Invisible decay and constrains on BSM Higgs

Soshi Tsuno(KEK) on behalf of the ATLAS and CMS Collaborations

October.13.2015

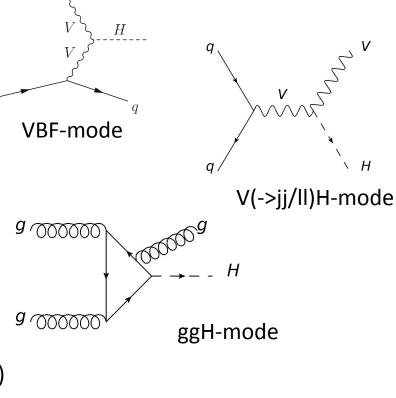
Higgs Coupling 2015, Lumley Castle, UK

Contents

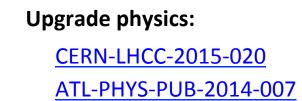
VBF-production mode:

- CMS: <u>CMS-PAS-HIG-14-038</u>
- ATLAS : arXiv:1508.07869

VH-production mode:


- CMS : <u>Eur.Phys.J.C (2014) 74:2980</u>
- ATLAS : Eur.Phys.J.C (2015) 75:337

ggH (mono-jet)-mode:


- CMS: <u>CMS-PAS-EXO-12-055</u>
- ATLAS : Eur.Phys.J.C (2015) 75:299 Eur.Phys.J.C (2015) 75:408 (Erratum)

Combination:

- CMS: <u>CMS-PAS-HIG-15-012</u>
- ATLAS : arXiv:1509.00672

q

q

Monte Carlo samples

Signal modeling :

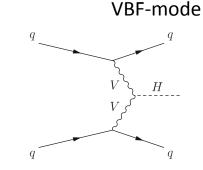
<u>VBF-mode :</u>

- CMS : Powheg (LO, CTEQ6L1)
- ATLAS : Powheg-Box (NLO, CT10, pT-reweight by HAWK2.0)

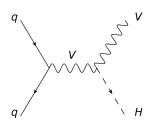
VH-mode :

- CMS : Pythia 6 (<u>LO</u>, CTEQ6L1)
- ATLAS : Powheg(Herwig++) (<u>NLO</u>, CT10)

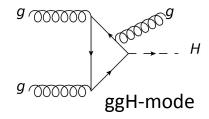
ggH (mono-jet) -mode :


- CMS : Powheg (p_{T} -rewighted to NLO)
- ATLAS : Powheg-Box (NLO, p_T -reweighted to NNLO+NNLL)

Cross section (normalization) :


- LHC Higgs Cross Section Working Group (YR1/2)

Backgrounds :


W/Z + jets : Sherpa (ATLAS) / MarGraph (CMS) top : Powheg-Box (ATLAS) / MadGraph (CMS)

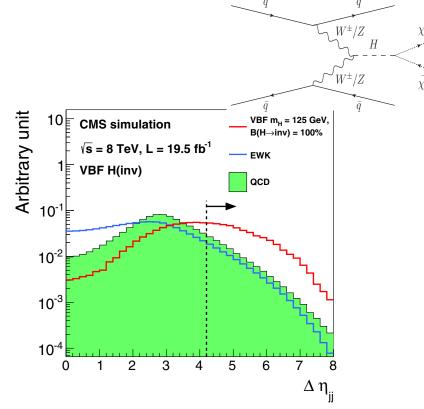
Z(->inv.)H->bb mode is treated as background

V(->jj/ll)H-mode

Use data-driven approach as much as possible.

October.13.2015

Vector Boson Fusion mode


Unique topology : MET + VBF-jets

- Large Missing E_T (MET)
- Two jets in opposite direction with
 - large separation in eta
 - large di-jet mass.

Analysis strategy :

- CMS : <u>VBF-trigger</u>
 - MET > 65 GeV + 2 jets (> 40 GeV)
 - $\Delta \eta$ > 3.5 + M_{jj} > 800 GeV

ATLAS : <u>MET trigger</u> > 80 GeV

loose MET but tight VBF selection

- higher yield for VBF production mode,
- lower for ggH mode.

📥 <u>tigh</u>

tight MET but loose VBF selection

- relatively lower for VBF,
- but also save ggH mode.

