

QCD at the LHC focusing on Higgs production

Claude Duhr

HiggsTools Annual School Pré Saint Didier, 28/06 - 04/07 2015

QCD at the LHC

- Aim of the lecture:
 - ➡ Introduction to the basics of QCD calculations for the LHC.
 - → Disclaimer: Had to make a (not unbiased!) choice of topics.
 - → Will not cover partons showers, etc. (See F. Krauss's lecture)

• Part I:

→ QCD @ LHC: Factorisation, LO, NLO and beyond.

• Part II:

➡ QCD for Higgs physics: large-mt limit, inclusive and differential ggF cross section, VBF.

QCD at the LHC

• The LHC is a proton collider.

- Protons are bound-states of quarks and gluons.
 - Need Quantum chromodynamics to describe LHC physics!

• QCD Lagrangian:

$$\mathcal{L} = -\frac{1}{4} \operatorname{Tr} (F_{\mu\nu} F^{\mu\nu}) + \overline{q}_{f} i \not D q_{f} - m_{f} \overline{q}_{f} q_{f} + \frac{1}{2\xi} \left(\partial^{\mu} G_{\mu}^{a}\right)^{2} + \overline{c}^{a} \partial^{\mu} D_{\mu} c^{a}$$
Gluons / Quarks Gauge fixing
pure Yang-Mills (different flavors) & ghosts
$$F_{\mu\nu} = \frac{i}{g} \left[D_{\mu}, D_{\nu}\right] = \left(\partial_{\mu} G_{\nu}^{a} - \partial_{\nu} G_{\mu}^{a} + g \sqrt{2} f^{abc} G_{\mu}^{b} G_{\nu}^{c}\right) T^{a}$$

$$D_{\mu} = \partial_{\mu} - ig T^{a} G_{\mu}^{a}$$

QCD Feynman rules

 b, ν a, μ $\rho d, \sigma$ c, ρ $-ig_s^2 \left[f^{abe} f^{cde} (g^{\mu\rho} g^{\nu\sigma} - g^{\mu\sigma} g^{\nu\rho}) \right]$ $+ f^{ace} f^{bde} (g^{\mu\nu} g^{\rho\sigma} - g^{\mu\sigma} g^{\nu\rho})$ $+ f^{ade} f^{bce} (g^{\mu\nu} g^{\rho\sigma} - g^{\mu\rho} g^{\nu\sigma})]$

Factorisation

QCD factorisation

$$d\sigma = \sum_{i,j} \int_0^1 dx_1 \, dx_2 \, f_i(x_1, \mu_F^2) \, f_j(x_2, \mu_F^2) \, d\hat{\sigma}_{ij}(\mu_F^2)$$

- $d\hat{\sigma}_{ij}$ is the partonic cross section.
 - ➡ calculable in perturbative QCD.
 - ➡ process-dependent.
- f_i are the parton distribution functions (PDFs).
 - non-perturbative, need to be extracted from measurements.
 - universal, process-independent.
 - QCD factorisation is expected to hold up to terms $\mathcal{O}(\Lambda_{QCD}/\sqrt{S})$.

PDFs & DGLAP evolution

- The rhs of the factorisation formula depends on the factorisation scale μ_F .
 - Introduces a source of uncertainty order-by-order in perturbation theory.
 - \rightarrow μ_F typically of the order of the hard scale.
- μ_F dependence governed by DGLAP equation:

$$\frac{d}{d\log\mu_F} f_i(x,\mu_F^2) = a_s(\mu_F^2) \sum_j P_{ij}(x,a_s(\mu_F^2)) \otimes f_j(x,\mu_F^2)$$

$$a_s(\mu_F^2) = \frac{\alpha_s(\mu_F^2)}{\pi} \qquad [f \otimes g](x) = \int_x^1 dt \, f(t) \, g\left(\frac{x}{t}\right)$$

Coupled system of integro-differential equations.

PDFs & DGLAP evolution

 P_{ij} are the Altarelli-Parisi splitting functions:

$$P_{ij}(x, a_s) = P_{ij}^{(0)}(x) + a_s P_{ij}^{(1)}(x) + a_s^2 P_{ij}^{(2)}(x) + \dots$$

 \blacktriangleright Known up to a_s^2

• They describe the collinear splitting of a parton j into a parton i carrying a fraction x of the original momentum. E.g.:

$$P_{qg}^{(0)}(x) = \frac{1}{2} \left[x^2 + (1-x)^2 \right]$$

Intuitive picture:

PDFs & DGLAP evolution

- If you need PDFs at a certain scale... where to get them from?
- There are several collaborations that are specialised in
 - ➡ fitting PDFs to data.
 - → providing the evolution to arbitrary scales (up to a certain accuracy in a_s^2).
 - Most common PDF set: MMHT, NNPDF, CTEQ, ABM,...
- Two public web sites that allow one to plot PDFs for different choices of x and the scale:

http://apfel.mi.infn.it/ http://hepdata.cedar.ac.uk/pdf/pdf3.html

PDFs

PDFs

QCD @ LO

QCD @ leading order

- Consider total cross section for e+e- production via an off-shell photon at LO in QCD:
 - Concentrate on QCD part, i.e., production of an off-shell photon with virtuality Q2.

$$\hat{\sigma}_{q\bar{q}} = \frac{1}{2S} \int d\Phi_1 \left| \mathcal{M}_{q\bar{q}\to\gamma^*} \right|^2$$

$$d\Phi_1 = (2\pi)^4 \,\delta^{(4)}(p_\gamma - p_1 - p_2) \,\frac{d^4 p_\gamma}{(2\pi)^3} \,\delta_+(p_\gamma^2 - Q^2)$$

$$\delta_+(p^2 - m^2) \equiv \delta(p^2 - m^2)\,\theta(p^0)$$

$$|\mathcal{M}_{q\bar{q}\to\gamma^*}|^2 = \frac{4\pi\alpha e_q^2}{N_c} Q^2 \qquad \hat{\sigma}_{q\bar{q}} = \frac{8\pi^2\alpha e_q^2}{N_c Q^2} \,\delta(1-z) \qquad z = Q^2/\hat{s}$$

