Higgs boson interactions with the gauge sector (ATLAS)

Tomoe Kishimoto (Tomoe.Kishimoto@cern.ch)

on behalf of the ATLAS collaboration

Kobe University

Oct. 12 2015

Higgs Couplings 2015

< ∃ >

E.

 $\checkmark Q (\sim$

Outline

✓ Introduction

- ✓ Experimental techniques and results of µ measurements:
 - $\bullet H \rightarrow ZZ^*$
 - $\bullet H \rightarrow WW^*$
 - $H \rightarrow \gamma \gamma (Z\gamma)$
- ✓ Conclusions and outlook

* Mass, Spin, differential measurements are covered by other speakers

Higgs Couplings 2015

 $\langle \square \rangle$

▲ (山) ▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Ξ.

Oct. 12 2015

Introduction

✓ Very successful Run1 at the LHC

 Discovery of the Higgs boson with bosonic decay channels

 \rightarrow Relatively clean signature with excellent detector <u>capabilities</u>

 Precision measurement of the Higgs boson production/decay rates (couplings) provides constraints on BSM scenarios, or is capable of observing deviations from the SM

ATLAS performance in Run1

All results presented in this talk are based on

- <u>4.6 fb⁻¹ at 7 TeV (2011) and 20.7 fb⁻¹ at 8 TeV (2012)</u>

Higgs production at LHC

✓ This talk covers µ measurements using bosonic decay modes:

	ggF	VBF	VH	ttH	Phys. Rev. D. 91, 012006 (2015)
H→ZZ*	v	 ✓ 	 ✓ 	-	Phys. Rev. D. 92, 012006 (2015)
H→WW*	~	 ✓ 	 ✓ 	_	JHEP 08 (2015) 137
Η→γγ	~	~	 ✓ 	~	Phys. Rev. D. 90, 112015 (2014)

 $\langle \Box \rangle$

百

 \exists

E

 $\mathcal{A} \mathcal{A} \mathcal{A}$

$H \rightarrow ZZ^* \rightarrow 4I$: overview

- Final state particles can be fully reconstructed
 - Two same flavor and oppositesign lepton pairs
- Low branching fraction, but very clean signature
 - Signal to background ratio ~2

$H \rightarrow ZZ^* \rightarrow 2\mu 2e$ candidate

$H \rightarrow ZZ^* \rightarrow 4I$: backgrounds

ZZ

Simulation normalized to the SM cross section (Powheg+GG2ZZ)

Z+jets, tt

- Estimated using data-driven methods
 - Background enriched CR
 - Extrapolate CR to SR using transfer factors

✓ Discriminating variables:

- m₄₁
- BDT ← For ZZ rejection, trained by
 p^{4l}, η^{4l}, D_{ZZ}=ln(|M_{sig}|²/|M_{ZZ}|²)
 *M is matrix element

 \rightarrow 2D fit to m₄₁ and BDT is baseline method to extract the signal

T.Kishimoto (Kobe)

Higgs Couplings 2015

$H \rightarrow ZZ^* \rightarrow 4I$: results

- Summary of signal strength measurements:
- Ratio μ_{VBF+VH}/μ_{ggF} is 0.2^{+1.2}-0.9

	μ
ggF	1.7 +0.5 -0.4
VBF + VH	0.3 +1.6 -0.9
Combined	1.44 +0.34 -0.31(stat)+0.21 -0.11(syst)

Coupling strength scale factors for vector bosons (κ_V) and fermions (κ_F)

H → WW*: overview

Large branching fraction

- VBF and VH productions can be studied
 - \rightarrow <u>Purely bosonic channels</u>
- Relatively clean signatures
 by selecting isolated leptons

ggF H \rightarrow WW* candidate

ggF and VBF H \rightarrow WW*: overview

- Analysis is split by lepton flavor and number of jets due to different bkg. composition
- ✓ Discriminating variables:

- ΔΦΙΙ

→ Small opening angle of two leptons from W decays due to spin-0 nature of the Higgs boson

- m_T , m_{II} , p_T of sub leading lepton

 \rightarrow Final variable used in fit to extract the signal is m_T or BDT score

Oct. 12 2015

ggF and VBF H \rightarrow WW*: backgrounds

- Various physics processes contaminate to signal regions as backgrounds
- ✓ ggF-enriched category as an example:

W+jets, QCD (Misid)

 Rates and shapes are extracted from data using transfer factors

WW, Top, di-boson(VV), Z+jets(DY)

 Rates are extracted from data in control regions but shapes are extracted from simulation

