

Higgs boson spin/parity and tensor structure (ATLAS+CMS)

Marko Kovač¹ on behalf of the ATLAS and CMS collaborations

¹Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split

Higgs Couplings 2015 Durham, 12. - 15. October 2015.

Higgs Couplings 2015

Phenomenology: spin-0

Higgs Couplings 2015

Phenomenology: spin-0 Different channels overview

Phenomenology: spin-0 Different channels overview Tensor structure results

Phenomenology: spin-0 Different channels overview Tensor structure results Phenomenology: spin-1 and spin-2

Phenomenology: spin-0 Different channels overview Tensor structure results Phenomenology: spin-1 and spin-2 Spin-1 and spin-2 results

Phenomenology: spin-0 Different channels overview Tensor structure results Phenomenology: spin-1 and spin-2 Spin-1 and spin-2 results Conclusion

Phenomenology: spin-0 Different channels overview Tensor structure results Phenomenology: spin-1 and spin-2 Spin-1 and spin-2 results Conclusion

Recent references

arXiv:1506.05669

arXiv:1411.3441 arXiv:1507.06656 —> covered by Candice

Higgs Couplings 2015

Interaction between a spin-0 Higgs boson and two gauge bosons, V_1 and V_2

$$A(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_{\text{V1}}^2 + \kappa_2^{\text{VV}} q_{\text{V2}}^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f$$

Equivalent to EFT Lagrangian, next slide.

 $f^{*(2),\mu\nu} + a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$

Interaction between a spin-0 Higgs boson and two gauge bosons, V_1 and V_2

$$A(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_{\text{V1}}^2 + \kappa_2^{\text{VV}} q_{\text{V2}}^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f$$

Equivalent to EFT Lagrangian, next slide.

 $f^{*(2),\mu\nu} + a_3^{VV} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu}$

Interaction between a spin-0 Higgs boson and two gauge bosons, V_1 and V_2

$$A(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_{\text{V1}}^2 + \kappa_2^{\text{VV}} q_{\text{V2}}^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f$$

Equivalent to EFT Lagrangian, next slide.

Interaction between a spin-0 Higgs boson and two gauge bosons, V_1 and V_2

$$A(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_{\text{V1}}^2 + \kappa_2^{\text{VV}} q_{\text{V2}}^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f_{\mu\nu}^{*(1)}$$

Equivalent to EFT Lagrangian, next slide. Measurements

Higgs Couplings 2015

Tensor structure 11 anomalous couplings

$$\left\{ \cos(\alpha)\kappa_{\rm SM} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W^{+}_{\mu} W^{-\mu} \right] - \frac{1}{4} \frac{1}{\Lambda} \left[\cos(\alpha)\kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + \sin(\alpha)\kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right] - \frac{1}{2} \frac{1}{\Lambda} \left[\cos(\alpha)\kappa_{HWW} W^{+}_{\mu\nu} W^{-\mu\nu} + \sin(\alpha)\kappa_{AWW} W^{+}_{\mu\nu} \tilde{W}^{-\mu\nu} \right] \right\} X_{\rm C}$$

 $egin{aligned} L(\mathrm{HVV}) &\sim a_1 rac{m_Z^2}{2} \mathrm{HZ}^\mu \mathrm{Z}_\mu - rac{\mathrm{i}}{(\Lambda)} \ &+ a_1^{\mathrm{WW}} m_W^2 \mathrm{HW}^{+\mu} \mathrm{W}_\mu^{-1} \ &- a_1^2 \ &+ rac{\kappa_2^{Z\gamma}}{\left(\Lambda_1^{Z\gamma}
ight)^2} m_Z^2 \mathrm{HZ}_\mu \partial_
u \mathrm{F}^{\mu
u} - a_2^2 \end{aligned}$

$$\frac{\kappa_{1}}{\Lambda_{1}}^{2}m_{Z}^{2}HZ_{\mu}\Box Z^{\mu} - \frac{1}{2}a_{2}HZ^{\mu\nu}Z_{\mu\nu} - \frac{1}{2}a_{3}HZ^{\mu\nu}\tilde{Z}_{\mu\nu}$$

$$= -\frac{1}{(\Lambda_{1}^{WW})^{2}}m_{W}^{2}H\left(\kappa_{1}^{WW}W_{\mu}^{-}\Box W^{+\mu} + \kappa_{2}^{WW}W_{\mu}^{+}\Box W^{-\mu}\right)$$

$$a_{2}^{WW}HW^{+\mu\nu}W_{\mu\nu}^{-} - a_{3}^{WW}HW^{+\mu\nu}\tilde{W}_{\mu\nu}^{-}$$

$$a_{2}^{Z\gamma}HF^{\mu\nu}Z_{\mu\nu} - a_{3}^{Z\gamma}HF^{\mu\nu}\tilde{Z}_{\mu\nu} - \frac{1}{2}a_{2}^{\gamma\gamma}HF^{\mu\nu}F_{\mu\nu} - \frac{1}{2}a_{3}^{\gamma\gamma}HF^{\mu\nu}\tilde{F}_{\mu\nu}$$