QCD @ leading order

We need to fold the partonic cross section with the PDFs.
Useful formula:

$$\sigma(S,Q^2) = \sum_{i,j} \int_0^1 dx_1 \, dx_2 \, f_1(x_1,\mu_F^2) \, f_2(x_2,\mu_F^2) \, \hat{\sigma}_{ij}(Q^2,\hat{s},\mu_F^2)$$
$$= \tau \sum_{i,j} \left[\mathcal{L}_{ij}(\tau/z,\mu_F^2) \otimes \frac{\hat{\sigma}_{ij}(Q^2,Q^2/z,\mu_F^2)}{z} \right] (\tau) \implies \text{Prove this!}$$
$$\mathcal{L}_{ij}(z,\mu_F^2) = [f_i(x,\mu_F^2) \otimes f_j(x,\mu_F^2)](z) \qquad \tau = Q^2/S$$

• Final result for hadronic cross section:

$$\sigma^{LO}(S,Q^2) = \frac{16\pi^2 \alpha}{N_c S} \sum_f e_f^2 \mathcal{L}_{q_f \bar{q}_f}(\tau,\mu_F^2)$$

QCD @ leading order

- We cannot fix the value of the factorisation scale at this point!
 More on this later!
- We can also compute differential distributions of an observable.
 An observable O is given by a function O(p₁,..., p_n) of all momenta in the event. Its distribution is

$$\frac{d\hat{\sigma}_{ij}}{d\mathcal{O}} = \frac{1}{2\hat{s}} \int d\Phi_{n-2} \,\delta(\mathcal{O} - O(p_1, \dots, p_n)) \,\left|\mathcal{M}\right|^2$$

- Nowadays, there is no need to compute LO cross sections and distributions by hand!
 - ➡ Automated tools! MadGraph, Sherpa, CalcHep, ...
 - → + PS Monte Carlo generators: Pythia, Sherpa, Herwig.
 - ➡ See Frank's lecture.

• What is happening here?

$$\int \frac{deelee}{deelee} = \frac{1}{\hat{t}} = \frac{1}{E_1 E_g (1 - \cos \theta)} \qquad \begin{array}{l} \text{Singular if} \\ E_g \to 0 \text{ or } \theta \to 0 \end{array}$$

- This is a general feature: QCD amplitudes are singular whenever a gluon becomes soft or two (or more) massless partons becomes collinear.
- The divergence is universal, and does not depend on the details of the rest of the scattering process.

• How to avoid this divergence?

Solution 1: Simply do not go into the singular region!
 Practically, apply phase-space cuts to restrict the integration to the non-singular region:

$$\hat{\sigma}_{q\bar{q}}(p_{T,min}) = \frac{1}{2\hat{s}} \int d\Phi_2 |\mathcal{M}|^2 \theta(p_{T,g} > p_{T,min})$$

- → The cross section depends on the cuts!
- This type of phase-space integrals is best handled using numerical methods.

• Solution 2: Additional jets belong to higher orders in perturbation theory.

- $\hat{\sigma}(q\bar{q} \to \gamma^*) = \mathcal{O}(\alpha)$ LO QCD
- $\hat{\sigma}(q\bar{q} \to \gamma^* g) = \mathcal{O}(\alpha \, \alpha_s)$ NLO QCD
- ➡ If the gluon is soft or collinear, then the external state coincides with the external state of the Born configuration.
- We need to add together the loop corrections to the Born and the emissions of soft and collinear partons.
- This is a particular instance of the Kinoshita-Lee-Nauenberg (KLN) theorem: IR singularities cancel in inclusive-enough observables.

• Comment 1: There is a new channel opening!

- ➡ Need to include this channel.
- QCD factorisation requires to sum over initial states!

• Comment 2: PS cuts can give rise to large logarithms! $\hat{\sigma}_{q\bar{q}}(p_{T,min}) = \frac{1}{2\hat{s}} \int d\Phi_2 |\mathcal{M}|^2 \; \theta(p_{T,g} > p_{T,min}) \simeq \log \frac{p_{T,min}^2}{Q^2}$

- → If $p_{T,min}^2 \ll Q^2$, this logarithm can be large, at every order in perturbation theory.
- ➡ Need to resum these logarithms.
- ➡ cf. Frank's lectures.

QCD @ NLO

QCD @ NLO

• Ingredients for NLO: $\hat{\sigma}_{ij}^{NLO} = \hat{\sigma}_{ij}^{V} + \hat{\sigma}_{ij}^{R}$

$$\hat{\sigma}_{ij}^{V} = \frac{1}{2\hat{s}} \int d\Phi_n \, 2\operatorname{Re}\mathcal{M}_n^{(0)}\mathcal{M}_n^{(1)*} \qquad \hat{\sigma}_{ij}^{R} = \frac{1}{2\hat{s}} \int d\Phi_{n+1} \, \left| \mathcal{M}_{n+1}^{(0)} \right|^2$$

• For our example:

Virtual corrections

The phase-space is trivial, and the computation of the loop is not too difficult:

$$\hat{\sigma}_{q\bar{q}}^{V} = \sigma_0 \,\delta(1-z) \,a_s \,(4\pi)^\epsilon \,e^{-\gamma_E \epsilon} \left\{ -\frac{4}{3\epsilon^2} + \frac{1}{\epsilon} \left[\frac{4}{3} \log\left(\frac{Q^2}{\mu^2}\right) - 2 \right] \right.$$
$$\left. -\frac{2}{3} \log^2\left(\frac{Q^2}{\mu^2}\right) + 2 \log\left(\frac{Q^2}{\mu^2}\right) + \frac{7\pi^2}{9} - \frac{16}{3} + \mathcal{O}(\epsilon) \right]$$

- We used DimReg to regulate the divergences in the loop.
 In principle UV and IR poles.
 - ightarrow Here only IR, because LO in a_s
 - \rightarrow Result depends on arbitrary scale μ introduced by DimReg.
- How can we combine this with the real corrections...?
 - \rightarrow The tree-level matrix element was independent of ϵ .

