for the latter choice agree within the 2% level with those
in Table (I). This clearly demonstrates the markedly im-
proved scale stability of our NNLO predictions.
In Fig. 5 the dependence on the parton distribu-

tions and their errors is studied, which estimates the
uncertainty of the total cross section due to the non-
perturbative parton dynamics inside the proton. To this
aim we employ the MSTW 68% confidence level PDF
sets [22] through NNLO and compare also with the cen-
tral predictions obtained with the other available PDF
sets based on complete NNLO QCD predictions, i.e.,
ABKM [23] and JR09VF [24]. The results are consistent

[Bolzoni, Maltoni, Moch, Zaro

• Small remaining Scale uncertainty (~1-2%)!
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Differential cross section
• Recently, the differential NNLO cross section in the structure 

function approach was obtained. [Cacciari, Dreyer, Karlberg, 
Salam, Zanderighi

➡ Can apply VBF cuts!
➡ Method: Combine inclusive computation with H+3j 

computation from POWHEG.
3

matrix-element weights for the assignments of partons
to upper and lower sectors. We therefore re-engineered
the code so that for each set of 4-momenta, weights are
decomposed into the contributions for each of the dif-
ferent possible sets of assignments of partons to the two
sectors. For every element of this decomposition it is
then possible to unambiguously obtain the vector-boson
momenta and so correctly generate a counterevent. The
POWHEG-BOX’s [29, 30] “tagging” facility was particularly
useful in this respect, notably for the NLO subtraction
terms. To check the correctness of the assignment to
sectors, we verified that as the rapidity separation be-
tween the two leading jets increases, there was a decreas-
ing relative fraction of the cross section for which partons
assigned to the upper (lower) sector were found in the ra-
pidity region associated with the lower (upper) leading
jet. We also tested that the sum of inclusive and exclu-
sive contributions at NLO agrees with the POWHEG NLO
implementation of the VBF H+2-jet process.

To investigate the phenomenological consequences of
the NNLO corrections, we study 13 TeV proton-proton
collisions. We use a diagonal CKM matrix, full Breit-
Wigners for the W , Z and the narrow-width approxima-
tion for the Higgs boson. We take NNPDF 3.0 parton
distribution functions at NNLO with ↵s(MZ) = 0.118
(NNPDF30 nnlo as 0118) [31], also for our LO and NLO
results. We have five light flavours and ignore contribu-
tions with top-quarks in the final state or internal lines.
We set the Higgs mass to MH = 125 GeV, compati-
ble with the experimentally measured value [32]. Elec-
troweak parameters are set according to known exper-
imental values and tree-level electroweak relations. As
inputs we use MW = 80.398 GeV, MZ = 91.1876 GeV
and GF = 1.16637 ⇥ 10�5 GeV�1. For the widths
of the vector bosons we use �W = 2.141 GeV and
�Z = 2.4952 GeV.

Some care is needed with the renormalisation and fac-
torisation scale choice. A natural option would be to use
Q

1

and Q
2

as our central values for the upper and lower
sectors, respectively. While this is straightforward in the
inclusive code, in the exclusive code we had the limitation
that the underlying POWHEG-BOX code can presently only
easily assign a single scale (or set of scales) to a given
event. However, for each POWHEG phase-space point, we
have multiple upper/lower classifications of the partons,
leading to several {Q

1

, Q
2

} pairs for each event. Thus the
use of Q

1

and Q
2

would require some further degree of
modification of the POWHEG-BOX, which we leave to future
work. We instead choose a central scale that depends on
the Higgs transverse momentum pt,H :

µ2

0

(pt,H) =
MH

2

s✓
MH

2

◆
2

+ p2t,H . (2)

This choice of µ
0

is usually close to
p
Q

1

Q
2

. It represents
a good compromise between satisfying the requirement of
a single scale for each event, while dynamically adapting
to the structure of the event. In order to estimate missing

�(no cuts) [pb] �(VBF cuts) [pb]

LO 4.032+0.057
�0.069 0.957+0.066

�0.059

NLO 3.929+0.024
�0.023 0.876+0.008

�0.018

NNLO 3.888+0.016
�0.012 0.826+0.013

�0.014

TABLE I: Cross sections at LO, NLO and NNLO for VBF
Higgs production, fully inclusively and with VBF cuts. The
quoted uncertainties correspond to scale dependence, while
statistical errors at NNLO are about 0.1% with VBF cuts
and much smaller without.

higher-order uncertainties, we vary the renormalisation
and factorisation scales symmetrically (i.e. keeping µR =
µF ) by a factor 2 up and down around µ