October.13.2015

Higgs Coupling 2015, Lumley Castle, UK

Event selection

CMS :

- MET > 90 GeV
- Δη > 3.6, M_{jj} > 1200 GeV,
- Δφ(MET,jet) > 2.3, METSig(*) > 4

(*) MET significance is defined as $\frac{\text{MET}}{\sqrt{\Sigma E_T}}$

Event yields
$158.1 \pm 37.3 \pm 21.2$
$102.5 \pm 6.2 \pm 11.7$
$57.9\pm7.4\pm7.7$
$94.6 \pm 13.1 \pm 23.8$
5.5 ± 1.8
3.9 ± 0.7
17 ± 14
$439.4 \pm 40.7 \pm 43.5$
273.1 ± 31.2
23.1 ± 15.9
508

ATLAS :

- MET > 150 GeV
- Δη > 4.8, M_{ii} > 1000 GeV,
- $\Delta \phi$ (MET, jet) > 1.6 for j1, otherwise >1
- $\Delta \phi(j,j) < 2.5$, 3rd Jet Veto ($p_T > 30 \text{ GeV}$)

enhance VBF mode	These categories are less sensitive.		
Signal region	SR1	SR2a	SR2b
Process			
ggF signal	20 ± 15	58±22	19± 8
VBF signal	286 ± 57	182 ± 19	105 ± 15
$Z(\rightarrow \nu\nu)$ +jets	339 ± 37	1580 ± 90	335±23
$W(\rightarrow \ell \nu)$ +jets	235 ± 42	1010 ± 50	225±16
Multijet	2± 2	20 ± 20	4 ± 4
Other backgrounds	1 ± 0.4	64± 9	19± 6
Total background	577 ± 62	2680±130	583±34
Data	539	2654	636

Event selection

CMS :

- MET > 90 GeV
- Δη > 3.6, M_{jj} > 1200 GeV,

(*) NATT along the defined as

▲ \(\phi(MET,jet) > 2.3, METSig(*) > 4

MET

ATLAS :

- MET > 150 GeV
- Δη > 4.8, M_{ij} > 1000 GeV,
- $\Delta \phi$ (MET,jet) > 1.6 for j1, otherwise >1
- $\Delta \phi(j,j) < 2.5$, 3rd Jet Veto ($p_T > 30$ GeV)

s defined as	\			
Signal fraction (VBF v.s. ggH) is similar.				
Event yields			L	
$158.1 \pm 37.3 \pm 21.2$	Signal region	SR1	SR2a	SR2b
$102.5 \pm 6.2 \pm 11.7$	Process			
$57.9 \pm 7.4 \pm 7.7$	ggF signal	20 ± 15	58±22	19± 8
$94.6 \pm 13.1 \pm 23.8$		286 ± 57	182 ± 19	105 ± 15
5.5 ± 1.8		339 + 37	1580+90	335±23
				225 ± 16
	``			4 ± 4
	5			19 ± 6
273.1 ± 31.2	0			
23.1 ± 15.9	Total background	577 ± 62	2680 ± 130	583±34
508	Data	539	2654	636
	Event yields $158.1 \pm 37.3 \pm 21.2$ $102.5 \pm 6.2 \pm 11.7$ $57.9 \pm 7.4 \pm 7.7$ $94.6 \pm 13.1 \pm 23.8$ 5.5 ± 1.8 3.9 ± 0.7 17 ± 14 and 439.4 \pm 40.7 \pm 43.5 273.1 ± 31.2 23.1 ± 15.9	Event yieldsEvent yieldsSignal regionSignal region $102.5 \pm 6.2 \pm 11.7$ $102.5 \pm 6.2 \pm 11.7$ $57.9 \pm 7.4 \pm 7.7$ $94.6 \pm 13.1 \pm 23.8$ 5.5 ± 1.8 3.9 ± 0.7 17 ± 14 17 ± 14 102 ± 31.2 273.1 ± 31.2 23.1 ± 15.9	Event yieldsEvent yieldsSignal regionSR1Process $102.5 \pm 6.2 \pm 11.7$ $57.9 \pm 7.4 \pm 7.7$ $94.6 \pm 13.1 \pm 23.8$ 5.5 ± 1.8 3.9 ± 0.7 17 ± 14 $102 \cdot 439.4 \pm 40.7 \pm 43.5$ 273.1 ± 31.2 23.1 ± 15.9 23.1 ± 15.9	These categories sensitiveThese categories sensitiveEvent yields $158.1 \pm 37.3 \pm 21.2$ Signal regionSR1SR2a $102.5 \pm 6.2 \pm 11.7$ ProcessSignal colspan="2">Signal colspan="2">20±15 58 ± 22 $102.5 \pm 6.2 \pm 11.7$ ProcessSignal colspan="2">Signal colspan="2">Colspan="2">Colspan="2">Colspan="2">These categories sensitive $102.5 \pm 6.2 \pm 11.7$ Signal regionSR1SR2a $94.6 \pm 13.1 \pm 23.8$ State 17Signal colspan="2">Signal colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">These categories sensitive $94.6 \pm 13.1 \pm 23.8$ Signal colspan="2">Colspan="2"Col

Event selection

CMS :

- MET > 90 GeV
- Δη > 3.6, M_{ii} > 1200 GeV,
- Δφ(MET,jet) > 2.3, METSig(*) > 4

ATLAS :

- MET > 150 GeV
- Δη > 4.8, M_{ij} > 1000 GeV,
- $\Delta \phi$ (MET, jet) > 1.6 for j1, otherwise >1

QCD reduction.