Oct. 12 2015

VH $H \rightarrow WW^*$: overview

- Analysis is split by lepton multiplicity and charge
 - 3 lepton analysis: shape fit to BDT score and ΔR_{1011}
 - Other analysis: fit without shape information

- Major backgrounds are normalized using CRs
 - Di-bosons, Top,
 Z→ττ, etc

Summary of signal strength measurements:

	μ	Exp Z ₀	Obs Z ₀
ggF	0.98 +0.29 -0.26	4.4	4.2
VBF	1.28 +0.55 -0.32	2.6	3.2
VH	3.0 +1.6 -1.3	0.93	2.5
Combined	1.16 +0.24 -0.21	5.9	6.5

- Consistent with the SM expectation contribute approximately equal

← Dominant systematics are theory uncertainties on the signals (cross section, acceptance)

BDT in VBF–enriched

-∢ ⊒ ▶

Oct. 12 2015

 $\checkmark Q (\sim$

13

E

$H \rightarrow \gamma\gamma$: overview

- Decay to two photons via loop of other particles
 - Sensitive to new phenomena
 - E_T/m_{YY} > 0.35 (0.25) for leading (subleading) photon
- Event categorization
 - <u>ttH enriched</u>:
 - b-tagged jets from top decay
 - <u>VH enriched</u>:
 - Lepton, MET and jets from V decay
 - <u>VBF enriched</u>:
 - BDT score based on VBF topology

$H \rightarrow \gamma \gamma$ candidate

$H \rightarrow \gamma \gamma$: signal and background modeling

\checkmark Signals are extracted from $m_{\gamma\gamma}$ distribution by fit

Signal

- Crystal Ball function (a Gaussian core with one exponential tail)

< 一 →

 \bullet

-

- + small-wider Gaussian component

Backgrounds

- Exponential of a first-order or second-order polynomial
- Components are well understood

77% is SM yy (8TeV)

E

< ∃ →

 $\checkmark Q \bigcirc$

$H \rightarrow \gamma \gamma$: results

- Summary of signal strength measurements:
 - $\mu_{comb} = 1.17 \pm 0.27$
 - Consistent with the SM expectation
 - Uncertainties are dominated
 by the statistical uncertainty
 ← More data are needed to
 establish evidence for VBF,VH
 and ttH

	Ratio
μ_{VBF}/μ_{ggF}	0.6 +0.8 -0.5
μ _{νн} /μ _{ggF}	0.6 +1.1 -0.6
μ_{ttH}/μ_{ggF}	1.2 +2.2 -1.4

< □ ▶

3

 $\checkmark Q (~$

$H \rightarrow Z\gamma$

✓ Signature: opposite-sign lepton pair + photon

- Branching ratio of $H \rightarrow Z(\rightarrow II)\gamma$ is only 5% of $H \rightarrow \gamma\gamma$
- \checkmark No excess is found in m_{IIY} distribution
 - Observed 95% CL limit at 125.5 GeV is 11 × SM expectation

✓ Prospects for $H \rightarrow Z\gamma$ search [ATL-PHYS-PUB-2014-006]

- p-value = 2.3σ (3.9 σ) with 300 fb⁻¹ (3000 fb⁻¹)

 $\checkmark \land \land \land$

 ✓ Combined results of focusing on individual production processes [arXiv:1507.04548]
 ← VBF and VH productions are good probes to test Higgs and gauge boson interactions

✓ Assume the SM Higgs decay ratios for µ measurements

The measurements of the production and bosonic decay rates of the Higgs boson are consistent with the SM expectation so far..

H → ZZ*	1.44 +0.34 -0.31(stat)+0.21 -0.11(syst)
$H \rightarrow WW^*$	1.16 +0.16 -0.15(stat)+0.18 -0.15(syst)
$H \rightarrow \gamma \gamma$	1.17 ± 0.23 (stat) ^{+0.10} -0.08(syst) ^{+0.12} -0.08(theory)

- In general, the analyses are still statistically limited
 - ← Also systematic uncertainty is often stemmed from the statistic nature

<u>More precise measurements will be</u> <u>performed using Run2 data!</u>

Backup

		▲□▶ ▲鹵▶ ▲≣▶ ▲≣▶	■ うくぐ
T.Kishimoto (Kobe)	Higgs Couplings 2015	Oct. 12 2015	_ 20

Decay fraction

< ∃ →

з.