Dimensional regularisation

• We have to do everything in D-dimensions! Conventional dimensional regularisation (CDR). • D-dimensional phase space: $d\Phi_2 = \mu^{4\epsilon} (2\pi)^D \,\delta^{(D)}(p_\gamma + k - p_1 - p_2) \,\frac{d^D p_\gamma}{(2\pi)^{D-1}} \,\delta_+(p_\gamma^2 - Q^2) \,\frac{d^D k}{(2\pi)^{D-1}} \,\delta_+(k^2)$ $=\frac{\pi^{1-\epsilon}}{2\Gamma(1-\epsilon)}\,d\hat{t}\,d\hat{u}\,\left(\frac{\hat{u}\hat{t}}{\mu^4}\right)^{-\epsilon}\,\delta(\hat{s}+\hat{t}+\hat{u}-Q^2)$ vs. $\frac{\pi}{2} d\hat{t} d\hat{u} \,\delta(\hat{s} + \hat{t} + \hat{u} - Q^2)$ in D = 4. → Phase space divergences regulated because $\int_{0}^{1} \frac{d\hat{t}}{\hat{t}^{1+\epsilon}} = -\frac{1}{\epsilon}$. • N.B.: We need everything in D dimensions, also the Born! (D-dimensional metric, Dirac matrices, etc.)

Real corrections

• Real corrections in D dimensions:

$$\hat{\sigma}_{q\bar{q}}^{R} = -\sigma_0 a_s (4\pi)^{\epsilon} \left(\frac{Q^2}{\mu^2}\right)^{-\epsilon} \frac{4\Gamma(1-\epsilon)}{3\epsilon \Gamma(1-2\epsilon)} \left[z^{\epsilon} (1-z)^{1-2\epsilon} + 2z^{1+\epsilon} (1-z)^{-1-2\epsilon}\right]$$

• This is supposed to cancel the poles of the virtuals:

$$\hat{\sigma}_{q\bar{q}}^{V} = \sigma_0 \,\delta(1-z) \,a_s \,(4\pi)^\epsilon \,e^{-\gamma_E \epsilon} \left\{ -\frac{4}{3\epsilon^2} + \frac{1}{\epsilon} \left[\frac{4}{3} \log\left(\frac{Q^2}{\mu^2}\right) - 2 \right] - \frac{2}{3} \log^2\left(\frac{Q^2}{\mu^2}\right) + 2\log\left(\frac{Q^2}{\mu^2}\right) + \frac{7\pi^2}{9} - \frac{16}{3} + \mathcal{O}(\epsilon) \right]$$

→ No double pole in ϵ .

→ No distribution $\delta(1-z)$.

Real corrections

• The real corrections are not integrable for $\epsilon = 0$ because there is a pole at z = 1

$$(1-z)^{-1-2\epsilon} = -\frac{1}{2\epsilon}\,\delta(1-z) + \sum_{k=0}^{\infty}\frac{(-2\epsilon)^k}{k!} \left[\frac{\log^k(1-z)}{1-z}\right]_{+}$$

Additional pole is a soft singularity, because it happens for $\hat{s} = Q^2$

$$\Rightarrow + \text{distribution: } \int_0^1 dz \, \left[\frac{\log^k (1-z)}{1-z} \right]_+ \, f(z) = -\int_0^1 dz \, \frac{f(z) - f(1)}{z-1} \, \log^k (1-z) \, dz = -\int_0^1 dz \, \frac{f(z) - f(1)}{z-1} \, \log^k (1-z) \, dz = -\int_0^1 dz \, \frac{f(z) - f(1)}{z-1} \, \log^k (1-z) \, dz = -\int_0^1 dz \, \frac{f(z) - f(1)}{z-1} \, \log^k (1-z) \, dz = -\int_0^1 dz \, \frac{f(z) - f(1)}{z-1} \, \log^k (1-z) \, dz = -\int_0^1 dz \, \frac{f(z) - f(1)}{z-1} \, \log^k (1-z) \, dz = -\int_0^1 dz \, \frac{f(z) - f(1)}{z-1} \, \log^k (1-z) \, dz = -\int_0^1 dz \, \frac{f(z) - f(1)}{z-1} \, \log^k (1-z) \, dz = -\int_0^1 dz \, \frac{f(z) - f(1)}{z-1} \, \log^k (1-z) \, dz = -\int_0^1 dz \, \frac{f(z) - f(1)}{z-1} \, \log^k (1-z) \, dz = -\int_0^1 dz \, \frac{f(z) - f(1)}{z-1} \, \log^k (1-z) \, dz = -\int_0^1 dz \, \frac{f(z) - f(1)}{z-1} \, \log^k (1-z) \, dz = -\int_0^1 dz \, \frac{f(z) - f(1)}{z-1} \, \log^k (1-z) \, dz = -\int_0^1 dz \, \frac{f(z) - f(1)}{z-1} \, \log^k (1-z) \, dz = -\int_0^1 dz \, \frac{f(z) - f(1)}{z-1} \, \log^k (1-z) \, dz = -\int_0^1 dz \, \frac{f(z) - f(1)}{z-1} \, \log^k (1-z) \, dz = -\int_0^1 dz \, \frac{f(z) - f(1)}{z-1} \, \log^k (1-z) \, dz = -\int_0^1 dz \, \frac{f(z) - f(1)}{z-1} \, dz = -\int_0^1 dz \, \frac{f(z$$

The partonic cross section is a distribution that needs to be convoluted with the parton luminosity!