This cut provides further

Δφ(j,j) < 2.5, 3rd Jet Veto (p_T > 30 GeV)

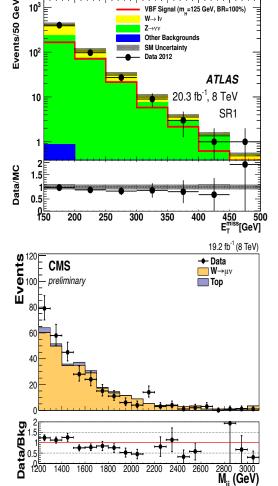
(*) MET significance is defined as $\frac{\text{MET}}{\text{MET}}$							
Multi-jet background is very different.				•			
			4	L			
5				<u> </u>	1		
$158.1 \pm 37.3 \pm 21.2$		Signal region	SR1	SR2a	SR2b		
$102.5 \pm 6.2 \pm 11.7$		Process					
$57.9 \pm 7.4 \pm 7.7$	-	ggF signal	20 ± 15	58±22	19± 8		
$94.6 \pm 13.1 \pm 23.8$		VBF signal	286 ± 57	182±19	105±15		
	-	$Z(\rightarrow \nu\nu)$ +jets	339 ± 37	1580 ± 90	335±23		
		$W(\rightarrow \ell \nu) + \text{jets}$	235+42	1010 ± 50	225±16		
	(2± 2	20 ± 20	4 ± 4		
		Other backgrounds	1±0.4	64± 9	19±6		
	-	6	577 + 62	2680 ± 130	583±34		
23.1 ± 15.9	-	U					
508	-	Data	539	2654	636		
	Event yields $158.1 \pm 37.3 \pm 21.2$ $102.5 \pm 6.2 \pm 11.7$ $57.9 \pm 7.4 \pm 7.7$ $94.6 \pm 13.1 \pm 23.8$ 5.5 ± 1.8 3.9 ± 0.7 17 ± 14 $439.4 \pm 40.7 \pm 43.5$ 273.1 ± 31.2 23.1 ± 15.9	Event yields $158.1 \pm 37.3 \pm 21.2$ $102.5 \pm 6.2 \pm 11.7$ $57.9 \pm 7.4 \pm 7.7$ $94.6 \pm 13.1 \pm 23.8$ 5.5 ± 1.8 3.9 ± 0.7 17 ± 14 $439.4 \pm 40.7 \pm 43.5$ 273.1 ± 31.2 23.1 ± 15.9	Interfined as METWETCkground is very different.VBF modeVBF modeEvent yields $158.1 \pm 37.3 \pm 21.2$ Signal region $102.5 \pm 6.2 \pm 11.7$ Process $102.5 \pm 6.2 \pm 11.7$ Rrocess $57.9 \pm 7.4 \pm 7.7$ ggF signal $94.6 \pm 13.1 \pm 23.8$ VBF signal 5.5 ± 1.8 $Z(\rightarrow \nu\nu)+jets$ 3.9 ± 0.7 $W(\rightarrow \ell\nu)+jets$ 17 ± 14 Multijet $439.4 \pm 40.7 \pm 43.5$ Other backgrounds 273.1 ± 31.2 Total background 23.1 ± 15.9 Detect	Intervent with the second is very different.VBF modeEvent yields $158.1 \pm 37.3 \pm 21.2$ Signal regionSR1 $102.5 \pm 6.2 \pm 11.7$ Signal regionSR1 $57.9 \pm 7.4 \pm 7.7$ Signal 20 ± 15 $94.6 \pm 13.1 \pm 23.8$ Signal 20 ± 15 5.5 ± 1.8 Signal 286 ± 57 3.9 ± 0.7 $X(\rightarrow \ell \nu) \pm jets$ 339 ± 37 17 ± 14 Multijet 2 ± 2 $439.4 \pm 40.7 \pm 43.5$ Other backgrounds 1 ± 0.4 23.1 ± 15.9 Total background 577 ± 62	Intervent fined as METThese categoSignal regionSR1These categoSignal regionSR1SR2aSignal regionSR1SR2aImage: Signal regionSR1SR2aSignal regionSR1SR2aSignal regionSR1SR2aImage: Signal regionSR1SR2a102.5 $\pm 6.2 \pm 11.7$ RrocessggF signal 20 ± 15 58 ± 22 VBF signal 20 ± 15 58 ± 22 94.6 $\pm 13.1 \pm 23.8$ VBF signal 20 ± 15 58 ± 22 $94.6 \pm 13.1 \pm 23.8$ $Z(\rightarrow \nu\nu) + jets$ 339 ± 37 1580 ± 90 3.9 ± 0.7 $Z(\rightarrow \nu\nu) + jets$ 339 ± 37 1580 ± 90 $W(\rightarrow \ell\nu) + jets$ 235 ± 42 1010 ± 50 $Multijet$ 2 ± 2 20 ± 20 Other backgrounds 1 ± 0.4 64 ± 9 23.1 ± 15.9 Total background 577 ± 62 2680 ± 130		

