

Vector boson scattering from an experimental perspective

K. Nikolopoulos University of Birmingham

HiggsTools Summer School on Higgs Physics 2nd July 2015, Palleusieux, Aosta Valley, Italy

This project has received funding from the European Union's 7th Framework Programme for research, technological development and demonstration under grant agreement no 334034 (EWSB)

UNIVERSITY^{OF} BIRMINGHAM

Introduction

The non-abelian gauge nature of the standard model predicts the existence of: - trilinear couplings (TGC)

- quartic couplings (QGC)

Trilinear and quartic couplings can probe different aspects:

- TGC: Non-abelian gauge structure of the SM

- QGC: Mechanism of spontaneous symmetry breaking

[By assuming unitarity combined with the precisely known weak boson coupling to leptons, one is led to the gauge value for TGCs. This does not extend to QGC in massive non-abelian theories.]

The SM Higgs boson is the most economic solution to restore unitarity We found a Higgs boson: is it fully or partially responsible for EWSB? Determine EWSB dynamics and look for new physics.

[e.g. heavy scalar singlet interacting strongly with the Higgs sector, may evade the current constraints and still induce a stronger WWWW vertex than in the SM]

In the QGC studies, one tries to constrain "genuine" quartic couplings, i.e. operators that not contribute in TGCs and are thus constrained.

Introduction

QGC process \rightarrow a process where QGC diagrams contribute

 \rightarrow No reaction is mediated solely by a QGC vertex

 \rightarrow Gauge invariant definition of the QGC contribution is not possible

Only makes sense to study the whole electro-weak production! (including interference)

Two classes of QGC processes are measurable

Triple vector boson production

UNIVERSITY^{OF} BIRMINGHAM 3

anomalous QGC at LEP

The previous resident of the "LHC" tunnel, hosted: ALEPH, DELPHI, L3 and OPAL. Operation 1989-2000 A different experimental environment wrt hadron colliders

Year	$\int \mathcal{L} dt$	$E_{\rm b}$	$k_{ m b}$	I_{tot}	${\cal L}$	
	(pb^{-1})	$({\rm GeV/c^2})$		(mA)		
				10	³⁰ cm ⁻²	² S ⁻¹
1989	1.74	45.6	4	2.6	4.3	
1990	8.6	45.6	4	3.6	7	
1991	18.9	45.6	4	3.7	10	İm
1992	28.6	45.6	4/8	5.0	11.5	ס
1993	40.0	45.6	8	5.5	19	 →
1994	64.5	45.6	8	5.5	23.1	
1995	46.1	45.6	8/12	8.4	34.1	
1996	24.7	80.5 - 86	4	4.2	35.6	-
1997	73.4	90 - 92	4	5.2	47.0	İm
1998	199.7	94.5	4	6.1	100	ס
1999	253	98 - 101	4	6.2	100	\mathbb{N}
2000	233.4	102 - 104	4	5.2	60	

K. Nikolopoulos

Vector boson scattering: experimental perspective July 2nd, 2015

UNIVERSITY^{OF} BIRMINGHAM

anomalous QGC at LEP

Vector boson scattering: experimental perspective July 2nd

July 2nd, 2015 🛃

UNIVERSITY^{of} BIRMINGHAM

aQGC at LEP

The parametrization of aTGC started by imposing the custodial global SU(2) (to keep ρ-parameter near 1) and U(1)_{em} for the operators involving photons. (symmetry non-linearly realized)

There are two dim-4 operators giving interactions:

- WWWW α₄ parameter (not possible through tri-boson production at e⁺e⁻)
- WWZZ α_5 parameter (WWZ production limited by available phase-space at LEP)
 - ZZZZ (not present in SM limited by available phase-space at LEP)