$$\begin{aligned} \hat{\sigma}_{q\bar{q}}^{R} &= \sigma_{0} a_{s} \left(4\pi\right)^{\epsilon} e^{\gamma_{E}\epsilon} \left\{ \frac{4}{3\epsilon^{2}} \delta(1-z) + \frac{4}{3\epsilon} \left[1+z-2\left[\frac{1}{1-z}\right]_{+} \right. \\ &\left. -\delta(1-z) \log\left(\frac{Q^{2}}{\mu^{2}}\right) \right] + \mathcal{O}(\epsilon^{0}) \right\} \end{aligned}$$

QCD @ NLO

$$\begin{aligned} \hat{\sigma}_{q\bar{q}}^{V} &= \sigma_{0} \,\delta(1-z) \,a_{s} \,(4\pi)^{\epsilon} \,e^{-\gamma_{E}\epsilon} \left\{ -\frac{4}{3\epsilon^{2}} + \frac{1}{\epsilon} \left[\frac{4}{3} \log \left(\frac{Q^{2}}{\mu^{2}} \right) - 2 \right] + \mathcal{O}(\epsilon^{0}) \right\} \\ \hat{\sigma}_{q\bar{q}}^{R} &= \sigma_{0} \,a_{s} \,(4\pi)^{\epsilon} \,e^{\gamma_{E}\epsilon} \left\{ \frac{4}{3\epsilon^{2}} \,\delta(1-z) + \frac{4}{3\epsilon} \left[1 + z - 2 \left[\frac{1}{1-z} \right]_{+} \right. \\ \left. - \delta(1-z) \log \left(\frac{Q^{2}}{\mu^{2}} \right) \right] + \mathcal{O}(\epsilon^{0}) \right\} \\ \hat{\sigma}_{q\bar{q}}^{V} + \hat{\sigma}_{q\bar{q}}^{R} &= -2\sigma_{0} \,a_{s} \,(4\pi)^{\epsilon} \,e^{\gamma_{E}\epsilon} \,\frac{1}{\epsilon} \left[\frac{4}{3} \left[\frac{1}{1-z} \right]_{+} + \delta(1-z) - \frac{4}{3} (1+z) \right] + \mathcal{O}(\epsilon^{0}) \end{aligned}$$

Mass factorisation

- The remaining divergence is proportional to a splitting function, and therefore process independent.
 - We can 'renormalise' the PDFs such as to absorb this divergence

 $f_i^B(x) = (\Delta_{ij} \otimes f_j^R)(x) \qquad \Delta_{ij}(x, a_s) = \delta_{ij} + \frac{a_s}{\epsilon} P_{ij}^{(0)}(x) + \dots$

- After this procedure, the cross section is finite!
- The singularities have canceled, but there are still $\log \frac{Q^2}{\mu^2}$ the finite part.
 - After mass factorisation the cross section depends on the factorisation scale.
 - → Want to choose $\mu^2 \sim Q^2$, because otherwise these logarithms will be large!

Subtraction

- If we had to work always with DimReg for the phase space, this would not be practical.
- In practise, one exploits the fact that the IR limit of tree amplitudes is universal to build universal counterterms:

$$\sigma^{NLO} = \int_{n} d\sigma_{n}^{V} + \int_{n+1} d\sigma_{n+1}^{R}$$

- If the subtraction is local in phase space, we can also do distributions.
 - Two popular schemes: Frixione-Kunszt-Signer and Catani-Seymour dipoles.

$$\frac{d\sigma^{NLO}}{d\mathcal{O}} = \int_n \left(d\sigma_n^V O_n + d\sigma_n^B O_{n+1} \int_1^{\mathcal{C}} \mathcal{C} \right) + \int_{n+1} \left(d\sigma_{n+1}^R - \mathcal{C} \, d\sigma_n^B \right) \, O_{n+1}$$

IR and collinear safety

$$\frac{d\sigma^{NLO}}{d\mathcal{O}} = \int_n \left(d\sigma_n^V O_n + d\sigma_n^B O_{n+1} \int_1^{\mathcal{C}} \mathcal{C} \right) + \int_{n+1} \left(d\sigma_{n+1}^R - \mathcal{C} \, d\sigma_n^B \right) \, O_{n+1}$$

• There is a mismatch in the integrand in the virtual!

- Will in general not get finite answers for arbitrary observables!
- An observable is IR and collinear safe if

$$\lim_{i||j} O_n(p_1 \dots p_i, p_j \dots p_n) = O_{n-1}(p_1 \dots p_i + p_j \dots p_n)$$
$$\lim_{p_i \to 0} O_n(p_1 \dots p_i \dots p_n) = O_{n-1}(p_1 \dots p_{i-1}, p_{i+1} \dots p_n)$$

• If an observable is IR and collinear safe, then the previous construction gives a finite distribution.

The 'NLO revolution'

• At one-loop, we know the basis of integrals:

- A few years ago, several computer codes appeared that can compute the values of the coefficient numerically in an automated way!
 - Blackhat, Rocket, MadLoops, NJet, OpenLoops, GoSam,...
 - Combined with automation for LO and FKS/CS, one can automate the whole NLO business.

H + 3j @ NLO

[Greiner, Hösche, Luisoni, Schönherr, Winter, Yundin]
H + 3j @ NLO

NNLO and beyond

QCD @ NNLO

$$\hat{\sigma}_{ij}^{VV} = \frac{1}{2\hat{s}} \int d\Phi_n \left(2\text{Re}\mathcal{M}_n^{(0)}\mathcal{M}_n^{(2)*} + |\mathcal{M}_n^{(1)}|^2 \right)$$

$$\hat{\sigma}_{ij}^{RV} = \frac{1}{2\hat{s}} \int d\Phi_{n+1} \, 2\text{Re}\mathcal{M}_{n+1}^{(0)}\mathcal{M}_{n+1}^{(1)*}$$

$$\hat{\sigma}_{ij}^{RR} = \frac{1}{2\hat{s}} \int d\Phi_{n+2} \, |\mathcal{M}_{n+2}^{(0)}|^2$$

- In principle, the whole story generalises in a straightforward manner.
- In practise, there is a huge jump in complexity when going from NLO to NNLO.