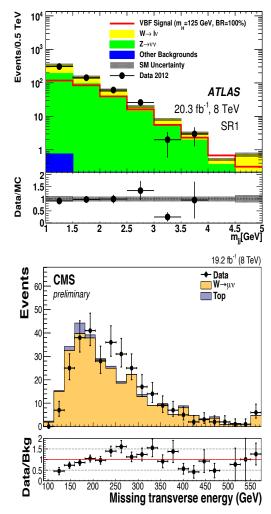
Background estimation

Dominant background:

Z(vv)+jet, W(Iv)+jets

Background estimation:


W/Z + jets :


- construct W/Z+jets control region. (tag leptons, M_T)
- normalization from BR ratio.
- use shape from MC.

Multi-jets :

 - so-called Matrix or ABCD method (shape) : MET v.s 3rd jet (normalization) : MET v.s. Δφ

Others (top/WW) : simulation

Final discriminant : MET and M_{ii}

October.13.2015

Systematics

ATLAS uncertainties due to JET energy scale / theory prediction (3rd jet) are larger. (3rd jet veto)

CMS uncertainty

ATLAS signal uncertainty

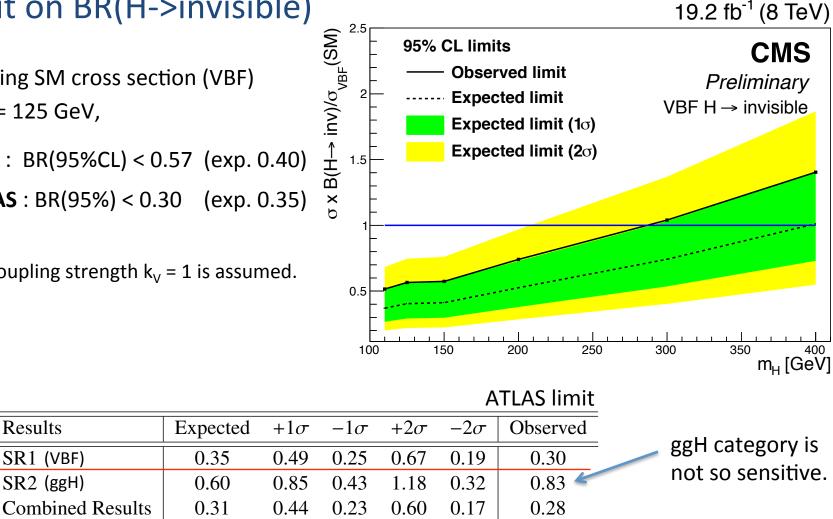
Source	Total background	Signal	Uncertainty	VBF	ggF
Control region data stat.	9.3	-	Jet energy scale	16	43
MC stat.	5.4	3.8		9	12 No 11 - 11 - 1
Jet energy scale	4.6	(11) 4	Jet energy resolution	Negligible 3.1	Negligible 3.2
$W \rightarrow \tau \nu$ control region extrapolation	4.3	· · · · · · · · · · · · · · · · · · ·			
QCD normalisation (ATLAS:QCI		_	Luminosity	2.8	2.8
Jet energy resolution	3.0	1.8	QCD scale	0.2	7.8
Lepton ID efficiency	2.4	-			/.0
Unclustered energy scale	1.9	1.6	PDF	2.3	7.5
Pileup weight	1.1	1.5		¥2.0	
Top MC scale factor unc.	0.25	-	Parton shower		41
Luminosity	0.02	2.6	Veto on third jet	4.4	29
QCD scale, PDF and cross section uncertainties	0.01	5.2		No. 1	
~			Higgs boson $p_{\rm T}$	Negligible	9.7
			MC statistics	2	46
				0.6	13

Systematics

ATLAS uncertainties due to JET energy scale / theory prediction (3rd jet) are larger. (3rd jet veto)

CMS uncertainty

ATLAS signal uncertainty


Source		Total background	Signal	Uncertainty	VBF	ggF
Control region data stat.		9.3	-	Jet energy scale	16	43
MC stat.		5.4	3.8		9 No.15.511	12
Jet energy scale		4.6	(11)	Jet energy resolution	Negligible 3.1	Negligible 3.2
$W \rightarrow \tau \nu$ control region extrapolation	on	4.3		. . .		
QCD normalisation	(ATLAS:QCD	100%) 3.2	-	Luminosity	2.8	2.8
Jet energy resolution	•	3.0	1.8	QCD scale	0.2	7.8
Lepton ID efficiency		2.4	-			
Unclustered energy scale		1.9	1.6	PDF	2.3	7.5
Pileup weight		1.1	1.5			
Top MC scale factor unc.		0.25	-	Parter NLO	4.4	41
Luminosity		0.02	2.6	V. on third jet	4.4	29
QCD scale, PDF and cross section u	incertainties	0.01	(5.2)	j		
~				Higgs boson $p_{\rm T}$	Negligible	9.7
				MC statistics	2	46
				MC statistics	0.6	13