▲ 令 ▶

 \bullet

Ð,

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

$H \rightarrow ZZ^* \rightarrow 4I$: event selections

Four isolated leptons

- p_T > 20, 15, 10, 6 (7) GeV
- electron: $|\eta| < 2.47$, muon: $|\eta| < 2.7$

Two opposite-sign lepton pairs

- on-shell Z: m₁₂ = [50,106] GeV
- off-shell Z: $m_{34} = [m_{min}, 115]$ GeV

 m_{min} =[12, 50] GeV depending on m_{41}

✓ FSR recovery

- 4 % (1%) recovery for collinear (non-collinear)
- Event categorization
 - $m_{jj} > 130$ GeV with $p_{T,jet} > 25(30)$ GeV
 - 40 < m_{jj} < 130 GeV and BDT_{VH} > -0.4
 - additional lepton with pT > 8 GeV
 - Other events

Oct. 12 2015

 $\checkmark Q (\sim$

	,		• •
Category	$gg ightarrow H, q \bar{q}/gg ightarrow b \overline{b} H$	$I/t\bar{t}H \qquad qq' \rightarrow Hqq'$	$q \bar{q} ightarrow W/ZH$
	$\sqrt{s}=7$	TeV	
$ggF \ enriched$	$2.06~\pm~0.25$	$0.114~\pm~0.005$	$0.067~\pm~0.003$
$VBF \ enriched$	$0.13~\pm~0.04$	$0.137~\pm~0.009$	$0.015~\pm~0.001$
VH-hadronic enriched	$0.053~\pm~0.018$	$0.007~\pm~0.001$	$0.038~\pm~0.002$
VH-leptonic enriched	$0.005~\pm~0.001$	0.0007 ± 0.000	$1 0.023 \ \pm \ 0.002$
	$\sqrt{s} = 8$	TeV	
$ggF \ enriched$	$12.0~\pm~1.4$	0.52 ± 0.02	$0.37~\pm~0.02$
$VBF \ enriched$	$1.2~\pm~0.4$	$0.69~\pm~0.05$	0.10 ± 0.01
VH-hadronic enriched	$0.41~\pm~0.14$	0.030 ± 0.004	$0.21~\pm~0.01$
VH-leptonic enriched	$0.021~\pm~0.003$	0.0009 ± 0.0003	$2 0.13 \ \pm \ 0.01$
93% p	urity 35%	purity	34% purity

T.Kishimoto (Kobe)

▲ □ ▶ ▲

 \bullet

23

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

$H \rightarrow ZZ^*: BDT_{ZZ^*}$

$H \rightarrow ZZ^*: BDT_{VH}$

BDT_{VH} output

- a) invariant mass of the dijet system
- \checkmark b) η separation between the jets
- ✓ c) p⊤ of each jet
- \checkmark d) η of the leading jet

.⊒ →

E

 $\checkmark Q (\sim$

$H \rightarrow ZZ^*$: II+µµ background

II+µµ control regions

- 1) Reference region is defined by applying analysis event selection except for the isolation and impact parameter
- 2)Number of Z+jets and ttbar backgrounds in a reference region are estimated from fit on CRs
- 3) Apply transfer factors estimated from MC (reference to signal)

< □ ▶

▲ 白型

E

 $\checkmark Q \bigcirc$

$H \rightarrow ZZ^*$: II+ee background

- ✓ 1) Define a control region by:
 - relaxing selection of the lowest pt electron
 - requiring same-sign for sub-leading electron pair
- 2) Estimate composition of light flavor jets, photon conversions and heavy flavor semi-leptonic decay by fit
- \checkmark 3) Apply transfer factor from Z+X simulation with data corrections

Table 9: The expected impact of the systematic uncertainties on the signal yield, derived from simulation, for $m_H = 125$ GeV, are summarized for each of the four final states for the combined 4.5 fb⁻¹ at $\sqrt{s} = 7$ TeV and 20.3 fb⁻¹ at $\sqrt{s} = 8$ TeV. The symbol "–" signifies that the systematic uncertainty does not contribute to a particular final state. The last three systematic uncertainties apply equally to all final states. All uncertainties have been symmetrized.