$$\left\{ \cos(\alpha) \kappa_{\text{SM}} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W^{+}_{\mu} W^{-\mu} \right] - \frac{1}{4} \frac{1}{\Lambda} \left[\cos(\alpha) \kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + \sin(\alpha) \kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right] - \frac{1}{2} \frac{1}{\Lambda} \left[\cos(\alpha) \kappa_{HWW} W^{+}_{\mu\nu} W^{-\mu\nu} + \sin(\alpha) \kappa_{AWW} W^{+}_{\mu\nu} \tilde{W}^{-\mu\nu} \right] \right\} X_{0} + \frac{\kappa_{2}^{2\gamma}}{\left(\Lambda_{1}^{2\gamma}\right)^{2}} m_{Z}^{2} H Z^{\mu} Z_{\mu\nu} - \frac{1}{2} \frac{1}{\Lambda} \left[\cos(\alpha) \kappa_{HWW} W^{+}_{\mu\nu} W^{-\mu\nu} + \sin(\alpha) \kappa_{AWW} W^{+}_{\mu\nu} \tilde{W}^{-\mu\nu} \right] \right\} X_{0} + \frac{\kappa_{2}^{2\gamma}}{\left(\Lambda_{1}^{2\gamma}\right)^{2}} m_{Z}^{2} H Z_{\mu} \partial_{\nu} F^{\mu\nu} - \frac{1}{2} \frac{1}{\Lambda} \left[\cos(\alpha) \kappa_{HWW} W^{+}_{\mu\nu} W^{-\mu\nu} + \sin(\alpha) \kappa_{AWW} W^{+}_{\mu\nu} \tilde{W}^{-\mu\nu} \right] \right\} X_{0} + \frac{1}{2} \frac{1}{\Lambda} \left[\cos(\alpha) \kappa_{HWW} W^{+}_{\mu\nu} W^{-\mu\nu} + \sin(\alpha) \kappa_{AWW} W^{+}_{\mu\nu} \tilde{W}^{-\mu\nu} \right]$$

$$\tilde{\kappa}_{AVV} = \frac{1}{4} \frac{v}{\Lambda} \kappa_{AVV}$$
 and $\tilde{\kappa}_{HVV} = \frac{1}{4} \frac{v}{\Lambda} \kappa_{HVV}$

$$f_{a2} = \frac{1}{|a_1|^2 \sigma_1 + 1}$$

$$\frac{|a_2|^2 \sigma_2}{|a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + \tilde{\sigma}_{\Lambda 1} / (\Lambda_1)^4 + \dots}$$

$$\frac{m_{Z}^{2}}{2}HZ^{\mu}Z_{\mu} - \frac{\kappa_{1}}{(\Lambda_{1})^{2}}m_{Z}^{2}HZ_{\mu}\Box Z^{\mu} - \frac{1}{2}a_{2}HZ^{\mu\nu}Z_{\mu\nu} - \frac{1}{2}a_{3}HZ^{\mu\nu}\tilde{Z}_{\mu\nu}$$

$$^{N}m_{W}^{2}HW^{+\mu}W_{\mu}^{-} - \frac{1}{(\Lambda_{1}^{WW})^{2}}m_{W}^{2}H\left(\kappa_{1}^{WW}W_{\mu}^{-}\Box W^{+\mu} + \kappa_{2}^{WW}W_{\mu}^{+}\Box W^{-\mu}\right)$$

$$-a_{2}^{WW}HW^{+\mu\nu}W_{\mu\nu}^{-} - a_{3}^{WW}HW^{+\mu\nu}\tilde{W}_{\mu\nu}^{-}$$

$$^{2}_{Z}HZ_{\mu}\partial_{\nu}F^{\mu\nu} - a_{2}^{Z\gamma}HF^{\mu\nu}Z_{\mu\nu} - a_{3}^{Z\gamma}HF^{\mu\nu}\tilde{Z}_{\mu\nu} - \frac{1}{2}a_{2}^{\gamma\gamma}HF^{\mu\nu}F_{\mu\nu} - \frac{1}{2}a_{3}^{\gamma\gamma}HF^{\mu\nu}\tilde{F}_{\mu\nu}.$$

$$\begin{cases} \cos(\alpha)\kappa_{\rm SM} \left[\frac{1}{2} g_{HZZ} Z_{\mu} Z^{\mu} + g_{HWW} W_{\mu}^{+} W^{-\mu} \right] \\ -\frac{1}{4} \frac{1}{\Lambda} \left[\cos(\alpha)\kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + \sin(\alpha)\kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right] \\ -\frac{1}{2} \frac{1}{\Lambda} \left[\cos(\alpha)\kappa_{HZZ} Z_{\mu\nu} Z^{\mu\nu} + \sin(\alpha)\kappa_{AZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} \right] \\ -\frac{1}{2} \frac{1}{\Lambda} \left[\cos(\alpha)\kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + \sin(\alpha)\kappa_{AWW} W_{\mu\nu}^{+} \tilde{W}^{-\mu\nu} \right] \\ \tilde{\kappa}_{AVV} = \frac{1}{4} \frac{v}{\Lambda} \kappa_{AVV} \text{ and } \tilde{\kappa}_{HVV} = \frac{1}{4} \frac{v}{\Lambda} \kappa_{HVV} \\ \tilde{\kappa}_{AVV} - \frac{1}{4} \frac{v}{\Lambda} \kappa_{AVV} \text{ and } \tilde{\kappa}_{HVV} = \frac{1}{4} \frac{v}{\Lambda} \kappa_{HVV} \\ \tilde{\kappa}_{HVV} / \kappa_{SM} \end{pmatrix} \cdot \tan \alpha \qquad \tilde{\kappa}_{HVV} / \kappa_{SM} \qquad \tilde{\kappa}_{HVV} / \kappa_{SM} \end{cases}$$