0

.4

To pass our VBF selection cuts, events should have at
least two jets with transverse momentum pt > 25 GeV;
the two hardest (i.e. highest pt) jets should have absolute
rapidity |y| < 4.5, be separated by a rapidity �yj1,j2 >
4.5, have a dijet invariant mass mj1,j2 > 600 GeV and
be in opposite hemispheres (yj1yj2 < 0). Jets are de-
fined using the anti-kt algorithm [33], as implemented in
FastJet v3.1.2 [34], with radius parameter R = 0.4.
Results are shown in table I for the fully inclusive cross

section and with our VBF cuts. One sees that the NNLO
corrections modify the fully inclusive cross section only
at the percent level, which is compatible with the find-
ings of Ref. [9]. However, after VBF cuts, the NNLO
corrections are about 5 times larger, reducing the cross
section by 5�6% relative to NLO. The magnitude of the
NNLO e↵ects after cuts implies that it will be essential
to take them into account for future precision studies.
Note that in both the inclusive and VBF-cut cases, the
NNLO contributions are larger than would be expected
from NLO scale variation.
Di↵erential cross sections are shown in Fig. 2, for

events that pass the VBF cuts. From left to right, the
plot shows the transverse momentum distributions for
the two leading jets, pt,j1 and pt,j2 , for the Higgs boson,
pt,H , and the distribution for the rapidity separation be-
tween the two leading jets, �yj1,j2 . The bands and the
patterned boxes denote the scale uncertainties, while the
vertical error-bars denote the statistical uncertainty. The
e↵ect of the NNLO corrections on the jets appears to be
to reduce their transverse momentum, leading to nega-
tive (positive) corrections in regions of falling (rising) jet
spectra. One can see e↵ects of up to 10 � 12%. Turn-
ing to pt,H , one might initially be surprised that such an
inclusive observable should also have substantial NNLO
corrections, of about 8% for low and moderate pt,H . Our

4 We verified that an expanded scale variation, allowing µR 6= µF

with 1

2

< µR/µF < 2, led only to very small changes in the
NNLO scale uncertainties for the VBF-cut cross section and the
pt,H distribution.

~1% ~5-6%
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Differential cross section

4
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FIG. 2: From left to right, di↵erential cross sections for the transverse momentum distributions for the two leading jets, pt,j1
and pt,j2 , for the Higgs boson, pt,H , and the distribution for the rapidity separation between the two leading jets, �yj1,j2 .

interpretation is that since NNLO e↵ects redistribute jets
from higher to lower pt’s (cf. the plots for pt,j1 and pt,j2),
they reduce the cross section for any observable defined
with VBF cuts. As pt,H grows larger, the forward jets
tend naturally to get harder and so automatically pass
the pt thresholds, reducing the impact of NNLO terms.

As observed above for the total cross section with VBF
cuts, the NNLO di↵erential corrections are sizeable and
often outside the uncertainty band suggested by NLO
scale variation. One reason for this might be that NLO
is the first order where the non-inclusiveness of the jet
definition matters, e.g. radiation outside the cone modi-
fies the cross section. Thus NLO is, in e↵ect, a leading-
order calculation for the exclusive corrections, with all
associated limitations.

To further understand the size of the NNLO correc-
tions, it is instructive to examine a NLO plus parton
shower (NLOPS) calculation, since the parton shower
will include some approximation of the NNLO correc-
tions. For this purpose we have used the POWHEG VBF
H+2-jet calculation [20], showered with PYTHIA version
6.428 with the Perugia 2012 tune [35]. The POWHEG part
of this NLOPS calculation uses the same PDF, scale
choices and electroweak parameters as our full NNLO
calculation. The NLOPS results are included in Fig. 2,
at parton level, with multi-parton interactions (MPI)
switched o↵. They di↵er from the NLO by an amount
that is of a similar order of magnitude to the NNLO
e↵ects. This lends support to our interpretation that fi-
nal (and initial)-state radiation from the hard partons
is responsible for a substantial part of the NNLO correc-
tions. However, while the NLOPS calculation reproduces
the shape of the NNLO corrections for some observables

(especially pt,H), there are others for which this is not
the case, the most striking being perhaps �yj1,j2 . Par-
ton shower e↵ects were also studied in Ref. [36], using
the MC@NLO approach [37]. Various parton showers
di↵ered there by up to about 10%.

In addition to the NNLO contributions, precise phe-
nomenological studies require the inclusion of EW con-
tributions and non-perturbative hadronisation and MPI
corrections. The former are of the same order of magni-
tude as our NNLO corrections [13]. Using Pythia 6.428
and Pythia 8.185 we find that hadronisation corrections
are between �2 and 0%, while MPI brings up to +5%
at low pt’s. The small hadronisation corrections appear
to be due to a partial cancellation between shifts in pt
and rapidity. We leave a combined study of all e↵ects
to future work. The code for our calculation will also be
made public.

With the calculation presented in this letter, di↵er-
ential VBF Higgs production has been brought to the
same NNLO level of accuracy that has been available for
some time now for the ggH [38, 39] and VH [40] pro-
duction channels. This constitutes the first fully di↵er-
ential NNLO 2 ! 3 hadron-collider calculation, an ad-
vance made possible thanks to the factorisable nature of
the process. The NNLO corrections are non-negligible,
5–10%, i.e. an order of magnitude larger than the cor-
rections to the inclusive cross section. Their size might
even motivate a calculation one order higher, to N3LO,
to match the precision achieved recently for the ggH to-
tal cross section [41]. With the new “projection-to-Born”
approach introduced here, we believe that this is within
reach. It would also be of interest to obtain NNLO plus
parton shower predictions, again matching the accuracy