Source of uncertainty	4μ	$2e2\mu$	$2\mu 2e$	4e	combined
Electron reconstruction and identification efficiencies	_	1.7%	3.3%	4.4%	1.6%
Electron isolation and impact parameter selection	_	0.07%	1.1%	1.2%	0.5%
Electron trigger efficiency	_	0.21%	0.05%	0.21%	$<\!\!0.2\%$
$\ell\ell + ee$ backgrounds	_	_	3.4%	3.4%	1.3%
Muon reconstruction and identification efficiencies	1.9%	1.1%	0.8%	_	1.5%
Muon trigger efficiency	0.6%	0.03%	0.6%	-	0.2%
$\ell\ell + \mu\mu$ backgrounds	1.6%	1.6%	-	-	1.2%
QCD scale uncertainty					6.5%
PDF, α_s uncertainty					6.0%
$H \to ZZ^*$ branching ratio uncertainty					4.0%

▲□▶ ▲□▶ ▲三▶ ▲三▶

E

Table 10: Systematic uncertainties on the yields expected from various processes contributing to the VBF enriched, VH leptonic enriched, VH-hadronic enriched and ggF enriched categories expressed as percentages of the yield. The variou uncertainties are added in quadrature. Uncertainties that are negligible are denoted by a "-". All uncertainties have been symmetrized.

Process	gg ightarrow H, q ar q / gg ightarrow b ar b H / t ar t H	$qq' \rightarrow Hqq'$	$q\bar{q} \to W/ZH$	ZZ^*
	VBF enriched catego	ry		
Theoretical cross section	20.4%	4%	4%	8%
Underlying event	6.6%	1.4%	_	_
Jet energy scale	9.6%	4.8%	7.8%	9.6%
Jet energy resolution	0.9%	0.2%	1.0%	1.4%
Total	23.5%	6.4%	8.8%	12.6%
	VH-hadronic enriched cat	tegory		
Theoretical cross section	20.4%	4%	4%	2%
Underlying event	7.5%	3.1%	_	_
Jet energy scale	9.4%	9.3%	3.7%	12.6%
Jet energy resolution	1.0%	1.7%	0.6%	1.8%
Total	23.7%	10.7%	5.5%	12.9%
	VH-leptonic enriched cat	egory		
Theoretical cross section	12%	4%	4%	5%
Leptonic VH-specific cuts	1%	1%	5%	_
Jet energy scale	8.8%	9.9%	1.7%	3.2%
Total	14.9%	10.7%	6.6%	5.9%
	ggF enriched categor	У		
Theoretical cross section	12%	4%	4%	4%
Jet energy scale	2.2%	6.6%	4.0%	1.0%
Total	12.2%	7.7%	5.7%	4.1%

T.Kishimoto (Kobe)

◆□▶ ◆□▶ ◆豆▶ ◆豆▶

 $\checkmark Q (~$

E

Table 11: The number of events expected and observed for a $m_H=125$ GeV hypothesis for the four-lepton final states in a window of $120 < m_{4\ell} < 130$ GeV. The second column shows the number of expected signal events for the full mass range, without a selection on $m_{4\ell}$. The other columns show for the 120–130 GeV mass range the number of expected signal events, the number of expected ZZ^* and reducible background events, and the signal-to-background ratio (S/B), together with the number of observed events, for 4.5 fb⁻¹ at $\sqrt{s} = 7$ TeV and 20.3 fb⁻¹ at $\sqrt{s} = 8$ TeV as well as for the combined sample.