Virtual corrections

- At one loop, we know a complete basis of integrals in 4 dimensions.
- At two loops, we only know very few and specific integrals.
 - ➡ 2-to-2 massless, 2 scales (e.g. dijets): ~1999
 - → 2-to-2 one leg off shell, 3 scales (e.g. Z+j): ~2000-01
 - → 2-to-2 two legs off shell, 4 scales (e.g. ZZ): ~2014
 - ➡ We do not know any two-loop 2-to-3 integrals...
- Apart from these integrals, we only know a few very specific two-loop integrals:
 - ➡ ttbar (num.)
 - some integrals for electroweak corrections

Virtual corrections

• At one loop, all integrals can be expressed in terms of logarithms and dilogarithms:

$$\operatorname{Li}_2(z) = -\int_0^z \frac{dt}{t} \, \log(1-t)$$

Beyond one loop, more general functions appear:
multiple polylogarithms:
G(a₁,...,a_n;z) = \$\int_0^z \frac{dt}{t-a_1} G(a_2,...,a_n;t)\$
G(a;z) = log \$\left(1-\frac{z}{a}\right)\$
G(0,1;z) = -Li_2(z)\$

elliptic polylogarithms:

$$\mathcal{L}_n(z,q) = \sum_{k=-\infty}^{\infty} \operatorname{Li}_n(z q^k) \qquad q = e^{2\pi i \tau}$$

Virtual corrections

- Beyond one loop, we do not know the basis of integrals.
 - We would still like to find a minimal set of integrals that we need to compute!
- Consider Feynman integrals with arbitrary powers of the propagators:

$$I(n_1, \dots, n_k) = \int \frac{d^D k_1 \dots d^D k_L}{D_1^{n_1} \dots D_k^{n_k}} \qquad n_i \in \mathbb{Z}$$

 \rightarrow defines a function on a lattice \mathbb{Z}^k .

Goal:

- → Find recursion relations on this lattice.
- Solve these recursions to express all integrals in terms of a small set of 'master integrals'.

• We can shift exponents by differentiation!

$$\frac{\partial}{\partial k_i^{\mu}} \frac{1}{[(k_i+p)^2]^n} = -2n \, \frac{k_{i\mu} + p_{\mu}}{[(k_i+p)^2]^{n+1}}$$

• What is the rhs of the recursion...?

$$\emptyset = \int d^D k_i \frac{\partial}{\partial k_i^{\mu}} \left(\dots \right)$$

Theorem:

In DimReg, integrals of total derivatives always vanish.

• N.B.:

For recursions to close, we must be able to express all scalar products in terms of denominators (=topology).

Example:

Bub
$$(n_1, n_2) = \int \frac{d^D k}{[k^2]^{n_1} [(k+p)^2]^{n_2}}$$

→ IBP relations:

$$0 = \int d^D k \frac{\partial}{\partial k^{\mu}} k^{\mu} \left(\dots \right) \qquad \qquad 0 = \int d^D k \frac{\partial}{\partial k^{\mu}} p^{\mu} \left(\dots \right)$$

$$Bub(n_1, n_2) = \frac{n_1 + n_2 - 1 - D}{p^2 (n_2 - 1)} Bub(n_1, n_2 - 1) + \frac{1}{p^2} Bub(n_1 - 1, n_2)$$
$$= \frac{1}{p^2} Bub(n_1, n_2 - 1) + \frac{n_1 + n_2 - 1 - D}{p^2 (n_1 - 1)} Bub(n_1 - 1, n_2)$$

→ N.B.: The integral vanishes unless $n_1, n_2 > 0$.

- Solving the recursions in the general case with many propagators is rather cumbersome.
- Other approach: Use the recursion relations to generate linear relations among integrals, and truncate the tower of relations.
 - → Turns recursion relations into a finite-sized linear system.
 - ➡ Laporta's algorithm.
- There are several public (and private) computer codes that allow one to solve IBP relations.
 - ➡ FIRE, Reduze, LiteRed,...

Differential equations

• We can also differentiate a master integral w.r.t an external scale, e.g.

$$\frac{\partial}{\partial m_i^2} \frac{1}{[q_i^2 - m_i^2]^{n_i}} = \frac{n_i}{[q_i^2 - m_i^2]^{n_i+1}}$$

- We can IBP-reduce the lhs to master integrals.
- Conclusion:

Master integrals satisfy systems of 1st order DEs among themselves!

This gives an effective way to compute the master integrals.

IR divergences @ NNLO

- Even if we can compute the virtual amplitudes, we still need to combine them with the real radiation contributions.
- We do not have a fully general subtraction scheme as we have at NLO, but a lot of progress in the last years:
 - ➡ Antenna subtraction.
 - \rightarrow qT subtraction.
 - Colourful NNLO
 - ➡ Stripper.
 - ➡ N-jettiness subtraction.

[Gehrmann, Gehrmann-de Ridder, Glover]

[Catani, Grazzini]

[Somogyi, Tróscányi]

[Czakon]

[Boughezal, Focke, Liu, Petriello; Gaunt, Stahlhofen, Tackmann, Walsh]

IR divergences @ NNLO

	Analytic	FS Colour	IS Colour	Local
Antenna				X
qТ		X		
Colourful			X	
Stripper	X			
N-jettiness				

QCD @ higher orders

QCD @ higher orders

QCD for Higgs physics

QCD for Higgs physics

- So far all considerations were generic and apply to arbitrary LHC processes.
- The biggest success of the LHC Run I was the discovery of a resonance which looks very much like the SM Higgs boson.
- Studying the properties of this new particle is of outmost importance for Run II.
 - ➡ Coupling measurements.
 - Total and differential cross sections.
 - \rightarrow SM vs. BSM?
- Aim: Use the concepts of the 1st part of the lecture to make precise predictions for SM Higgs physics at the LHC.