The following dim-6 operators involving at least one photon:

$$\mathcal{L}_{0} = -\frac{e^{2}}{16\Lambda^{2}} a_{0} F^{\mu\nu} F_{\mu\nu} \overline{W}_{\alpha} \overline{W}^{\alpha}, \qquad \begin{array}{ll} \text{C and P-conserving} \\ \text{[can parametrize exchange of heavy neutral scalar]} \\ \mathcal{L}_{c} = -\frac{e^{2}}{16\Lambda^{2}} a_{c} F^{\mu\alpha} F_{\mu\beta} \overline{W}^{\beta} \overline{W}_{\alpha}, \qquad \begin{array}{ll} \text{C and P-conserving} \\ \text{C and P-conserving} \\ \end{array} \\ \mathcal{L}_{n} = -\frac{e^{2}}{16\Lambda^{2}} a_{n} \varepsilon_{ijk} F^{\mu\nu} \overline{W}^{i}_{\mu\alpha} \overline{W}^{j}_{\nu} \overline{W}^{k,\alpha}, \qquad \begin{array}{ll} \text{P-conserving} \\ \text{C and P-conserving} \\ \end{array} \\ \mathcal{L}_{n} = -\frac{e^{2}}{16\Lambda^{2}} a_{n} \varepsilon_{ijk} F^{\mu\nu} \overline{W}^{i}_{\mu\alpha} \overline{W}^{j}_{\nu} \overline{W}^{k,\alpha}, \qquad \begin{array}{ll} \text{C-conserving} \\ \end{array} \\ \mathcal{L}_{n} = -\frac{e^{2}}{16\Lambda^{2}} \tilde{a}_{0} F^{\mu\nu} \tilde{F}_{\mu\nu} \overline{W}_{\alpha} \overline{W}^{\alpha}, \qquad \begin{array}{ll} \text{C-conserving} \\ \end{array} \\ \mathcal{L}_{n} = -\frac{e^{2}}{16\Lambda^{2}} \tilde{a}_{n} \varepsilon_{ijk} \tilde{F}^{\mu\nu} \overline{W}^{i}_{\mu\alpha} \overline{W}^{j}_{\nu} \overline{W}^{k,\alpha}, \qquad \begin{array}{ll} \text{C-conserving} \\ \end{array} \\ \mathcal{L}_{n} = -\frac{e^{2}}{16\Lambda^{2}} \tilde{a}_{n} \varepsilon_{ijk} \tilde{F}^{\mu\nu} \overline{W}^{i}_{\mu\alpha} \overline{W}^{j}_{\nu} \overline{W}^{k,\alpha}, \qquad \begin{array}{ll} \text{CP-conserving but violates both C and P} \\ \end{array} \\ \mathcal{L}_{n} = -\frac{e^{2}}{16\Lambda^{2}} \tilde{a}_{n} \varepsilon_{ijk} \tilde{F}^{\mu\nu} \overline{W}^{i}_{\mu\alpha} \overline{W}^{j}_{\nu} \overline{W}^{k,\alpha}, \qquad \begin{array}{ll} \text{CP-conserving but violates both C and P} \\ \end{array} \end{array}$$

aQGC at LEP

In the combination, couplings associated to WWγγ and ZZγγ vertices are assumed to be different. Only results for ZZγγ were combined (vvγγ and Zγγ final states)

K. Nikolopoulos

Vector boson scattering: experimental perspective

BIRMINGHAM -

Large Hadron Collider Run I

K. Nikolopoulos

Vector boson scattering: experimental perspective J

July 2nd, 2015

BIRMINGHAM

 $Z \rightarrow \mu\mu$ candidate with 25 reconstructed vertices from the 2012 run. Only good quality tracks with pT>0.4GeV are shown

This is just the "in-time" pile-up Need to account also for the "out-of-time" pile-up [due to interaction in earlier and later bunch-crossings]