Final state	Simul	Cimal	77*	7 Linta H	C/D	Furneeted	Observed	
r mai state	Signai	Signai		Z + jets, tt	3/1	Expected	Observed	
	full mass range							
			$\sqrt{s} = 7 \text{ TeV}$	T				$H \rightarrow 77^* \rightarrow 41 \Phi \text{ Data} \qquad -0.1$
4μ	1.00 ± 0.10	0.91 ± 0.09	0.46 ± 0.02	0.10 ± 0.04	1.7	1.47 ± 0.10	2	
$2e2\mu$	0.66 ± 0.06	0.58 ± 0.06	0.32 ± 0.02	0.09 ± 0.03	1.5	0.99 ± 0.07	2	$s = 7 \text{ fev} \int Ldt = 4.5 \text{ fb}$ Signal ($m_{H} = 125 \text{ GeV} \ \mu = 1.51$)
$2\mu 2e$	0.50 ± 0.05	0.44 ± 0.04	0.21 ± 0.01	0.36 ± 0.08	0.8	1.01 ± 0.09	1	$\sqrt{s} = 8 \text{ TeV} \int Ldt = 20.3 \text{ fb}^{-1}$ Background ZZ*, Z+jets
4e	0.46 ± 0.05	0.39 ± 0.04	0.19 ± 0.01	0.40 ± 0.09	0.7	0.98 ± 0.10	1	
Total	2.62 ± 0.26	2.32 ± 0.23	1.17 ± 0.06	0.96 ± 0.18	1.1	4.45 ± 0.30	6	
			$\sqrt{s} = 8 \text{ TeV}$	r) 5 - 0.06
4μ	5.80 ± 0.57	5.28 ± 0.52	2.36 ± 0.12	0.69 ± 0.13	1.7	8.33 ± 0.6	12	
$2e2\mu$	3.92 ± 0.39	3.45 ± 0.34	1.67 ± 0.08	0.60 ± 0.10	1.5	5.72 ± 0.37	7	
$2\mu 2e$	3.06 ± 0.31	2.71 ± 0.28	1.17 ± 0.07	0.36 ± 0.08	1.8	4.23 ± 0.30	5	0 0.04
4e	2.79 ± 0.29	2.38 ± 0.25	1.03 ± 0.07	0.35 ± 0.07	1.7	3.77 ± 0.27	7	
Total	15.6 ± 1.6	13.8 ± 1.4	6.24 ± 0.34	2.00 ± 0.28	1.7	22.1 ± 1.5	31	
		$\sqrt{s} =$	7 TeV and \sqrt{s}	= 8 TeV				-).5
4μ	6.80 ± 0.67	6.20 ± 0.61	2.82 ± 0.14	0.79 ± 0.13	1.7	9.81 ± 0.64	14	
$2e2\mu$	4.58 ± 0.45	4.04 ± 0.40	1.99 ± 0.10	0.69 ± 0.11	1.5	6.72 ± 0.42	9	
$2\mu 2e$	3.56 ± 0.36	3.15 ± 0.32	1.38 ± 0.08	0.72 ± 0.12	1.5	5.24 ± 0.35	6	110 115 120 125 130 135 140
4e	3.25 ± 0.34	2.77 ± 0.29	1.22 ± 0.08	0.76 ± 0.11	1.4	4.75 ± 0.32	8	
Total	18.2 ± 1.8	16.2 ± 1.6	7.41 ± 0.40	2.95 ± 0.33	1.6	26.5 ± 1.7	37	

Higgs Couplings 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\checkmark Q (~$

Ð,

Table 12: Expected and observed yields in the VBF enriched, VH-hadronic enriched, VH-leptonic enriched and ggF enriched categories. The yields are given for the different production modes and the ZZ^* and reducible background for 4.6 fb⁻¹ at $\sqrt{s} = 7$ TeV and 20.3 fb⁻¹ at $\sqrt{s} = 8$ TeV. The estimates are given for both the $m_{4\ell}$ mass range 120–130 GeV and the mass range above 110 GeV.

Enriched		Sign	al		Back	ground	Total	Observed
category	$ggF + b\bar{b}H + t\bar{t}H$	VBF	VH-hadronic	VH-leptonic	ZZ^*	$Z + \text{jets}, t\bar{t}$	expected	
			$120 < m_4$	$_\ell < 130~{ m GeV}$				
VBF	1.18 ± 0.37	0.75 ± 0.04	0.083 ± 0.006	0.013 ± 0.001	0.17 ± 0.03	0.25 ± 0.14	2.4 ± 0.4	3
$(BDT_{VBF} > 0)$	0.48 ± 0.15	0.62 ± 0.04	0.023 ± 0.002	0.004 ± 0.001	0.06 ± 0.01	0.10 ± 0.05	1.26 ± 0.15	1
VH-hadronic	0.40 ± 0.12	0.034 ± 0.004	0.20 ± 0.01	0.009 ± 0.001	0.09 ± 0.01	0.09 ± 0.04	0.80 ± 0.12	0
$VH ext{-leptonic}$	0.013 ± 0.002	< 0.001	< 0.001	0.069 ± 0.004	0.015 ± 0.002	0.016 ± 0.019	0.11 ± 0.02	0
ggF	12.8 ± 1.3	0.57 ± 0.02	0.24 ± 0.01	0.11 ± 0.01	7.1 ± 0.2	2.7 ± 0.4	23.5 ± 1.4	34
			$\mathbf{m_{4\ell}} >$	$110 \ GeV$				
VBF	1.4 ± 0.4	0.82 ± 0.05	0.092 ± 0.007	0.022 ± 0.002	20 ± 4	1.6 ± 0.9	24. \pm 4.	32
$(BDT_{VBF} > 0)$	0.54 ± 0.17	0.68 ± 0.04	0.025 ± 0.002	0.007 ± 0.001	8.2 ± 1.6	0.6 ± 0.3	10.0 ± 1.6	12
VH-hadronic	0.46 ± 0.14	0.038 ± 0.004	0.23 ± 0.01	0.015 ± 0.001	9.0 ± 1.2	0.6 ± 0.2	10.3 ± 1.2	13
$VH ext{-leptonic}$	0.026 ± 0.004	< 0.002	< 0.002	0.15 ± 0.01	0.63 ± 0.04	0.11 ± 0.14	0.92 ± 0.16	1
ggF	14.1 ± 1.5	0.63 ± 0.02	0.27 ± 0.01	0.17 ± 0.01	351. \pm 20	16.6 ± 2.2	383. \pm 20	420