Higgs physics at the LHC

Higgs physics at the LHC • Higgs-boson production modes at the LHC: 0000 www.w MAR-000000 0000 Gluon fusion Higgs strahlung VBF TTH

Higgs physics at the LHC

Higgs physics at the LHC • Higgs-boson production modes at the LHC: 0000 www. the -000 Gluon fusion Higgs strahlung VBF ТТН • Gluon fusion dominates, followed by VBF.

Higgs physics at the LHC

The gluon fusion process

The gluon fusion cross section

- Gluon-fusion is a loop-induced process.
 - \rightarrow LO is one loop.
 - ➡ NLO is two loops.
 - → etc.
- At NNLO, need double box with top-quark loop!
 - ➡ Currently unknown.

- Luckily, the Higgs boson is lighter than the top-pair threshold.
 - Try to integrate out the top quark and work with an effective theory

The large mt limit

$$\hat{\sigma}_{gg}(\hat{s}, m_H^2, m_t^2, \alpha_s) = \sum_{\ell=2}^{\infty} \sum_{k=1}^{\infty} \frac{\alpha_s^{\ell}}{m_t^k} \, \hat{\sigma}_{\ell,k}(\hat{s}, m_H^2) \qquad m_H^2 \ll 4m_t^2$$

- Effective field theory approach: $\mathcal{L} = \mathcal{L}_{QCD,5} - \frac{1}{4v} C_1 H G^a_{\mu\nu} G^{\mu\nu}_a + \dots$
- How well can this work?
 - → Higgs mass is not that much below top mass.
- Real radiation could spoil this naive picture:
 - → Hard gluon emissions at $4m_t^2 \simeq \hat{s} > m_H^2$ beyond leading order!

The large mt limit

The large mt limit

The gluon fusion cross section

• The inclusive gluon-fusion cross section was computed

➡ at LO and NLO. [Dawson; Djouadi, Graudenz,

at NNLO in the large mt EFT, including 1/mt corrections.

[Harlander, Kilgore; Anastasiou, Melnikov; Ravindran, Smith, van Neerven Harlander, Mantler, Marzani, Ozeren]

→ at N3LO in the large mt EFT.

[Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger

I/mt corrections at NNLO were found to be very small.

[Harlander, Ozeren; Pak, Rogal, Steinhauser; Ball, Del Duca, Marzani, Forte, Vicini; Harlander, Mantler, Marzani, Ozeren]

• What motivated such a high order computation?

The gluon fusion cross section

 μ/m_h

Scale variation

Energy variation

Energy variation

NNLO and N3LO

- How to perform such a high-order computation..?
 - In principle: Can proceed in exactly the same way as at for LO and NLO discussed in the first part of the lecture.
 - ➡ Parametrise D-dimensional phase space.
 - → IR singularities show up as poles in epsilon.
 - In practise: This is not feasible, because we have to deal with multi-body phase space integrals.
 - Phase space parametrisations are not really suitable for analytic integration
 - ➡ Need some new technology

Reverse - Unitarity

• Optical theorem:

$$\operatorname{Im} = \int d\Phi$$

Discontinuities of amplitudes are phase-

• Discontinuities of loop integrals are given by Cutkosky's rule:

$$\frac{1}{p^2 - m^2 + i\varepsilon} \to \delta_+(p^2 - m^2) = \delta(p^2 - m^2)\,\theta(p^0)$$

• Read optical theorem 'backwards': inclusive phaseintegrals as unitarity cuts of loop integrals.

[Anastasiou, Melnikov; Anastasiou, Dixon, Melnikov, Petriello]
 Makes phase-space integrals accessible to loop technology!

IBPs and master integrals

- Loop integrals are not independent, but they are related by various relations.
 - Integration-by-parts identities (IBPs). [Chetyrkin, Tkachov]
- IBPs can be solved algorithmically. [Laporta]
 All integrals are linear combination of a small set of master

Differential equations

• We can use reverse-unitarity to differentiate with respect to the Higgs mass:

$$\frac{\partial}{\partial m_H^2} \delta_+(p_H^2 - m_H^2) \to \frac{\partial}{\partial m_H^2} \frac{1}{p_H^2 - m_H^2} = \frac{1}{(p_H^2 - m_H^2)^2}$$

- Can use IBP relations to reduce back to master integrals.
 → Master integrals satisfy a system of 1st order ODEs.
 [∂]/_{∂z̄} I = A(z̄, ε) I z̄ = 1 z
 Boundary conditions are given by the soft limit z̄ → 0.
 - Limits of Feynman integrals can be obtained from momentum space expansions and expansion by regions.

[Beneke, Smirnov]
The threshold expansion

- Solving the differential equations can still be very tough!
 - → Huge system of coupled differential equations!
- We know that the cross section is dominated by $z \rightarrow 1$.
 - Approximated the cross section by a series around z = 1.

$$\frac{\hat{\sigma}_{ij}(z)}{z} = \hat{\sigma}^{SV} \,\delta_{ig} \,\delta_{jg} + \sum_{N=0}^{\infty} \hat{\sigma}_{ij}^{(N)} \bar{z}^N$$

- The coefficients in the expansion are not constants, but they are polynomials in log(1 z).
 - At N3LO: $\hat{\sigma}_{ij}^{(N)} = \sum_{k=0}^{\circ} c_{ijk}^{(N)} \log^k (1-z)$
- The first term is called the soft-virtual term and is distribution-valued:

At N3LO:
$$\hat{\sigma}^{SV} = a \,\delta(1-z) + \sum_{k=0}^{5} b_k \left[\frac{\log^k (1-z)}{1-z} \right]$$

The threshold expansion

• One can compute the master integrals as an expansion around threshold.