Limit on BR(H->invisible)

Assuming SM cross section (VBF) at $m_{\mu} = 125 \text{ GeV},$

CMS : BR(95%CL) < 0.57 (exp. 0.40) **ATLAS** : BR(95%) < 0.30 (exp. 0.35)

Note: coupling strength $k_v = 1$ is assumed.

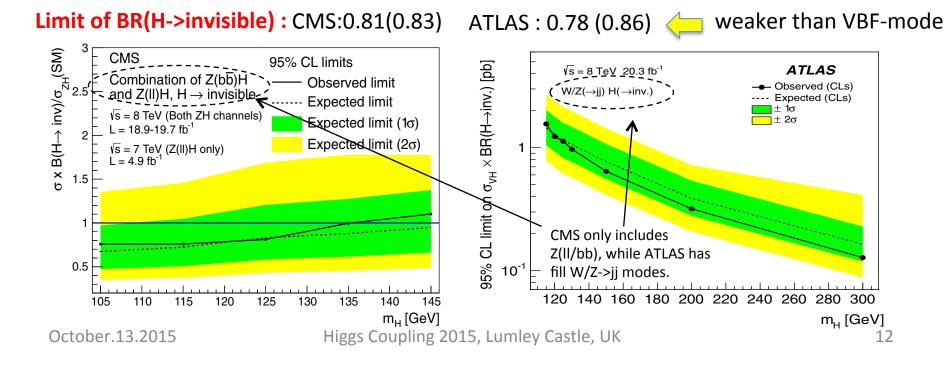
No deviation seen from SM expectation.

Associated production mode (VH)

Categorize by Z-decay mode :

- Z -> II (lepton triggers)
- Z -> jet jet (incl. b-jet) (MET triggers)

Dominant background :


- W/Z + jets (similar technique as VBF-analysis)
- ZZ / WZ (simulation)

Event selection :

- optimize $\Delta \phi$ (MET, jet)
- categorize by # of b-jets and MET

Final discriminant :

- CMS : BDT score
- ATLAS : MET and $p_T(V)$

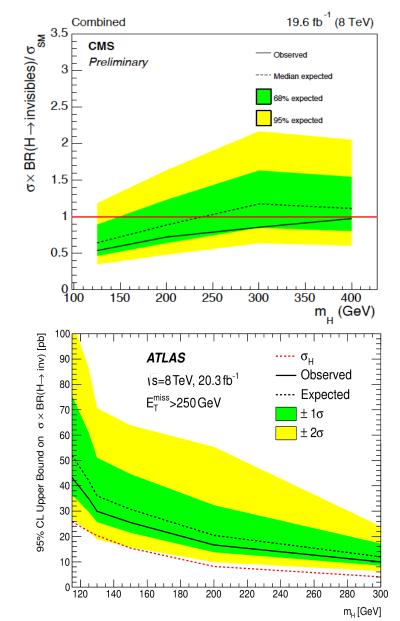
ggH (mono-jet)-mode

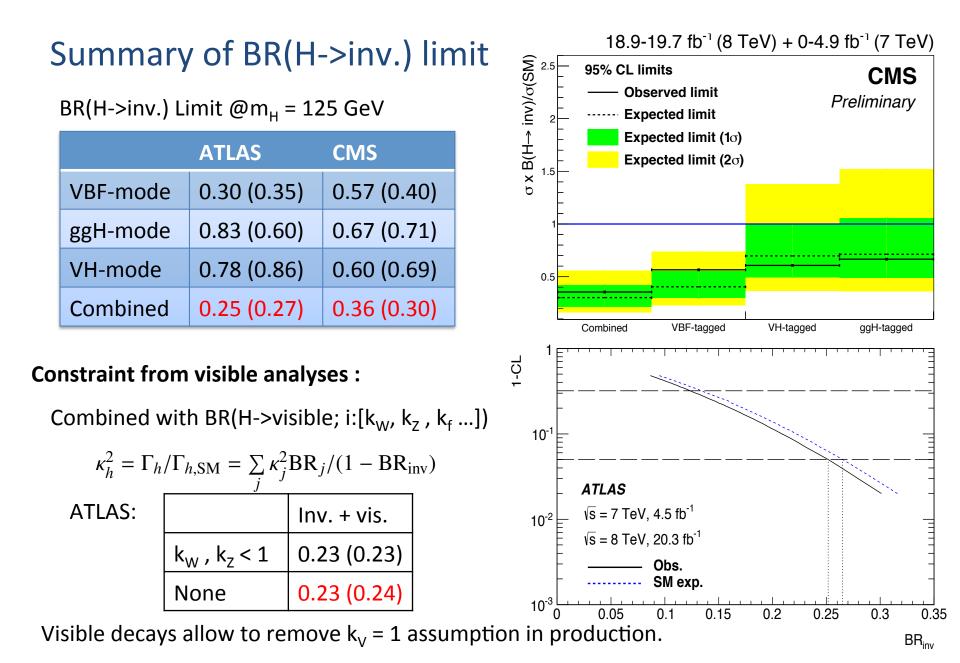
Trigger :