▲□▶ ▲□▶ ▲三▶ ▲三▶

E

$H \rightarrow WW^*$: event selection

$ \begin{array}{c} \hline n_{j} = 0 \\ \hline n_{j} = 0 \\ \end{array} \\ \begin{array}{c} P_{T} = 0 \\ P_{T} > 10 \text{ fm} \\ P_{T} > 10 \text{ fm} \\ Opposite-m_{\ell\ell} > 10 \text{ fm} \\ p_{T} < 12 \text{ fm} \\ p_{T} > 20 \\ P_{T} < 20 \\ P$	$n_j = 1$ for the leading lepton ℓ_1 or the subleading lepton ℓ_2 charge leptons for the $e\mu$ sample for the $ee/\mu\mu$ sample for the $ee/\mu\mu$ sample for $e\mu$ $p_{\rm T}^{\rm miss} > 20$ for $e\mu$ $for e\mu p_{\rm T,rel}^{\rm miss} > 40 for ee/\mu\mu> 40 for ee/\mu\mu p_{\rm T,rel}^{\rm miss(trk)} > 35 for ee/\mu\mu1 for ee/\mu\mu f_{\rm recoil} < 0.1 for ee/\mu\mu$	$n_j \ge 2 \text{ ggF}$ $p_{\mathrm{T}}^{\mathrm{miss}} > 20 \text{ for } e\mu$ -	$n_j \ge 2 \text{ VBF}$ No MET requirement for $e\mu$ $p_T^{\text{miss}} > 40 \text{ for } ee/\mu\mu$
$\begin{array}{l} \text{Preselection} \\ \text{All } n_{j} \begin{cases} p_{\mathrm{T}}^{\ell 1} > 22 \\ p_{\mathrm{T}}^{\ell 2} > 10 \text{ for } \\ \text{Opposite-} \\ m_{\ell\ell} > 10 \text{ for } \\ m_{\ell\ell} > 12 \text{ for } \\ p_{\mathrm{T},\mathrm{rel}} > 20 \\ E_{\mathrm{T},\mathrm{rel}} > 20 \\ E_{\mathrm{T},\mathrm{rel}} > 20 \\ E_{\mathrm{T},\mathrm{rel}} > 40 \\ \end{array}$ $\begin{array}{l} \text{Reject backgrounds} \\ \text{DY} \\ \begin{cases} p_{\mathrm{T},\mathrm{rel}}^{\mathrm{miss}(\mathrm{trk})} \\ f_{\mathrm{recoil}} < 0, \\ p_{\mathrm{T}}^{\ell\ell} > 30 \\ \Delta \phi_{\ell\ell,\mathrm{MET}} \end{cases}$ $\begin{array}{l} \text{Misid.} \\ - \\ \text{Top} \\ \begin{cases} n_{j} = 0 \\ - \\ \end{array}$ $\begin{array}{l} \text{VBF topology} \end{cases}$	for the leading lepton ℓ_1 or the subleading lepton ℓ_2 charge leptons for the $e\mu$ sample for the $ee/\mu\mu$ sample for the $ee/\mu\mu$ sample $E_{\rm T} > 15$ for the $ee/\mu\mu$ sample for $e\mu$ $p_{\rm T}^{\rm miss} > 20$ for $e\mu$ 0 for $ee/\mu\mu$ $E_{\rm T,rel}^{\rm miss} > 40$ for $ee/\mu\mu$ >40 for $ee/\mu\mu$ $p_{\rm T,rel}^{\rm miss(trk)} > 35$ for $ee/\mu\mu$ 1 for $ee/\mu\mu$ $f_{\rm recoil} < 0.1$ for $ee/\mu\mu$	$p_{ m T}^{ m miss} > 20 ext{ for } e\mu$	No MET requirement for $e\mu$ - $p_{\rm T}^{\rm miss} > 40$ for $ee/\mu\mu$
Reject backgrounds DY $p_{T,rel}^{miss(trk)} > f_{recoil} < 0.$ $p_T^{\ell\ell} > 30$ $\Delta \phi_{\ell\ell,MET}$ MisidMisidTop-VBF topology-	$>40 ext{ for } ee/\mu\mu p_{ ext{T,rel}}^{ ext{miss (trk)}} > 35 ext{ for } ee/\mu\mu$ 1 for $ee/\mu\mu f_{ ext{recoil}} < 0.1 ext{ for } ee/\mu\mu$	ι -	$p_{\mathrm{T}}^{\mathrm{miss}} > 40$ for $ee/\mu\mu$
VBF topology -	$m_{\tau\tau} < m_Z - 25$ $m_T^{\ell} > 50 \text{ for } e\mu$ $n_b = 0$	$m_{\tau\tau} < m_Z - 25$ $n_b = 0$ -	$E_{\mathrm{T}}^{\mathrm{miss}} > 45 \text{ for } ee/\mu\mu$ $m_{ au au} < m_Z - 25$ $n_b = 0$ $p_{\mathrm{T}}^{\mathrm{sum}}$ inputs to BDT $\Sigma m_{\ell j}$ inputs to BDT
	-	See Sec. IV D for rejection of VBF & VH $(W, Z \rightarrow jj)$, where $H \rightarrow WW^*$	$egin{aligned} m_{jj} & ext{inputs to BDT} \ \Delta y_{jj} & ext{inputs to BDT} \ \Sigma C_\ell & ext{inputs to BDT} \ C_{\ell 1} < 1 & ext{and } C_{\ell 2} < 1 \ C_{j3} > 1 & ext{for } j_3 & ext{with } p_{ ext{T}}^{j3} > 20 \ O_{ ext{BDT}} \geq -0.48 \end{aligned}$
$\begin{array}{ll} H \to WW^* \to \ell \nu \ell \nu & m_{\ell \ell} < 55 \\ \text{decay topology} & \Delta \phi_{\ell \ell} < 1.8 \\ \text{No } m_{\text{T}} \text{ respectively} \end{array}$	$m_{\ell\ell} < 55$ $\Delta \phi_{\ell\ell} < 1.8$	$m_{\ell\ell} < 55 \ \Delta \phi_{\ell\ell} < 1.8 \ { m No} \ m_{ m T} \ { m requirement}$	$egin{array}{llllllllllllllllllllllllllllllllllll$
	quirement No $m_{\rm T}$ requirement		