➡ Single-emission contributions can be computed exactly.

Remaining contributions can be obtained by
 Writing an ansatz for each master integral

$$M_{i} = \sum_{j} \sum_{k=2}^{6} c_{ijk} (1-z)^{(j-k\epsilon)}$$

- ➡ Insert ansatz into differential equations.
- ➡ Solve a huge linear system for the coefficients.

Threshold expansion

Threshold expansion

Threshold expansion

Scale vs. PDF uncertainty

Scale vs. PDF uncertainty

	CT14	MMHT2014	NNPDF3.0	CT10
8 TeV	$18.66^{+2.1\%}_{-2.3\%}$	$18.65^{+1.4\%}_{-1.9\%}$	$18.77^{+1.8\%}_{-1.8\%}$	$18.37^{+1.7\%}_{-2.1\%}$
13 TeV	$42.68^{+2.0\%}_{-2.4\%}$	$42.70^{+1.3\%}_{-1.8\%}$	$42.97^{+1.9\%}_{-1.9\%}$	$42.20^{+1.9\%}_{-2.5\%}$

[CTEQ collaboration

Threshold resummation

Threshold logarithms

• The cross section is dominated by $z \rightarrow 1$.

$$\frac{\hat{\sigma}_{ij}(z)}{z} = \hat{\sigma}^{SV} \,\delta_{ig} \,\delta_{jg} + \sum_{N=0}^{\infty} \hat{\sigma}_{ij}^{(N)} \bar{z}^N$$
$$\hat{\sigma}^{SV} = a \,\delta(1-z) + \sum_{k=0}^{5} b_k \,\left[\frac{\log^k(1-z)}{1-z}\right]_+$$

- At each order in perturbation theory there are 'large logarithms' (plus distributions) that we might want to resum.
- It is possible to resum threshold logarithms to all orders, but we need to go to Mellin space:

$$\hat{\sigma}(N) = \int_0^1 dz \, z^{N-1} \, \hat{\sigma}(z) \qquad \qquad \hat{\sigma}(z) = \int_{c-i\infty}^{c+i\infty} \frac{dN}{2\pi i} \, z^{-N} \, \hat{\sigma}(N)$$

Mellin space

- Let us consider threshold resummation in QED.
 - → Consider $q \bar{q} \rightarrow Z + n$ soft gluons.
- Using eikonal Feynman rules, one can see that the eikonal matrix element factorises:

$$\mathcal{M}_n^{\text{eik.}} = \frac{1}{n!} \left[\mathcal{M}_1^{\text{eik.}} \right]^n$$

- The phase space contains a delta function δ(z − z₁... z_n)
 ⇒ Spoils naive factorisation.
- Phase space factorises in Mellin space: $\int_{0}^{1} dz \, z^{N-1} \, \delta(z - z_1 \dots z_n) = z_1^{N-1} \dots z_n^{N-1}$

• Then:

$$\sum_{n=0}^{\infty} \frac{1}{n} \left[\mathcal{M}_{n}^{\text{eik.}}(N) \right]^{n} = \exp \left[\mathcal{M}_{n}^{\text{eik.}}(N) \right]$$

Threshold resummation

• The $z \to 1$ limit corresponds to $N \to \infty$.

$$\int_0^1 dz \, z^{N-1} \, \left[\frac{\log^k (1-z)}{1-z} \right]_+ = \frac{(-1)^k}{k+1} \, \log^{k+1} N + \mathcal{O}(1/N)$$

• One can show that in this limit the cross section in Mellin space takes the form

$$\hat{\sigma}_{gg} = g_0(a_s) \exp\left[\frac{1}{a_s} g_1(\lambda) + g_2(\lambda) + a_s g_3(\lambda) + \dots\right] + \mathcal{O}(1/N)$$

LL NLL NNLL $\lambda = a_s \log N$

• The function in the exponent are known up to i=4 (N4LL), up to one constant.

Threshold resummation

 $1 + \alpha_s L^2 + \alpha_s^2 L^4 + \alpha_s^3 L^6 + \alpha_s^4 L^8 + \dots$ LL $+ \alpha_{s} L + \alpha_{s}^{2} L^{3} + \alpha_{s}^{3} L^{5} + \alpha_{s}^{4} L^{7} + \dots$ NLL $+ \alpha_{s} + \alpha_{s}^{2} L^{2} + \alpha_{s}^{3} L^{4} + \alpha_{s}^{4} L^{6} + \dots$ NLL' $+ \alpha_{s}^{2} L + \alpha_{s}^{3} L^{3} + \alpha_{s}^{4} L^{5} + \dots$ NNLL $+ \alpha_{s}^{2} + \alpha_{s}^{3} L^{2} + \alpha_{s}^{4} L^{4} + \dots$ NNLL' $+ \alpha_s^3 L + \alpha_s^4 L^3 + \dots$ $N^{3}LL$ $+ \alpha_s^3 + \alpha_s^4 L^2 + \dots$ N^3LL' $+ \alpha_s^4 L + \dots$ N^4LL N^4LL' $+ \alpha_s^4 + \dots$ $N^{5}LL$ $+\ldots$

N3LL threshold resummation

Uncertainties (1)

Left most pole corresponds to Landau pole!

- Inverse transform exists order by order, but series diverges (asymptotic series).
- There are different prescriptions to deal with this:
 - ➡ Minimal prescription.
 - ➡ Borel prescription.