- CMS : MET (>120) and Mono-jet ($p_T > 80$ GeV)
- ATLAS : MET > 80 GeV

Event selection:

- CMS : MET > 200 GeV, jet p_T > 150 GeV, veto event if >2 jets (p_T > 30GeV, $|\eta|$ <2.5)
- ATLAS : MET > 250 GeV, $\Delta \phi$ (MET,jet) > 1.0, leading jet p_T > 120 GeV, p_T/MET > 0.5

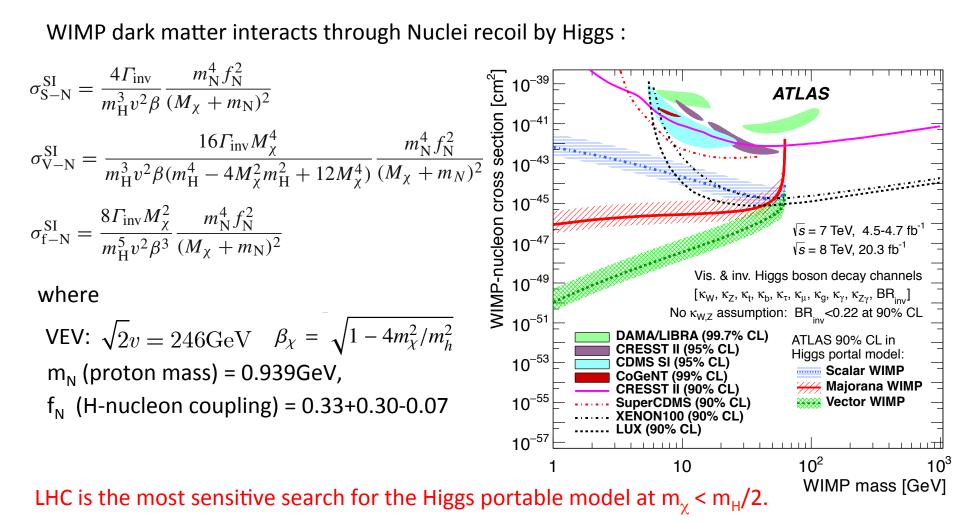

Dominant background :


- Z(vv) + jet (similar technique as VBF-analysis)

Limits at m_H = 125 GeV :

- CMS : BR(H->inv.) < 0.53 (0.62)
- ATLAS : σ x BR(H->inv.) < 1.59 (1.91)

Rather sensitive to higher mass Higgs.



October.13.2015

Higgs Coupling 2015, Lumley Castle, UK

Constraint of Higgs portal to dark matter interactions

WIMP dark matter interacts through Nuclei recoil by Higgs :

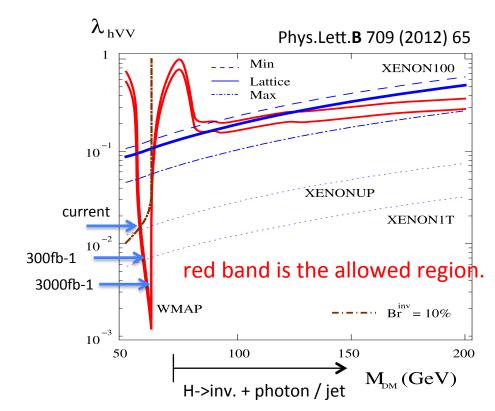
Prospect for low mass region

For "vector WIMP",

Current limit : $\lambda_{hVV} = 0.013$ @ BR = 0.2

Simple scaling by the statistics :

$$\label{eq:lambda} \begin{split} \lambda_{hVV} &= 0.0065 \ @ \ L = 300 \ fb^{\text{-1}} \\ & 0.0037 \ @ \ L = 3000 \ fb^{\text{-1}} \end{split}$$


With 3000 fb⁻¹ by simple scaling, "vector WIMP" can be excluded if $m_{\chi} < m_{H} / 2$. The scalar is most severe case...

Critical path :

requires to improve MET resolution

RMS ~ 10 GeV @ Run1 \longrightarrow 40 GeV @ Run4 (2026, 3000 fb⁻¹, μ =200) (Ref. ATLAS)

Single photon / (mono-)jet can explore high mass (> 60 GeV) region.

