Higgs boson self-interactions in SM and BSM (ATLAS+CMS)

Roberto Salerno LLR - Ecole Polytechnique - INP23/CNRS

Introduction

Double Higgs boson (hh) production is the principal way to to study the Higgs boson self-interaction extracting the trilinear coupling (λ_{HHH}) \rightarrow this is generally considered as an analysis for the HL-LHC

$\sigma_{SM}(gg \rightarrow hh)$	
$m_h = 125 \text{ GeV}$	

√s	σ(fb)		
7 TeV	6.85		
8 TeV	9.96		
13 TeV	34.3		
14 TeV	40.7		

Preliminary recommendations from the hh group of LHXSWG

Introduction

Double Higgs boson (hh) production is the principal way to to study the Higgs boson self-interaction extracting the trilinear coupling (λ_{HHH}) → this is generally considered as an analysis for the HL-LHC

Even if in LHC Run1 we did not have any sensitivity to "measure" Standard Model λ_{HHH} an easy pattern to look for hh are :

- → resonant production from decay of new exotic particles
- → non-resonant production from SM or from new diagrams increasing the production cross section
 - non SM Yukawa couplings
 - ttHH interactions
 - dimension-6 gluon Higgs operators
 - light coloured scalars
 - ..

Which final states?

Branching ratios and production mechanisms are decoupled effects Double Higgs boson production has a phenomenologically rich set of final states

 \rightarrow SM branching ratios (for m_h = 125 GeV) are used as first approximation for all the analyses

(X)→hh→bbbb

Phys. Lett. B 749 (2015) 560

CMS-EXO-12-053

BR_{SM}(hh→bbbb) ~ 33.3%

Eur. Phys. J. C (2015) 75:412

$(X) \rightarrow hh \rightarrow bbbb : resolved analysis$

CMS

A model-independent search for a narrow-width resonance in 270-1100 GeV range

Roberto Salerno (LLR) - Higgs Coupling 2015 - Lumley Castle - 13/10/2015

7

$(X) \rightarrow hh \rightarrow bbbb : resolved analysis$

The exclusion limits for radion production and Kaluza-Klein graviton production

The low mass region sensitivity not enough to probe (N)MSSM predictions

(X)→hh→bbbb : boosted analysis

CMS

(X)→hh→bbbb : resolved analysis

Eur. Phys. J. C (2015) 75:412

ATLAS

$(X) \rightarrow hh \rightarrow bbbb : boosted analysis$

Eur. Phys. J. C (2015) 75:412

ATLAS $\sqrt{s} = 8 \text{ TeV}$ Ldt = 19.5 fb⁻¹

2 anti-kT Δ **R=1.0** jets with pT > 250 GeV

Trimming to remove pile-up effects Track jets b-tag ($\Delta R=0.3$) Use jet mass to test Higgs mass compatibility

Background

Multijet (~90%) from sidebands tt yields from data shape from MC

11

(X)→hh→bbbb : results

Roberto Salerno (LLR) - Higgs Coupling 2015 - Lumley Castle - 13/10/2015

$(X) \rightarrow hh \rightarrow bb\tau\tau$

arXiv:1510.01181

 $BR_{SM}(hh \rightarrow bb\tau\tau) \sim 7.2\%$

Final states: $\tau_h \tau_h \ e \tau_h \ \mu \tau_h$ divided in categories based on number of b-jets (0 or 1 or 2)

Selection largely following the SM $H \rightarrow \tau \tau$ analysis

Kinematical fit (**M_H^{kinfit}**) for M_{hh} signal-to-background ratio is greatly improved

Background (**tt,QCD,Z** $\rightarrow \tau \tau$,...) shapes/yields mainly from data

Roberto Salerno (LLR) - Higgs Coupling 2015 - Lumley Castle - 13/10/2015

CMS

CMS

$(X) \rightarrow hh \rightarrow bb\tau\tau$: results

arXiv:1510.01181

ATLAS

$(X) \rightarrow hh \rightarrow bb\tau\tau$

arXiv:1509.04670

Final states: $e\tau_h \mu \tau_h$ divided in categories based on $P_{T}^{\tau\tau}$ (< or > 100 GeV) number of b-jets (1 or \geq 2)