K. Nikolopoulos

July 2nd, 2015 Vector boson scattering: experimental perspective

The LHC experiments

ATLAS Collaboration: 38 countries, 177 institutions, ~2900 scientific authors

K. Nikolopoulos

Vector boson scattering: experimental perspective July 2nd

July 2nd, 2015

A Toroidal LHC ApparatuS

ATLAS p-p run: April-December 2012										
Inner Tracker		Calorimeters		Muon Spectrometer			Magnets			
Pixel	SCT	TRT	LAr	Tile	MDT	RPC	CSC	TGC	Solenoid	Toroid
99.9	99.4	99.8	99.1	99.6	99.6	99.8	100.	99.6	99.8	99.5
All good for physics: 95.8%										
Luminosity weighted relative detector uptime and good quality data delivery during 2012 stable beams in pp collisions at $v_s=8$ TeV between April 4 th and December 6 th (in %) – corresponding to 21.6 fb ⁻¹ of recorded data.										

BIRMINGHAM 11

July 2nd, 2015

K. Nikolopoulos

Vector boson scattering: experimental perspective

"Physics Objects"

K. Nikolopoulos

Vector boson scattering: experimental perspective July 2nd, 2015

UNIVERSITY^{OF} BIRMINGHAM 12

Electron Reconstruction

Electrons suffer bremsstrahlung, complicating reconstruction → Pattern recognition and track-fitting algorithms need to account for this e.g. track reconstruction using GaussianSumFilter

Vector boson scattering: experimental perspective July 2ⁿ

Electron/Photon Identification

K. Nikolopoulos

Vector boson scattering: experimental perspective July 2nd, 2015

2015 🔼

UNIVERSITYOF

BIRMINGHAM 14

Electron/Photon Identification

The detector provides us with several pieces of information (shower shapes, tracking, cluster-tracking matching) Need to decide:

 \rightarrow how to best exploit the info (simple "rectangular" selections, MVAs, ...) \rightarrow what is the optimal trade-off between efficiency and "fake"-rate for the given analysis

UNIVERSITY^{of} BIRMINGHAM 15 For electron identification algorithms, a lot of attention needs to go in the choice/handling of input variables and their dependence on pile-up [e.g. R_η is sensitive to pile-up]

Number of primary vertices

Muon Reconstruction/Identification

An unfair comparison

K. Nikolopoulos

Vector boson scattering: experimental perspective July 2nd, 2015

UNIVERSITY^{of} BIRMINGHAM 18

Photons

Missing transverse momentum

CMS-PAS-JME-12-002 CMS Preliminary 2012 10⁷ number of events / 15 GeV 11.5 fb⁻¹ at $\sqrt{s} = 8$ TeV 10⁶ $Z \rightarrow \nu \nu$ $W \rightarrow l\nu \ (l = e, \mu, \tau)$ 10⁵ $Z \rightarrow ll \ (l = e, \mu, \tau)$ top Detector operation 10⁴ QCD multijets conditions should be data (before 2012 cleaning) constantly monitored 10³ data (after 2012 cleaning) PF ∉_⊤ 10² 10 1 10⁻¹ 500 1000 1500 2000 2500 3000 0 ∉_T [GeV]

Snapshot of cross section measurements

Vector boson scattering: experimental perspective

Snapshot of cross section measurements

UNIVERSITY^{of} BIRMINGHAM 22

Search for WWy/WZy \rightarrow Iv(qq)y

Search for triboson production WVγ CMS: ~19.3 fb⁻¹ of 8 TeV data, published as PRD90, 032008 (2014)

Signature: W(V) $\gamma \rightarrow Iv(qq)\gamma$, WW γ and WZ γ treated together Main background W γ +jets, then WV+jets

Selection:

- Trigger: muon p_T>24 GeV, electron p_T>27 GeV
- Lepton selection
 - one isolated muon $p_T>25$ GeV, $|\eta|<2.1$, or
 - one isolated electron p_T >30 GeV, $|\eta|$ <2.5 (excluding 1.44-1.57)
- Veto events with additional muons (electrons) p_T >10 (20) GeV
- MET>3<u>5 GeV</u>
- $m_T = \sqrt{p_\ell^T \not E_T [\Delta \phi_{\ell, \not E_T}]} > 30 \text{ GeV}$
- Photon E_T >30 GeV and $|\eta|$ <1.44
- \geq 2 jets anti-kT R=0.4 p_T>30 GeV and | η |<2.4
 - Two highest p_T are forming the V \rightarrow qq candidate
- Δφ(highest p⊤jet, MET)>0.4
- 70 < m_{jj} <100 GeV, |Δη_{jj}|<1.4
- b-tag veto veto
- Z veto $|m_Z-m_{e\gamma}|$ >10 GeV

 $W \rightarrow \mu v$ candidate

Δφ(highest pT jet, MET)>0.4

m_{jj}=2.55 TeV. pT,eta1: 420 GeV,-1.51, pT,eta2: 320 GeV,2.32 No other jets with pT>20 GeV. Event collected on 4 July 2010

K. Nikolopoulos

Vector boson scattering: experimental perspective

m_{jj} resolution

Caveat: expected m_{jj} resolution for another analysis in another experiment, for illustration only

jets in pile-p

July 2nd, 2015 Vector boson scattering: experimental perspective

Search for WWy/WZy \rightarrow Iv(qq)y

Process	Muon channel number of events	Electron channel number of events
SM WWγ SM WZγ	$6.6 \pm 1.5 \\ 0.6 \pm 0.1$	$5.0 \pm 1.1 \\ 0.5 \pm 0.1$
$W\gamma + \text{jets}$ $WV + \text{jets}, \text{jet} \rightarrow \gamma$ MC $t\bar{t}\gamma$ MC single top quark MC $Z\gamma + \text{jets}$ Multijets	$\begin{array}{c} 136.9 \pm 10.5 \\ 33.1 \pm 4.8 \\ 12.5 \pm 3.0 \\ 2.8 \pm 0.8 \\ 1.7 \pm 0.1 \\ \end{array}$	$\begin{array}{c} 101.6 \pm 8.5 \\ 21.3 \pm 3.3 \\ 9.1 \pm 2.2 \\ 1.7 \pm 0.6 \\ 1.5 \pm 0.1 \\ 7.2 \pm 5.1 \end{array}$
Total prediction	194.2 ± 11.5	147.9 ± 10.7
Data	183	139
al Background Predict	tion ~187	~142

95% CL upper limit $\sigma(WV\gamma)$: 3.4×SM (4.4×SM expected)

 \rightarrow WV γ is "Signal", all other processes are "Background". \rightarrow Counting experiment total observed events lower than expected ("downward" fluctuation) thus limit tighter than expected

Search for WWy/WZy \rightarrow Iv(qq)y

The LEP aTGC results in terms of dim-6 operators, with non-linear realisation of SU(2)×U(1) in effective Lagrangian **Post-Higgs boson discovery**: linear realization a la SM more appropriate, quartic couplings involving photons appear as dim-8 operators.

For some operators similar Lorentz structure between the two realization - can be expressed in terms of each other - whereas others cannot.

4 parameters with analogues between the two realizations, as well as one which is unique to the linear realization, presented. Also at the same time the form factor was dropped.

K. Nikolopoulos

Search for Wyy→lvyy

GeV

50

Events

35⊢

30

25

20

ATLAS

Data

Wγγ

Wγj + Wji

 $\gamma\gamma$ + jets

 $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$

Other backgrounds

BIRMINGHAM 29

Zγ

Search for triboson production Wyy ATLAS: ~20.3 fb⁻¹ of 8 TeV data, published as arXiv:1503.03243