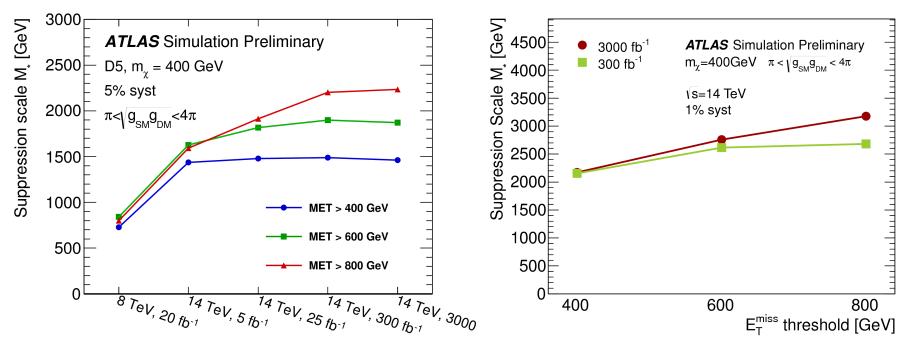
Prospect for high mass region

Accessible to high mass region using mono-jet search

Three scenario :

- MET > 400, 600, 800 GeV with leading jet $p_T > 300$ GeV

Suppose dominant background :


- $Z \rightarrow vv$ controlled under 5%

Suppression scale M* by EFT:

$$\mathbf{M^{*}}{=}\frac{\mathbf{M}_{\mathrm{med}}}{\sqrt{g_{\mathrm{SM}}g_{\mathrm{DM}}}}$$

where, EFT is valid under

 $\pi < \sqrt{g_{\rm SM} g_{\rm DM}} < 4\pi$ $\,$ (checked stability of M*)

Higgs Coupling 2015, Lumley Castle, UK

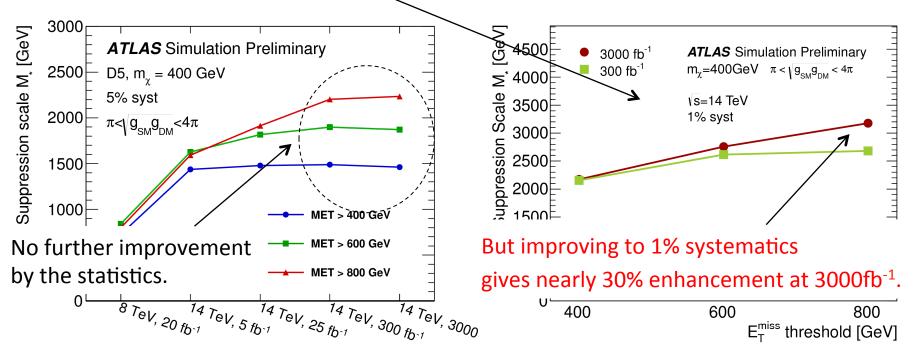
Prospect for high mass region

Accessible to high mass region using mono-jet search

Three scenario :

- MET > 400, 600, 800 GeV with leading jet $p_T > 300$ GeV

Suppose dominant background :

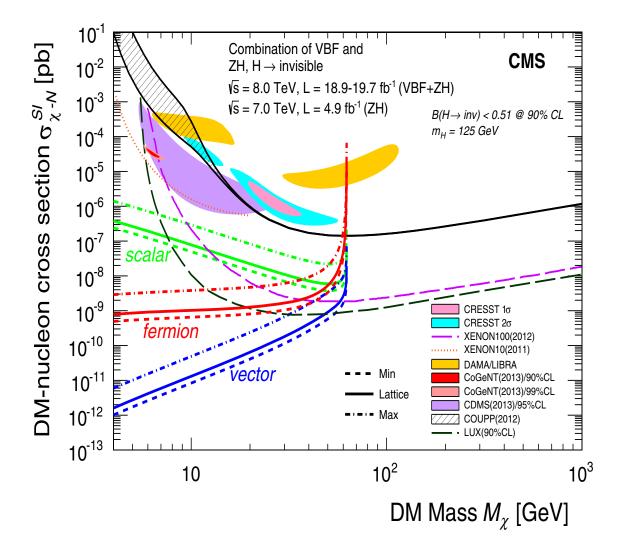

Suppression scale M* by EFT:

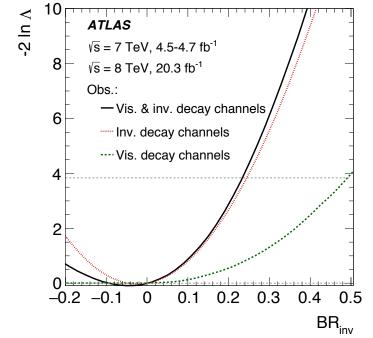
$$\mathbf{M^{*}=}\frac{\mathbf{M}_{\mathrm{med}}}{\sqrt{g_{\mathrm{SM}}g_{\mathrm{DM}}}}$$