Selection largely following the SM $H \rightarrow \tau \tau$ analysis

Process

 $Z \rightarrow \tau \tau$

Others

Data

"Fake-factor" method Total background

Fake τ_{had}

Signal $m_H = 300 \text{ GeV}$

SM Higgs

Top quark

 $p_{\rm T}^{\tau\tau} < 100 {
m ~GeV}$

 0.1 ± 0.1

 30.9 ± 3.0

 6.8 ± 1.8

 13.7 ± 1.9

 0.7 ± 1.6

 52.2 ± 8.2

 1.5 ± 0.3

35

Roberto Salerno (LLR) - Higgs Coupling 2015 - Lumley Castle - 13/10/2015

Simulation

Embedded

$(X) \rightarrow hh \rightarrow bb\gamma\gamma$

CMS-HIG-13-032

Phys. Rev. Lett. 114, 081802 (2015)

$BR_{SM}(hh \rightarrow bb\gamma\gamma) \sim 0.26\%$

$(X) \rightarrow hh \rightarrow bb\gamma\gamma$

CMS-PAS-HIG-13-032

$(X) \rightarrow hh \rightarrow bb\gamma\gamma$

Events / 5 GeV

10

10

10⁻²

ATLAS

 $\int Ldt = 20 \text{ fb}^{-1}, \sqrt{s} = 8 \text{ TeV}$

Signal Region

Data

Control Region Fit

m_x=300 GeV, $\sigma_x \times BR_{hh}$ =1 pb

----- Single Higgs Boson

Follow SM $h \rightarrow \gamma \gamma$ measurement analysis

Only one category of events

Search for:

 \rightarrow spin 0 resonances in the 260 \leq m_X \leq 500 GeV mass range SM Higgs boson

 \rightarrow non-resonant pair production

Constrained $m_{\gamma\gamma jj}$ to extract the signal

Other channels

Multileptons Lepton plus photons

 $(X) \rightarrow hh \rightarrow WW\gamma\gamma$

Phys. Rev. Lett. 114, 081802 (2015)

BR_{SM}(hh→WWWW) ~ 4.6% BR_{SM}(hh→WWTT) ~ 2.7% BR_{SM}(hh→WW $\gamma\gamma$) ~ 0.1%

1 10⁻¹ 10⁻² 10⁻³ 10⁻⁴ 10⁻⁵ 10⁻⁶ 10⁻⁷ 10⁻⁸

Roberto Salerno (LLR) - Higgs Coupling 2015 - Lumley Castle - 13/10/2015

CMS

CMS

$(X) \rightarrow hh \rightarrow WW\gamma\gamma$

Combination

Upper limits

The four individual analyses are sensitive to different kinematic regions of the hh production and decays

hh	Nonresonant search			-	Resonant search	l
final state	Categories	Discriminant		Categories	Discriminant	<i>m_H</i> [GeV]
$\gamma\gamma bar{b}$	1	$m_{\gamma\gamma}$		1	event yields	260-500
$\gamma\gamma WW^*$	1	event yields		1	event yields	260-500
$bar{b} au au$	4	$m_{ au au}$		4	$m_{bb au au}$	260-1000
$b\bar{b}b\bar{b}$	1	event yields		1	m_{bbbb}	500-1500

Interpretation

arXiv:1509.04670

The upper limits on $\sigma(gg \rightarrow H) \times BR(H \rightarrow hh)$ can be interpreted as exclusion regions in the (tan β , mA) plane.

Light CP-even Higgs boson is fixed to 125 GeV in the whole parameter space

Light CP-even Higgs boson mass is not fixed. Gray shaded region the mass of h is inconsistent with the measured value.

Summary

Search for hh final state in Run1 performed by both LHC experiments investigating a large variety of final states

The non-resonant search is far from SM sensitivity (50x SM) but new physics can be probed

Limits on resonant hh set on wide mass range