$$\begin{cases} \cos(\alpha)\kappa_{\rm SM} \left[\frac{1}{2}g_{HZZ}Z_{\mu}Z^{\mu} + g_{HWW}W_{\mu}^{+}W^{-\mu} \right] \\ -\frac{1}{4}\frac{1}{\Lambda} \left[\cos(\alpha)\kappa_{HZZ}Z_{\mu\nu}Z^{\mu\nu} + \sin(\alpha)\kappa_{AZZ}Z_{\mu\nu}\tilde{Z}^{\mu\nu} \right] \\ -\frac{1}{2}\frac{1}{\Lambda} \left[\cos(\alpha)\kappa_{HZZ}Z_{\mu\nu}Z^{\mu\nu} + \sin(\alpha)\kappa_{AZZ}Z_{\mu\nu}\tilde{Z}^{\mu\nu} \right] \\ -\frac{1}{2}\frac{1}{\Lambda} \left[\cos(\alpha)\kappa_{HWW}W_{\mu\nu}^{+}W^{-\mu\nu} + \sin(\alpha)\kappa_{AWW}W_{\mu\nu}^{+}\tilde{W}^{-\mu\nu} \right] \right] X_{0} \\ \tilde{\kappa}_{AVV} = \frac{1}{4}\frac{v}{\Lambda}\kappa_{AVV} \text{ and } \tilde{\kappa}_{HVV} = \frac{1}{4}\frac{v}{\Lambda}\kappa_{HVV} \\ \tilde{\kappa}_{AVV} = \frac{1}{4}\frac{v}{\Lambda}\kappa_{AVV} \text{ and } \tilde{\kappa}_{HVV} = \frac{1}{4}\frac{v}{\Lambda}\kappa_{HVV} \\ \tilde{\kappa}_{AVV}/\kappa_{SM} \right) \cdot \tan \alpha \qquad \tilde{\kappa}_{HVV}/\kappa_{SM} \end{cases} \qquad \tilde{\kappa}_{HVV}/\kappa_{SM}$$

Correspond to the ratios of tensor couplings a_3/a_1 and a_2/a_1 .

 $=\sqrt{f_{ai}/f_{a1}}\times\sqrt{\sigma_1/\sigma_i}$

 $|a_2|^2 \sigma_2$ $-|a_2|^2\sigma_2+|a_3|^2\sigma_3+\tilde{\sigma}_{\Lambda 1}/(\Lambda_1)^4+\ldots$

 $W^-_\mu - rac{1}{\left(\Lambda^{
m WW}_1
ight)^2}m^2_{
m W}{
m H}\left(\kappa^{
m WW}_1{
m W}^-_\mu\Box{
m W}^{+\mu} + \kappa^{
m WW}_2{
m W}^+_\mu\Box{
m W}^{-\mu}
ight)$ $a_2^{WW}HW^{+\mu\nu}W^-_{\mu\nu} - a_3^{WW}HW^{+\mu\nu}\tilde{W}^-_{\mu\nu}$ $a_2^{Z\gamma} \mathrm{HF}^{\mu\nu} Z_{\mu\nu} - a_3^{Z\gamma} \mathrm{HF}^{\mu\nu} \tilde{Z}_{\mu\nu} - rac{1}{2} a_2^{\gamma\gamma} \mathrm{HF}^{\mu\nu} \mathrm{F}_{\mu\nu} - rac{1}{2} a_3^{\gamma\gamma} \mathrm{HF}^{\mu\nu} \tilde{F}_{\mu\nu}$

Simulations

Powheg MadGraph5_aMC@NLO JHUGEN

ggH SM Higgs boson

BSM spin-0

Spin-1

Spin-2

Higgs Couplings 2015

5

Higgs Couplings 2015

High background, low number of sensitive variables, no sensitivity to spin-0 models Sufficient statistics

%% ← H

High background, low number of sensitive variables, no sensitivity to spin-0 models

Sufficient statistics

Lower statistics

Most sensitive (angular variables + masses fully reconstructable), most significant signal

% % ↑

T

ZZ

I

High background, low number of sensitive variables, no sensitivity to spin-0 models

Sufficient statistics

Lower statistics

Most sensitive (angular variables + masses fully reconstructable), most significant signal

MM

%

Т

ZZ

I

I

Neutrinos in the final state —> limited resolution

Large signal yield, angular information from leptons and MET

Higgs Couplings 2015

$H \rightarrow \gamma\gamma$ analysis

Landau-Yang theorem strongly disfavors spin-1 particle decay to $\gamma\gamma$ Sensitive to a possible spin-2 state Log-likelihood ratio test statistic $\cos\theta^*$ used to discriminate between the spin hypotheses

$$|\cos\theta^*| = \frac{|\sinh(\Delta\eta^{\gamma\gamma})|}{\sqrt{1 + (p_T^{\gamma\gamma}/m_{\gamma\gamma})^2}} \frac{2p_T^{\gamma_1}p_T^{\gamma_2}}{m_{\gamma\gamma}^2}$$

Higgs Couplings 2015

arXiv:1506.05669

$H \rightarrow ZZ$ analysis

Kinematics can be fully described by 8 variables:

3 masses: m_{Z1} , m_{Z2} , m_{4l} 5 angles: θ^* , Φ_1 , θ_1 , θ_2 , Φ **Main backgrounds:** ZZ* (estimated from MC)

Z+ X estimated from data in CR

$H \rightarrow ZZ$ analysis (continued)

Hypothesis test

0⁺ vs J^P MELA or BDT Signal vs. bkg. BDT

0⁺ vs J^P MELA Signal vs. bkg. MELA

Templates of discriminants

Higgs Couplings 2015

Tensor structure

ME based discriminants Signal vs. bkg. BDT

MELA Signal vs. bkg. MELA

Templates of discriminants or 8D/9D fit method as a crosscheck

$H \rightarrow WW$ analysis

Only partial reconstruction is possible:

Two isolated, high- p_T , charged leptons E^{miss} due to the presence of neutrinos in the final state **Important backgrounds:** WW, W+jets, Z+jets, ttbar, single t and dibosons

$H \rightarrow WW$ analysis

Only partial reconstruction is possible:

Two isolated, high- p_T , charged leptons E_{T}^{miss} due to the presence of neutrinos in the final state **Important backgrounds:** WW, W+jets, Z+jets, ttbar, single t and dibosons

Two BDT classifiers to discriminate 0⁺ vs. bkg and J^P vs. bkg both in the spinparity tests and the tensor structure analyses

BDT input variables: $m_{ll}, \Delta \phi_{ll}, p_T^{ll}, m_T$

Higgs Couplings 2015

$H \rightarrow WW$ analysis

Only partial reconstruction is possible:

Two isolated, high- p_T , charged leptons E^{miss} due to the presence of neutrinos in the final state **Important backgrounds:** WW, W+jets, Z+jets, ttbar, single t and dibosons