(This is not Higgs-portal scenario, but brings same experimental message.)

where, EFT is valid under

 $\pi < \sqrt{g_{_{
m SM}}g_{_{
m DM}}} < 4\pi$ (checked stability of M*)


Higgs Coupling 2015, Lumley Castle, UK


Summary

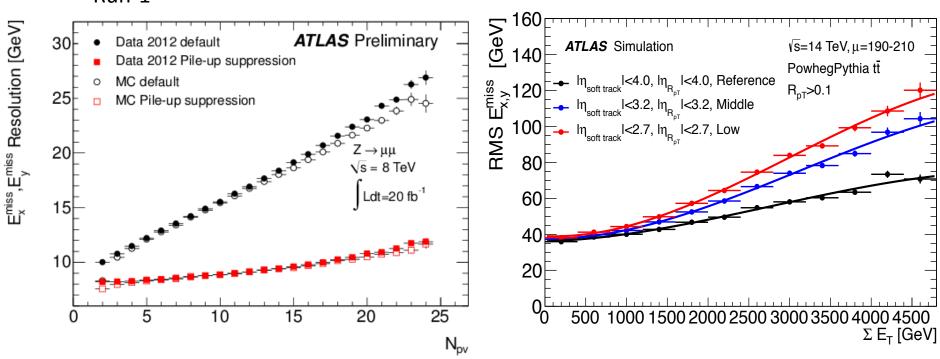
- VBF H->inv. is the most sensitive channel.
 - MET or VBF trigger is good.
 - Z H channel is significantly less sensitive.
 - Should improve MET resolution.
- "3rd jet veto" looks very powerful to reject QCD multi-jet events.
 - Theory uncertainty ?
 - Modeling systematics especially at higher pileup.
- LHC is the most powerful machine to search for DM if $m\chi < m_H/2$.
 - Supposing WMAP constraint, almost entire region is covered for vector WIMP scenario at $m\chi < m_H / 2$.
 - MET should be improved for further extension to access higher mass region.

Backup

CMS dark matter result

< 0.23 at 95% CL

Z boson coupling s.f. 0.99 ± 0.15 KΖ W boson coupling s.f. 0.92 ± 0.14 Higgs portal ΚW (Baseline config. $1.26^{+0.32}_{-0.34}$ *t*-quark coupling s.f. K_t of vis. & inv. *b*-quark coupling s.f. Higgs boson 0.61 ± 0.28 K_b decay channels: $0.98^{+0.20}_{-0.18}$ Tau lepton coupling s.f. K_{T} general coupling Muon coupling s.f. < 2.25 at 95% CL param., no K_{μ} assumption about $0.92^{+0.18}_{-0.15}$ Gluon coupling s.f. Kq $\kappa_{W,Z}$) $0.90^{+0.16}_{-0.14}$ Photon coupling s.f. K_{γ} $Z\gamma$ coupling s.f. < 3.15 at 95% CL $K_{Z\gamma}$


ATLAS Constraint from visible decay

BR_{inv}

Invisible branching ratio

ATLAS MET resolution

Run-1

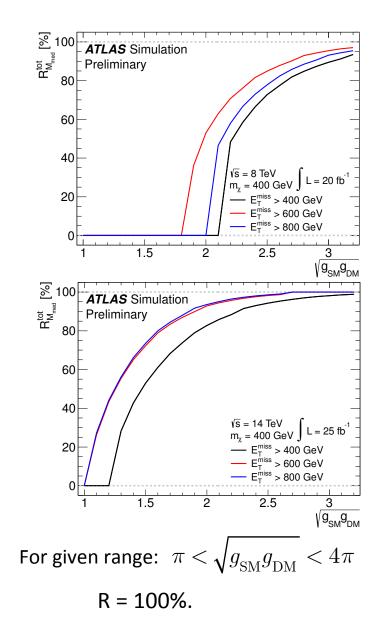
Run-4

EFT validity test

Suppression scale M* by EFT:

$$\mathbf{M^{*}} = \frac{\mathbf{M}_{\mathrm{med}}}{\sqrt{g_{\mathrm{SM}}g_{\mathrm{DM}}}}$$

where, EFT is valid under


$$\pi < \sqrt{g_{_{\rm SM}}g_{_{\rm DM}}} < 4\pi$$

 $Q_{\rm tr} < M_{\rm med}$ is typical scale of the production. In this case, $Q_{\rm tr}$ is mass of $\chi\chi$ system that satisfies:

 $Q_{\rm tr} < \sqrt{g_{\rm SM}g_{\rm DM}}M^*$

Validity is tested how often event fails above formula given fraction of

$$\sigma_{\text{valid}}(M^*) = \sigma_{\text{full}}(M^*) \cdot R_{M_{\text{med}}}^{\text{tot}}(M^*)$$