Uncertainties (2)

• There is an ambiguity what to exponentiate:

$$\hat{\sigma}_{gg} = g_0(a_s) \exp\left[\frac{1}{a_s} g_1(\lambda) + g_2(\lambda) + a_s g_3(\lambda) + \dots\right]$$
$$= \tilde{g}_0(a_s) \exp\left[\frac{1}{a_s} \tilde{g}_1(\lambda) + \tilde{g}_2(\lambda) + a_s \tilde{g}_3(\lambda) + \dots\right]$$
$$\tilde{g}_0(a_s) = g_0(a_s) e^{f(a_s)} \quad \tilde{g}_i(\lambda) = g_i(\lambda) - f_i \quad f(a_s) = \sum_{k=0}^{\infty} a_s^k f_k$$

- If I truncate the perturbative series in the exponent and in the hard coefficient *g*₀, I get different answers!
 - ➡ Can produce different results for fixed log-accuracy

Uncertainties (2)

Uncertainties (3)

• There is an ambiguity which logarithms to resum: $\hat{\sigma}_{gg} = g_0(a_s) \exp\left[\frac{1}{a_s}g_1(\lambda) + g_2(\lambda) + a_s g_3(\lambda) + \dots\right] + \mathcal{O}(1/N)$ $\lambda = a_s \log N$ $\log(1+N) = \log N + \mathcal{O}(1/N)$ $\left(1 + \frac{1}{N}\right)\log N = \log N + \mathcal{O}(1/N)$ $\psi(N) = \log N + \mathcal{O}(1/N)$ $\psi(N) = \log N + \mathcal{O}(1/N)$ $\psi(N) = \log \Gamma(N)$

- All these choices are formally equivalent, but can lead to different predictions.
 - Some choices motivated by, e.g., analyticity.

Uncertainties (3)

Beyond the inclusive large-mt limit

H+j@NNLO

- We now even have fully differential distributions for H+j at NNLO!
- Three independent computations:
 - Stripper. [Boughezal, Caola, Melnikov, Petriello, Schulze
 - ➡ N-jettiness subtraction.
 - Antenna subtraction.

[Boughezal, Focke, Giele, Liu, Petriello

[Chen, Gehrmann, Glover, Jaquier

- Computation is done in the large-mt limit.
- Fully differential!
 - → Allows for arbitrary cuts on the final state.

H+j@NNLO

Beyond large mt

- We expect the large-mt approximation to break down for large pT's!
 - There is a new scale, which may be as large as the top mass!
- The full NLO corrections to H+j are currently beyond reach.
 - Requires the computation of double boxes with topquark loop.
- The same reasoning applies to double (triple, etc) Higgs production.
 - Here the large-mt is not even supposed to work for the total cross section.

Beyond large mt

HH production in gluon-gluon fusion at 14 TeV		Cross section [fb]
LO	HEFT	$19.2^{+35.2+2.8\%}_{-24.3-2.9\%}$
	FT, $\Gamma_t = 0$ GeV	$23.2^{+32.3+2.0\%}_{-22.9-2.3\%}$
	FT, $\Gamma_t = 1.5 \text{ GeV}$	$22.7^{+32.3+2.0\%}_{-22.9-2.3\%}$

[Maltoni, Vryonidou, Zaro

Vector-boson fusion

Vector-boson-fusion

- If we want to probe the coupling of the Higgs boson to gauge bosons, then ggF is not adequate.
- It is more advantageous to use the VBF process in this case.

Singlet exchange

Octet exchange

However, VBF is 'buried' underneath ggF!

Vector-boson-fusion

- We can suppress the contribution from ggF by requiring 2 forward jets, and low hadronic activity in the central detector.
- Typical VBF cuts:
 - → At least to jets with $p_T > 25 \text{GeV}$.
 - ➡ The two hardest jets satisfy

 $|y| < 4.5 \qquad \Delta y_{j_1 j_2} < 4.5 \qquad M_{j_1 j_2}^2 > (600 {\rm GeV})^2$ • Imposing VBF cuts, one can reduce the ggF contamination to ~10%.

- NNLO corrections to VBF would require the computation of pentaboxes with massive propagators.
 - ➡ Beyond the reach of current technology.

Structure function approach

- Assume that there is no colour exchange at all between the upper and lower lines
 - ➡ Exact at LO and NLO.
 - Beyond NLO, non-factorisable diagrams are suppressed by colour, and by kinematics (angular ordering)

• QCD corrections completely factorise into DIS form factors!

Inclusive cross section

$\sqrt{S} = 7 \text{ TeV}$						
Higgs mass	LO	NLO	NNLO			
120	$1.235_{-0.116}^{+0.131}$	$1.320\substack{+0.054\\-0.022}$	$1.324_{-0.024}^{+0.025}$			
160	$0.857\substack{+0.121 \\ -0.099}$	$0.915\substack{+0.046\\-0.016}$	$0.918\substack{+0.019\\-0.015}$			
200	$0.614_{-0.082}^{+0.106}$	$0.655_{-0.012}^{+0.038}$	$0.658\substack{+0.015\\-0.010}$			
300	$0.295\substack{+0.070 \\ -0.049}$	$0.314\substack{+0.022\\-0.010}$	$0.316\substack{+0.008\\-0.004}$			
400	$0.156\substack{+0.045\\-0.030}$	$0.166\substack{+0.013\\-0.007}$	$0.167\substack{+0.005\\-0.001}$			

[Bolzoni, Maltoni, Moch, Zaro

• Small remaining Scale uncertainty (~1-2%)!

Differential cross section

- Recently, the differential NNLO cross section in the structure function approach was obtained. [Cacciari, Dreyer, Karlberg,
 - ➡ Can apply VBF cuts!

- Salam, Zanderighi
- → Method: Combine inclusive computation with H+3j computation from POWHEG.

	$\sigma^{(\rm no\ cuts)}$ [pb]	$\sigma^{(\mathrm{VBF\ cuts})}$ [pb]
LO	$4.032^{+0.057}_{-0.069}$	$0.957^{+0.066}_{-0.059}$
NLO	$3.929 {}^{+0.024}_{-0.023}$	$0.876 {}^{+0.008}_{-0.018}$
NNLO	$3.888^{+0.016}_{-0.012}$	$0.826{}^{+0.013}_{-0.014}$
	~1%	~5-6%

Differential cross section