Two BDT classifiers to discriminate 0⁺ vs. bkg and J^P vs. bkg both in the spinparity tests and the tensor structure analyses

BDT input variables: m_{II} , $\Delta \phi_{II}$, p_T^{II} , m_T

Two observables used in the final analysis: mu and m_T

arXiv:1411.3441

HVV tensor structure measurements

Interaction	Anomalous	Coupling	Effective
	Coupling	Phase	Fraction
	Λ_1	$\phi_{\Lambda 1}$	$f_{\Lambda 1}$
HZZ	<i>a</i> ₂	ϕ_{a2}	f_{a2}
	<i>a</i> ₃	ϕ_{a3}	f _{a3}
HWW	$\Lambda_1^{WW} a_2^{WW} a_3^{WW}$	$\phi^{ m WW}_{\Lambda1} \ \phi^{ m WW}_{a2} \ \phi^{ m WW}_{a3}$	$f_{\Lambda 1}^{\rm WW}$ $f_{a2}^{\rm WW}$ $f_{a3}^{\rm WW}$
$\mathrm{HZ}\gamma$	$\begin{array}{c}\Lambda_{1}^{Z\gamma}\\a_{2}^{Z\gamma}\\a_{3}^{Z\gamma}\end{array}$	$\phi^{Z\gamma}_{\Lambda 1} \ \phi^{Z\gamma}_{a2} \ \phi^{Z\gamma}_{a3}$	$f^{Z\gamma}_{\Lambda 1} \ f^{Z\gamma}_{a2} \ f^{Z\gamma}_{a3}$
$ m H\gamma\gamma$	$a_2^{\gamma\gamma} a_3^{\gamma\gamma}$	$\phi^{\gamma\gamma}_{a2}\ \phi^{\gamma\gamma}_{a3}$	$f^{\gamma\gamma}_{a2}\ f^{\gamma\gamma}_{a3}$

 $f_{a2} =$

Higgs Couplings 2015

11

$(\tilde{\kappa}_{AVV}/\kappa_{SM}) \cdot \tan \alpha$

$\tilde{\kappa}_{HVV}/\kappa_{\rm SM}$

HVV tensor structure measurements

Interaction	Anom	alous	Coupling	Effective
	Coup	oling	Phase	Fraction
	Λ_1		$\phi_{\Lambda 1}$	$f_{\Lambda 1}$
HZZ	a2		ϕ_{a2}	f_{a2}
	a3		ϕ_{a3}	f _{a3}
HWW	$\Lambda_1^{ m WW} a_2^{ m WW} a_3^{ m WW}$		$\phi^{ m WW}_{\Lambda1} \ \phi^{ m WW}_{a2} \ \phi^{ m WW}_{a3}$	$f^{ m WW}_{\Lambda 1}$ $f^{ m WW}_{a2}$ $f^{ m WW}_{a3}$
$\mathrm{HZ}\gamma$	$\begin{array}{c}\Lambda_1^{Z\gamma}\\a_2^{Z\gamma}\\a_3^{Z\gamma}\end{array}$		$\phi^{Z\gamma}_{\Lambda 1} \ \phi^{Z\gamma}_{a2} \ \phi^{Z\gamma}_{a3}$	$f^{Z\gamma}_{\Lambda 1} \ f^{Z\gamma}_{a2} \ f^{Z\gamma}_{a3}$
$\mathrm{H}\gamma\gamma$	$a_2^{\gamma\gamma}\ a_3^{\gamma\gamma}$		$\phi^{\gamma\gamma}_{a2}\ \phi^{\gamma\gamma}_{a3}$	$f^{\gamma\gamma}_{a2}\ f^{\gamma\gamma}_{a3}$

 $f_{a2} =$

Higgs Couplings 2015

11

$(\tilde{\kappa}_{AVV}/\kappa_{SM}) \cdot \tan \alpha$

$\tilde{\kappa}_{HVV}/\kappa_{\rm SM}$

HVV tensor structure measurements

Interaction	Anomalous	Coupling	Effective
	Coupling	Phase	Fraction
	Λ_1	$\phi_{\Lambda 1}$	$f_{\Lambda 1}$
HZZ	a ₂	ϕ_{a2}	f _{a2}
	<i>a</i> 3	ϕ_{a3}	faз
HWW	$ \begin{array}{c} \Lambda_1^{WW} \\ a_2^{WW} \\ a_3^{WW} \end{array} $	$\phi^{ m WW}_{\Lambda 1} \ \phi^{ m WW}_{a2} \ \phi^{ m WW}_{a3}$	$f_{\Lambda 1}^{ m WW}$ $f_{a2}^{ m WW}$ $f_{a3}^{ m WW}$
$\mathrm{HZ}\gamma$	$\begin{array}{c}\Lambda_1^{Z\gamma}\\a_2^{Z\gamma}\\a_3^{Z\gamma}\end{array}$	$\phi^{Z\gamma}_{\Lambda 1} \ \phi^{Z\gamma}_{a2} \ \phi^{Z\gamma}_{a3}$	$f^{Z\gamma}_{\Lambda 1} \ f^{Z\gamma}_{a2} \ f^{Z\gamma}_{a3}$
$\mathrm{H}\gamma\gamma$	$a_2^{\gamma\gamma} a_3^{\gamma\gamma}$	$\phi^{\gamma\gamma}_{a2}\ \phi^{\gamma\gamma}_{a3}$	$\begin{array}{c} f_{a2}^{\gamma\gamma} \\ f_{a3}^{\gamma\gamma} \end{array}$

 $f_{a2} =$

Higgs Couplings 2015

11

$(\tilde{\kappa}_{AVV}/\kappa_{SM}) \cdot \tan \alpha$

$\tilde{\kappa}_{HVV}/\kappa_{\rm SM}$

ai real

Consistent with the SM?