<u>Signature</u>: Wγγ→Ivγγ Main background Wy+jets, then Wjj, Zy, yy+jets

K. Nikolopoulos

Vector boson scattering: experimental perspective

Search for Wyy→lvyy

Definition of the fiducial region							
$p_{\rm T}^{\ell} > 20 GeV, p_{\rm T}^{\nu} > 25 GeV, \eta_{\ell} < 2.5$							
$m_{\rm T} > 40 GeV$							
$E_{\rm T}^{\gamma} > 20 GeV, \eta^{\gamma} < 2.37, \text{iso. fraction} \epsilon_{\rm h}^{\rm p} < 0.5$							
$\Delta R(\ell, \gamma) > 0.7, \ \Delta R(\gamma, \gamma) > 0.4, \ \Delta R(\ell/\gamma, \text{jet}) > 0.3$							
Exclusive: no anti- k_t jets with $p_{\rm T}^{\rm jet} > 30 GeV, \eta^{\rm jet} < 4.4$							
	$\sigma^{ m fid}~[m fb]$	$\sigma^{ m MCFM}$ [fb]					
Inclusive $(N_{\text{jet}} \ge 0)$							
$\mu u\gamma\gamma$	7.1 $^{+1.3}_{-1.2}$ (stat.) ± 1.5 (syst.) ± 0.2 (lumi.)						
$e u\gamma\gamma$	4.3 $^{+1.8}_{-1.6}$ (stat.) $^{+1.9}_{-1.8}$ (syst.) ± 0.2 (lumi.)	2.90 ± 0.16					
$\ell u \gamma \gamma$	6.1 $^{+1.1}_{-1.0}$ (stat.) ± 1.2 (syst.) ± 0.2 (lumi.)						
Exclusive $(N_{jet} = 0)$							
$\mu u\gamma\gamma$	3.5 ± 0.9 (stat.) $^{+1.1}_{-1.0}$ (syst.) ± 0.1 (lumi.)						
$e u\gamma\gamma$	$1.9 \ ^{+1.4}_{-1.1}$ (stat.) $^{+1.1}_{-1.2}$ (syst.) ± 0.1 (lumi.)	1.88 ± 0.20					
$\ell u \gamma \gamma$	$2.9 \ ^{+0.8}_{-0.7}$ (stat.) $^{+1.0}_{-0.9}$ (syst.) ± 0.1 (lumi.)						

Significance in inclusive production cross-section >3 σ First evidence for triple-gauge boson production

Search for Wyy→lvyy: aQGC

Exclusive VBS at LHC: γγ→WW

First VV \rightarrow VV analysis at the LHC : $\gamma\gamma \rightarrow$ WW CMS using 5.2 fb⁻¹ of 7 TeV data, published as JHEP 07 (2013) 216 \mathcal{V} W^+ Signature is exclusive or quasi-exclusive W⁺W⁻ production: $pp \rightarrow p^{(*)} \gamma \gamma p^{(*)} \rightarrow p^{(*)} W^+ W^- p^{(*)} \rightarrow p^{(*)} e^+ v e^- v p^{(*)}$ both very-forward scattered protons escape detection <u>Distinct signature</u>: In the interaction only $e^{\pm}\mu^{\mp}$ produced, nothing else W^- Main backgrounds: $\gamma\gamma/DY \rightarrow \tau\tau$, diffractive WW and W+jets QGC <u>Selection</u>: • Leptons with p_T >20 GeV and $|\eta|$ <2.4 • e-µ pair with opposite charge and compatible with a common vertex • m_{ll}>20 GeV W^+ W^+ • zero additional tracks in vertex → Underlying Event for non-exclusive pp interactions • p_T(eµ) > 30 GeV \rightarrow suppress $\gamma\gamma/DY \rightarrow \tau\tau$ • veto events passing $\mu^{\pm}\mu^{\mp}$ selection \rightarrow suppress DY events with μ mis-identified as e, due to brem M^{-} • for aQGC studies $p_T(e\mu) > 100 \text{ GeV}$ TGC

UNIVERSITYOF

BIRMINGHAM 32

JHEP 07 (2013) 216

This is the kind of events we look for!