VH H → WW*: overview

- Analysis is split by lepton multiplicity and charge
 - In 3 lepton analysis,
 shape fit to ΔR₁₀₁₁ and
 BDT score is
 performed to extract
 the signals
 - Other analyses use the fit without shape information

▲ 山 ▶ ▲

< □ ▶

* ΔR_{1011} is the angle separation between the lepton with unique charge (I0) and the lepton closest to I0

Ξ.

 $\checkmark Q (\land$

ggF and VBF H \rightarrow WW*: event selections

Opposite-sign lepton pair

- p_T > 22, 10 GeV
- $|\eta| < 2.47 (2.5)$ for e (µ)
- $m_{\parallel} > 10 (12) \text{ GeV for } e\mu (ee/\mu\mu)$

Jet for categorization

- $p_T > 25$ (30) GeV for $|\eta| < 2.4$ $(2.4 < |\eta| < 4.5)$

-
$$n_{jet} = 0,1$$
 → ggF enriched
- $n_{iet} > 1$ → VBF enriched

...etc (backup)

- $\Delta \Phi_{\parallel} < 1.8$ and

ggF enriched

VBF enriched

< ∃ →

 $\checkmark Q \bigcirc$

VH $H \rightarrow WW^*$: event selections and backgrounds

- 4 lepton analysis
 - <u>1 SFOS</u> or <u>2 SFOS</u> leptons
 - $|m_{1213} m_Z| < 10 \text{ GeV}, \text{ etc}$
 - Background: **ZZ***
- ✓ 3 lepton analysis
 - <u>3 SF</u> or <u>1 SFOS</u> or <u>0 SFOS</u> leptons
 - $\Delta R_{1011} < 2.0$, etc
 - Background: WZ/Wγ*, ZZ* and VVV
- ✓ OS di-lepton analysis
 - Only eµ events, |m_{jj} 85| < 15 GeV, etc
 - Background: **Top, Z→ττ**
- ✓ SS di-lepton analysis
 - Split jet multiplicity and lepton flavor
 - Background: W+jets, Top, WZ/Wγ*, Wγ