Parameter	Observed	Expected	$f_{ai}^{ m VV}=1$
$f_{\Lambda 1} \cos(\phi_{\Lambda 1})$	$0.22^{+0.10}_{-0.16} \ [-0.25, 0.37]$	$0.00^{+0.16}_{-0.87} \left[-1.00, 0.27 ight]$	1.1% (16%)
		$\cup [0.92, 1.00]$	
$f_{a2}\cos(\phi_{a2})$	$0.00^{+0.41}_{-0.06} \ [-0.66, -0.57]$	$0.00^{+0.38}_{-0.08} \left[-0.18, 1.00 ight]$	5.2% (5.0%)
	$\cup [-0.15, 1.00]$		
$f_{a3}\cos(\phi_{a3})$	$0.00^{+0.14}_{-0.11} \; [-0.40, 0.43]$	$0.00^{+0.33}_{-0.33} \left[-0.70, 0.70 ight]$	0.02% (0.41%)

Higgs Couplings 2015

ai real

Consistent with the SM?

Parameter	Observed	Expected	$f_{ai}^{ m VV}=1$
$f_{\Lambda 1} \cos(\phi_{\Lambda 1})$	$0.22^{+0.10}_{-0.16} \ [-0.25, 0.37]$	$0.00^{+0.16}_{-0.87} \left[-1.00, 0.27 ight]$	1.1% (16%)
		$\cup [0.92, 1.00]$	
$f_{a2}\cos(\phi_{a2})$	$0.00^{+0.41}_{-0.06} \ [-0.66, -0.57]$	$0.00^{+0.38}_{-0.08} \left[-0.18, 1.00 ight]$	5.2% (5.0%)
	$\cup [-0.15, 1.00]$		
$f_{a3}\cos(\phi_{a3})$	$0.00^{+0.14}_{-0.11} \; [-0.40, 0.43]$	$0.00^{+0.33}_{-0.33} \left[-0.70, 0.70 ight]$	0.02% (0.41%)

Higgs Couplings 2015

ai real

arXiv:1411.3441

HZZ tensor structure

ai cmplx

Consistent with the SM?

arXiv:1411.3441

HZZ tensor structure

ai cmplx

Consistent with the SM?

Consider two anomalous contributions at the same time

ai real

Consistent with the SM?

Consider two anomalous contributions at the same time

ai real

Consider two anomalous contributions at the same time

Less precision when phase not constrained.

Higgs Couplings 2015

ai cmplx

Consistent with the SM?

Consider two anomalous contributions at the same time

Less precision when phase not constrained.

Higgs Couplings 2015

ai cmplx

HWW tensor structure

ai real

Consistent with the SM?

HWW tensor structure

Parameter	Observed	Expected
$f_{\Lambda 1}^{\rm WW}\cos(\phi_{\Lambda 1}^{\rm WW})$	$0.21^{+0.18}_{-1.21}$ [-1.00, 1.00]	$0.00^{+0.34}_{-1.00}$ [-1.00, 0.41]
		$\cup [0.49, 1.00]$
$f_{a2}^{\rm WW}\cos(\phi_{a2}^{\rm WW})$	$-0.02^{+1.02}_{-0.16}$ $[-1.00, -0.54]$	$0.00^{+1.00}_{-0.12}$ [-1.00, -0.58]
	$\cup [-0.29, 1.00]$	$\cup [-0.22, 1.00]$
$f_{a3}^{\rm WW}\cos(\phi_{a3}^{\rm WW})$	$-0.03^{+1.03}_{-0.97}$ [-1.00, 1.00]	$0.00^{+1.00}_{-1.00} \ [-1.00, 1.00]$

Higgs Couplings 2015

ai real

Consistent with the SM?

HWW tensor structure

Parameter	Observed	Expected
$f_{\Lambda 1}^{\rm WW}\cos(\phi_{\Lambda 1}^{\rm WW})$	$0.21^{+0.18}_{-1.21}$ [-1.00, 1.00]	$0.00^{+0.34}_{-1.00}$ [-1.00, 0.41]
		$\cup [0.49, 1.00]$
$f_{a2}^{\rm WW}\cos(\phi_{a2}^{\rm WW})$	$-0.02^{+1.02}_{-0.16}$ $[-1.00, -0.54]$	$0.00^{+1.00}_{-0.12}$ [-1.00, -0.58]
	$\cup [-0.29, 1.00]$	$\cup [-0.22, 1.00]$
$f_{a3}^{\rm WW}\cos(\phi_{a3}^{\rm WW})$	$-0.03^{+1.03}_{-0.97}$ [-1.00, 1.00]	$0.00^{+1.00}_{-1.00} \ [-1.00, 1.00]$

Higgs Couplings 2015

ai real

Consistent with the SM?

HZY, HYY tensor structure

H → 4l final state, Zγ and γγ are just intermediate virtual particles.

Higgs Couplings 2015

ai real

Consistent with the SM?

HZY, HYY tensor structure

H → 4l final state,
 Zγ and γγ are just intermediate
 virtual particles.

Parameter	Observed	Expected
$f_{\Lambda 1}^{Z\gamma}\cos(\phi_{\Lambda 1}^{Z\gamma})$	$-0.27^{+0.34}_{-0.49}$ [-1.00, 1.00]	$0.00^{+0.83}_{-0.53}$ [-1.00, 1.00]
$f_{a2}^{Z\gamma}\cos(\phi_{a2}^{Z\gamma})$	$0.00^{+0.14}_{-0.20} \ [-0.49, 0.46]$	$0.00^{+0.51}_{-0.51} \ [-0.78, 0.79]$
$f_{a3}^{Z\gamma}\cos(\phi_{a3}^{Z\gamma})$	$0.02^{+0.21}_{-0.13}$ [-0.40, 0.51]	$0.00^{+0.51}_{-0.51} \ [-0.75, 0.75]$
$f_{a2}^{\gamma\gamma}\cos(\phi_{a2}^{\gamma\gamma})$	$0.12^{+0.20}_{-0.11}$ [-0.04, +0.51]	$0.00^{+0.11}_{-0.09} \ [-0.32, 0.34]$
$f_{a3}^{\gamma\gamma}\cos(\phi_{a3}^{\gamma\gamma})$	$-0.02^{+0.06}_{-0.13}$ [-0.35, 0.32]	$0.00^{+0.15}_{-0.11} \ [-0.37, 0.40]$

Higgs Couplings 2015

ai real

Consistent with the SM?