July 2nd, 2015 Vector boson scattering: experimental perspective

JHEP 07 (2013) 216

This is the kind of events we see... striking difference in the activity in the detector

K. Nikolopoulos

Vector boson scattering: experimental perspective July 2nd, 2015 UNIVERSITY OF BIRMINGHAM 34

Pile-up (again)

7 Our handle to separate different pp interactions within the same bunch crossing

 $Z \rightarrow \mu\mu$ candidate with 25 reconstructed vertices from the 2012 run. Only good quality tracks with pT>0.4GeV are shown

K. Nikolopoulos

Vector boson scattering: experimental perspective

Δz requirement

Veto eµ reconstructed vertices which have another track within 2mm Trade-off between signal efficiency and background rejection:

wide Δz to "capture" tracks accompanying DY events, but narrow enough to suppress pile-up

"zero-bias" events, triggered only by presence of colliding bunches. Artificial dimuon vertex added in each event as proxy for an exclusive dimuon interaction.

Signal efficiency deteriorates rapidly when μ increases \rightarrow challenging analysis for 8 TeV data? 7 TeV datasample < μ >=9 interactions/bc \rightarrow 40% signal inefficiency

K. Nikolopoulos Vector basan scattering: experimental perspective July 2nd, 2015 UNIVERSITY of BIRMINGHAM 36

JHEP 01 (2012) 052

Vertex Track Multiplicity

JHEP 07 (2013) 216

K. Nikolopoulos

Vector boson scattering: experimental perspective July 2nd, 2015

Estimating the SM expectation

exclusive/elastic

inelastic/ proton dissociative

inelastic/ proton dissociative

 $\gamma\gamma \rightarrow WW$ produced in:

- "elastic" pp collisions
- "inelastic" pp collisions \rightarrow one or both protons are breaking up
- Proton dissociative processes difficult to estimate from "first principles" \rightarrow soft-QCD

Absorption effects caused by strong interactions between the protons usually result in smaller dissociative contribution

Employ a data-driven estimate using the clean " $\gamma\gamma \rightarrow \mu^+\mu^-$ " process, also can be used to check the pile-up rejection (track veto) requirement

Region	Data	Simulation	Data/Simulation	
Elastic	820	906 ± 9	0.91 ± 0.03	
Dissociation	1312	1830 ± 17	0.72 ± 0.02	(statistical uncertainties only
Total	2132	2736 ± 19	0.78 ± 0.02	

Observed events compared to total expected events in the two control regions, after trigger and preselection criteria.

This is the region we have the better understanding of, and can use the Z peak to cross-check the Drell-Yan contributions

γγ→WW: Control Regions

After applying the full selection, 2 events are observed Expected background: 0.84 ± 0.15 events Significance : ~1 σ Cross-section × Branching ratio: $\sigma(pp \rightarrow p^{(*)}W^+W^-p^{(*)} \rightarrow p^{(*)}\mu^{\pm}e^{\mp}p^{(*)}) = 2.2^{+3.3}_{-2.0} \,\text{fb},$

In terms of 95% CL upper limit: 2.6(1.0^{+0.5}-0.6) × SM 95% CL upper limit: $\sigma(pp \rightarrow p^{(*)}W^+W^-p^{(*)} \rightarrow p^{(*)}\mu^{\pm}e^{\mp}p^{(*)}) < 10.6 \,\mathrm{fb}.$ Cross section predicted 4.0 ± 0.7 fb

γγ→WW: Results

JHEP 07 (2013) 216

K. Nikolopoulos

$\gamma\gamma \rightarrow WW: aTGCs$

K. Nikolopoulos

Vector boson scattering: experimental perspective

γγ→WW: aTGCs

Currently in a transient state, moving from the "old" formalism of chiral Lagrangians (non-linear realisation of the symmetries) to a la SM effective Lagrangians (linear realisation of the symmetry) Also the form factor approach is slowly being abandoned

K. Nikolopoulos

UNIVERSITY^{OF} BIRMINGHAM 46

PRD90, 0032008 (2014)

Additional slides

K. Nikolopoulos

April 23rd, 2015 TER AD Probing the Higgs Yukawa couplings at the LHC