HZY, HYY tensor structure

H → 4l final state,
 Zγ and γγ are just intermediate
 virtual particles.

Parameter	Observed	Expected
$f_{\Lambda 1}^{Z\gamma}\cos(\phi_{\Lambda 1}^{Z\gamma})$	$-0.27^{+0.34}_{-0.49}$ [-1.00, 1.00]	$0.00^{+0.83}_{-0.53}$ [-1.00, 1.00]
$f_{a2}^{Z\gamma}\cos(\phi_{a2}^{Z\gamma})$	$0.00^{+0.14}_{-0.20} \ [-0.49, 0.46]$	$0.00^{+0.51}_{-0.51} \ [-0.78, 0.79]$
$f_{a3}^{Z\gamma}\cos(\phi_{a3}^{Z\gamma})$	$0.02^{+0.21}_{-0.13}$ [-0.40, 0.51]	$0.00^{+0.51}_{-0.51} \ [-0.75, 0.75]$
$f_{a2}^{\gamma\gamma}\cos(\phi_{a2}^{\gamma\gamma})$	$0.12^{+0.20}_{-0.11}$ [-0.04, +0.51]	$0.00^{+0.11}_{-0.09} \ [-0.32, 0.34]$
$f_{a3}^{\gamma\gamma}\cos(\phi_{a3}^{\gamma\gamma})$	$-0.02^{+0.06}_{-0.13}$ [-0.35, 0.32]	$0.00^{+0.15}_{-0.11} \ [-0.37, 0.40]$

Higgs Couplings 2015

ai real

Consistent with the SM?

Combination and summary

All measurements are consistent with the SM. Durham, 12. - 15. October 2015. 18

Higgs Couplings 2015

Combination and summary

Talk by Candice. All measurements are consistent with the SM. Durham, 12. - 15. October 2015. 18

Higgs Couplings 2015

arXiv:1506.05669

HZZ tensor structure

$$\tilde{\kappa}_{AVV} = \frac{1}{4} \frac{v}{\Lambda} \kappa_{AVV}$$
 and $\tilde{\kappa}_{HVV} = \frac{1}{4} \frac{v}{\Lambda} \kappa_{HVV}$

Consistent with the SM?

arXiv:1506.05669

HZZ tensor structure

Coupling ratio	Best-fit value	95% CL Exclu	usion F
$H \to Z Z^* \to 4\ell$	Observed	Expected	
$\tilde{\kappa}_{HVV}/\kappa_{\rm SM}$	-0.2	(−∞, −0.75] ∪[6.95, ∞)	(−∞,
$(\tilde{\kappa}_{AVV}/\kappa_{\rm SM})\cdot \tan \alpha$	-0.8	(−∞, −2.95] ∪[2.95, ∞)	(−∞,

Higgs Couplings 2015

arXiv:1506.05669

HZZ tensor structure

Coupling ratio	Best-fit value	95% CL Exclu	usion R
$H \to Z Z^* \to 4\ell$	Observed	Expected	
$\tilde{\kappa}_{HVV}/\kappa_{\rm SM}$	-0.2	(−∞, −0.75] ∪[6.95, ∞)	(−∞,
$(\tilde{\kappa}_{AVV}/\kappa_{\rm SM})\cdot \tan \alpha$	-0.8	(−∞, −2.95] ∪[2.95, ∞)	(−∞,

Higgs Couplings 2015

-8

arXiv:1506.05669 HZZ and HWW combination

Coupling ratio	Best-fit value	95% CL Excl	usion R
Combined	Observed	Expected	
$\tilde{\kappa}_{HVV}/\kappa_{SM}$	-0.48	(-∞, -0.55] ∪[4.80, ∞)	(−∞,
$(\tilde{\kappa}_{AVV}/\kappa_{\rm SM}) \cdot \tan \alpha$	-0.68	(-∞, -2.33] ∪[2.30, ∞)	(–∞,

Higgs Couplings 2015

arXiv:1506.05669 HZZ and HWW combination

Coupling ratio	Best-fit value	95% CL Exclusion R	
Combined	Observed	Expected	
$\tilde{\kappa}_{HVV}/\kappa_{SM}$	-0.48	(-∞, -0.55] ∪[4.80, ∞)	(−∞,
$(\tilde{\kappa}_{AVV}/\kappa_{\rm SM}) \cdot \tan \alpha$	-0.68	(-∞, -2.33] ∪[2.30, ∞)	(-∞,

Higgs Couplings 2015

Interaction between the spin-1 resonance and two gauge bosons, V_1 and V_2

$$A(X_{J=1}VV) \sim b_1^{VV} \left[\left(\epsilon_{V1}^* q \right) \left(\epsilon_{V2}^* \epsilon_X \right) + \left(\epsilon_{V2}^* q \right) \left(\epsilon_{V1}^* \epsilon_X \right) \right] +$$

hance

 $+ b_2^{VV} \epsilon_{\alpha\mu\nu\beta} \epsilon_X^{\alpha} \epsilon_{V1}^{*\mu} \epsilon_{V2}^{*\nu} \tilde{q}^{\beta}$

Interaction between the spin-1 resonance and two gauge bosons, V_1 and V_2

$$A(X_{J=1}VV) \sim b_1^{VV} \left[\left(\epsilon_{V1}^* q \right) \left(\epsilon_{V2}^* \epsilon_X \right) + \left(\epsilon_{V2}^* q \right) \left(\epsilon_{V1}^* \epsilon_X \right) \right] +$$

Measurements

Hypothesis tests 0^+ vs. mixture of 1^{\pm} ($f_{b2} = 0$ pure vector, $f_{b2} = 1$ pure pseudo-vector)

nance ge bosons. V1 and V

 $+ b_2^{VV} \epsilon_{\alpha\mu\nu\beta} \epsilon_X^{\alpha} \epsilon_{V1}^{*\mu} \epsilon_{V2}^{*\nu} \tilde{q}^{\beta}$

Interaction between the spin-2 resonance and two gauge bosons, V_1 and V_2

$$\begin{aligned} A(X \to V_1 V_2) &= \Lambda^{-1} \left[2g_1^{(2)} t_{\mu\nu} f^{*(1)\mu\alpha} f^{*(2)\nu\alpha} + 2g_2^{(2)} t_{\mu\nu} \frac{q_\alpha q_\beta}{\Lambda^2} f^{*(1)\mu\alpha} f^{*(2)\nu\beta} + g_3^{(2)} \frac{\tilde{q}^\beta \tilde{q}^\alpha}{\Lambda^2} t_{\beta\nu} \left(f^{*(1)\mu\nu} f^{*(2)}_{\mu\alpha} + f^{*(2)\mu\nu} f^{*(1)}_{\mu\alpha} \right) \right. \\ &+ g_4^{(2)} \frac{\tilde{q}^\nu \tilde{q}^\mu}{\Lambda^2} t_{\mu\nu} f^{*(1)\alpha\beta} f^{*(2)}_{\alpha\beta} + m_V^2 \left(2g_5^{(2)} t_{\mu\nu} \epsilon_1^{*\mu} \epsilon_2^{*\nu} + 2g_6^{(2)} \frac{\tilde{q}^\mu q_\alpha}{\Lambda^2} t_{\mu\nu} \left(\epsilon_1^{*\nu} \epsilon_2^{*\alpha} - \epsilon_1^{*\alpha} \epsilon_2^{*\nu} \right) + g_7^{(2)} \frac{\tilde{q}^\mu \tilde{q}^\nu}{\Lambda^2} t_{\mu\nu} \epsilon_1^{*} \epsilon_2^{*} \right) \\ &+ g_8^{(2)} \frac{\tilde{q}_\mu \tilde{q}_\nu}{\Lambda^2} t_{\mu\nu} f^{*(1)\alpha\beta} \tilde{f}^{*(2)}_{\alpha\beta} + m_V^2 \left(g_9^{(2)} \frac{t_{\mu\alpha} \tilde{q}^\alpha}{\Lambda^2} \epsilon_{\mu\nu\rho\sigma} \epsilon_1^{*\nu} \epsilon_2^{*\rho} q^\sigma + \frac{g_{10}^{(2)} t_{\mu\alpha} \tilde{q}^\alpha}{\Lambda^4} \epsilon_{\mu\nu\rho\sigma} q^\rho \tilde{q}^\sigma \left(\epsilon_1^{*\nu} (q\epsilon_2^*) + \epsilon_2^{*\nu} (q\epsilon_1^*) \right) \right) \right], \end{aligned}$$

Interaction between the spin-2 resonance and two gauge bosons, V_1 and V_2

$$\begin{split} A(X \to V_{1}V_{2}) &= \Lambda^{-1} \left[(g_{1}^{(2)})_{\mu\nu} f^{*(1)\mu\alpha} f^{*(2)\nu\alpha} + 2g_{2}^{(2)} t_{\mu\nu} \frac{q_{\alpha}q_{\beta}}{\Lambda^{2}} f^{*(1)\mu\alpha} f^{*(2)\nu\beta} + (g_{3}^{(2)}) \frac{\tilde{q}^{\beta}\tilde{q}^{\alpha}}{\Lambda^{2}} \right] \\ &+ (g_{4}^{(2)}) \frac{\tilde{q}^{\nu}\tilde{q}^{\mu}}{\Lambda^{2}} t_{\mu\nu} f^{*(1)\alpha\beta} f^{*(2)}_{\alpha\beta} + m_{\nu}^{2} \left((g_{5}^{(2)})_{\mu\nu} \epsilon_{1}^{*\mu} \epsilon_{2}^{*\nu} + (g_{6}^{(2)}) \frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}} t_{\mu\nu} (\epsilon_{1}^{*\nu} \epsilon_{2}^{*\alpha} - \epsilon_{1}^{*\alpha} \epsilon_{2}^{*\nu}) + (g_{7}^{(2)}) \frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}} t_{\mu\nu} f^{*(1)\alpha\beta} f^{*(2)}_{\alpha\beta} + m_{\nu}^{2} \left((g_{5}^{(2)})_{\mu\nu} \epsilon_{1}^{*\mu} \epsilon_{2}^{*\nu} + g_{6}^{(2)}) \frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}} t_{\mu\nu} (\epsilon_{1}^{*\nu} \epsilon_{2}^{*\alpha} - \epsilon_{1}^{*\alpha} \epsilon_{2}^{*\nu}) + (g_{7}^{(2)}) \frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}} t_{\mu\nu} f^{*(1)\alpha\beta} f^{*(2)}_{\alpha\beta} + m_{\nu}^{2} \left((g_{5}^{(2)})_{\mu\nu} \epsilon_{1}^{*\mu} \epsilon_{2}^{*\nu} + g_{6}^{(2)} \frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}} t_{\mu\nu} (\epsilon_{1}^{*\nu} \epsilon_{2}^{*\alpha} - \epsilon_{1}^{*\alpha} \epsilon_{2}^{*\nu}) + (g_{7}^{(2)}) \frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}} t_{\mu\nu} f^{*(1)\alpha\beta} f^{*(2)}_{\alpha\beta} + m_{\nu}^{2} \left((g_{5}^{(2)})_{\mu\nu} \epsilon_{1}^{*\mu} \epsilon_{2}^{*\nu} + g_{6}^{*\nu} \epsilon_{1}^{*\nu} \epsilon_{2}^{*\nu} \right) + (g_{7}^{(2)}) \frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}} t_{\mu\nu} f^{*(1)\alpha\beta} f^{*(2)}_{\alpha\beta} + m_{\nu}^{2} \left((g_{9}^{(2)})_{\mu\nu} t_{\alpha}^{*\mu} \epsilon_{2}^{*\nu} + g_{6}^{*\nu} \epsilon_{2}^{*\nu} \right) + (g_{7}^{(2)}) \frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}} t_{\mu\nu} f^{*(1)\alpha\beta} f^{*(2)}_{\alpha\beta} + m_{\nu}^{2} \left((g_{9}^{(2)})_{\mu\nu} t_{\alpha}^{*\mu} \epsilon_{2}^{*\nu} + g_{6}^{*\nu} \epsilon_{2}^{*\nu} \right) + (g_{7}^{(2)}) \frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}} t_{\mu\nu} f^{*(1)\alpha\beta} f^{*(2)}_{\alpha\beta} + m_{\nu}^{2} \left((g_{9}^{(2)})_{\mu\nu} t_{\alpha}^{*\mu} \epsilon_{2}^{*\nu} + g_{6}^{*\nu} \epsilon_{2}^{*\nu} \right) + (g_{7}^{(2)}) \frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}} t_{\mu\nu} f^{*(1)\alpha\beta} f^{*(2)}_{\alpha\beta} + m_{\nu}^{2} \left((g_{9}^{(2)})_{\mu\nu} t_{\alpha}^{*\mu} \epsilon_{2}^{*\nu} \right) + (g_{7}^{(2)}) \frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}} t_{\mu\nu} t_{\alpha} t_{\alpha}$$

 $-t_{eta
u}\left(f^{*(1)\mu
u}f^{*(2)}_{\mulpha}+f^{*(2)\mu
u}f^{*(1)}_{\mulpha}
ight)$ ${}^{(2)}_{ au} {{ ilde q}^{\mu} { ilde q}^{
u}\over \Lambda^2} t_{\mu
u} \epsilon_1^* \epsilon_2^*
ight) \, ,$ $q\epsilon_2^*) + \epsilon_2^{*\nu}(q\epsilon_1^*)) \bigg) \bigg] ,$ (18)

Interaction between the spin-2 resonance and two gauge bosons, V_1 and V_2

$$A(X \to V_{1}V_{2}) = \Lambda^{-1} \left[(g_{1}^{(2)})_{\mu\nu} f^{*(1)\mu\alpha} f^{*(2)\nu\alpha} + 2g_{2}^{(2)} t_{\mu\nu} \frac{q_{\alpha}q_{\beta}}{\Lambda^{2}} f^{*(1)\mu\alpha} f^{*(2)\nu\beta} \cdot (g_{3}^{(2)}) \frac{\tilde{q}^{\beta}\tilde{q}^{\alpha}}{\Lambda^{2}} t_{\beta\nu} \left(f^{*(1)\mu\nu} f^{*(2)}_{\mu\alpha} + f^{*(2)\mu\nu} f^{*(1)}_{\mu\alpha} \right) \right]$$

$$= (g_{4}^{(2)}) \frac{\tilde{q}^{\nu}\tilde{q}^{\mu}}{\Lambda^{2}} t_{\mu\nu} f^{*(1)\alpha\beta} f^{*(2)}_{\alpha\beta} + m_{\nu}^{2} \left(2g_{5}^{(2)})_{\mu\nu} \epsilon_{1}^{*\mu} \epsilon_{2}^{*\nu} + 2g_{6}^{(2)} \frac{\tilde{q}^{\mu}q_{\alpha}}{\Lambda^{2}} t_{\mu\nu} \left(\epsilon_{1}^{*\nu} \epsilon_{2}^{*\alpha} - \epsilon_{1}^{*\alpha} \epsilon_{2}^{*\nu} \right) + (g_{7}^{(2)}) \frac{\tilde{q}^{\mu}\tilde{q}^{\nu}}{\Lambda^{2}} t_{\mu\nu} \epsilon_{1}^{*} \epsilon_{2}^{*} \right)$$

$$= (18)$$

Measurements

Hypothesis tests 0⁺ vs. pure spin-2 models

Higgs Couplings 2015

arXiv:1411.3441

 $f_{b2}^{\rm VV}$

Consistent with the SM?

Higgs Couplings 2015

23

 $|^{2}\sigma_{b2}$

 σ_{b2}

[−], P[−], × In (L

Ņ

arXiv:1411.3441

CMS

gg, qqbar and production independent tests for ZZ

Consistent with the SM? NO

Higgs Couplings 2015

Durham, 12. - 15. October 2015.

CMS

gg, qqbar and production independent tests for ZZ

Consistent with the SM?

Higgs Couplings 2015

Durham, 12. - 15. October 2015.

Combined CMS results

Consistent YES with the **NO** SM?

Spin-two models excluded at a 99% confidence level or higher.

Higgs Couplings 2015

Combined CMS results

Spin-two models excluded at a 99% confidence level or higher.

Higgs Couplings 2015

Combined ATLAS results

arXiv:1307.1432

arXiv:1506.05669

Spin 1 rejected at 99.7% CL (WW and ZZ comb.)

Higgs Couplings 2015

All tested alternative models are excluded in favor of the SM Higgs boson hypothesis at more than 99.9% confidence level.

Consistent with the SM?

Combined ATLAS results

arXiv:1307.1432

arXiv:1506.05669

Spin 1 rejected at 99.7% CL (WW and ZZ comb.)

Higgs Couplings 2015

All tested alternative models are excluded in favor of the SM Higgs boson hypothesis at more than 99.9% confidence level.

Consistent with the SM?

Conclusion

A comprehensive study of the the Higgs boson spin-parity and tensor structure Exotic spin-parity hypotheses excluded at 99% or higher confidence level Constraints on 11 anomalous couplings under spin-0 assumption All observations consistent with the SM expectation

The future of these measurements is to improve anomalous coupling precision in spin-0.

Higgs Couplings 2015