* Backgrounds in bold are normalized using CRs

H → WW*: event selection

Channel	4ℓ		3ℓ			2ℓ		
Category	2SFOS	1SFOS	3SF	1SFOS	0SFOS	DFOS	SS2jet	SS1jet
Trigger	single-lepton triggers		single-lepton triggers			single-lepton & dilepton triggers		
Num. of leptons	4	4	3	3	3	2	2	2
$p_{\mathrm{T,leptons}}$ [GeV]	> 25, 20, 15	> 25, 20, 15	> 15	> 15	> 15	> 22, 15	> 22, 15	> 22, 15
Total lepton charge	0	0	±1	± 1	± 1	0	± 2	± 2
Num. of SFOS pairs	2	1	2	1	0	0	0	0
Num. of jets	≤ 1	≤ 1	≤ 1	≤ 1	≤ 1	≥ 2	2	1
$p_{\mathrm{T,jets}} \; [\mathrm{GeV}]$	> 25 (30)	> 25 (30)	> 25 (30)	> 25 (30)	> 25 (30)	> 25 (30)	> 25 (30)	> 25 (30)
Num. of <i>b</i> -tagged jets	0	0	0	0	0	0	0	0
$E_{\rm T}^{\rm miss}$ [GeV]	> 20	> 20	> 30	> 30		> 20	> 50	> 45
$p_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	> 15	> 15	> 20	> 20				
$ m_{\ell\ell} - m_Z $ [GeV]	$< 10 \ (m_{\ell_2 \ell_3})$	$< 10 \ (m_{\ell_2 \ell_3})$	> 25	> 25			> 15	> 15
Min. $m_{\ell\ell}$ [GeV]	$> 10 \ (m_{\ell_0 \ell_1})$	$> 10 \ (m_{\ell_0 \ell_1})$	> 12	> 12	> 6	> 10	$> 12 \ (ee, \mu\mu)$	$> 12 \ (ee, \mu\mu)$
							$> 10 \ (e\mu)$	$> 10 \ (e\mu)$
Max. $m_{\ell\ell}$ [GeV]	$< 65 \ (m_{\ell_0 \ell_1})$	$< 65 \ (m_{\ell_0 \ell_1})$	< 200	< 200	< 200	< 50		
$m_{4\ell} \; [\text{GeV}]$	> 140							
$p_{\mathrm{T},4\ell} \; [\mathrm{GeV}]$	> 30							
$m_{\tau\tau}$ [GeV]						$< (m_Z - 25)$		
$\Delta R_{\ell_0 \ell_1}$			< 2.0	< 2.0				
$\Delta \phi_{\ell_0 \ell_1} $ [rad]	$< 2.5 \ (\Delta \phi_{\ell_0 \ell_1}^{\text{boost}})$	$< 2.5 \ (\Delta \phi_{\ell_0 \ell_1}^{\text{boost}})$				< 1.8		
$m_{\mathrm{T}} \; [\mathrm{GeV}]$		_				< 125		$> 105 \ (m_{\rm T}^{\rm lead})$
Min. $m_{\ell_i j(j)}$ [GeV]							< 115	< 70
Min. $\phi_{\ell_i j}$ [rad]							< 1.5	< 1.5
Δy_{jj}						< 1.2		
$ m_{jj}-85 $ [GeV]						< 15		

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ♪ �� ♡ � ()

T.Kishimoto (Kobe)

$H \rightarrow WW^*: BDT_{VBF}$

BDT_{VBF} output

- ✓ a) p_T^{sum} : $p_T^{II} + p_T^{miss} + \Sigma p_T^{jet}$
- ✓ b) Σm_{Ij} : $m_{I1j1} + m_{I1j2} + m_{I2j1} + m_{I2j2}$
- ✓ c) m_{jj}
- d) Δy_{jj}
- ✓ e) ΣCI: CI1+CI2
- ✓ f) m_{II}
- ✓ g) Δφιι
- ✓ h) m_T

Oct. 12 2015

 \mathcal{A}

H → WW*: systematics

	Observed $\mu = 1.09$		Observed $\mu_{\rm ggF} = 1.02$		Observed $\mu_{VBF} = 1.27$		
Source	Er	ror	Plot of error	Error	Plot of error	Error	Plot of error
	+	-	(scaled by 100)	+ –	(scaled by 100)	+ -	(scaled by 100
Data statistics	0.16	0.15		0.19 0.19		0.44 0.40	
Signal regions	0.12	0.12		0.14 0.14		0.38 0.35	
Profiled control regions	0.10	0.10		$0.12 \ 0.12$		$0.21 \ 0.18$	
Profiled signal regions	-	-	-	$0.03 \ 0.03$	+	0.09 0.08	+
MC statistics	0.04	0.04	+	$0.06 \ 0.06$	+	$0.05 \ 0.05$	+
Theoretical systematics	0.15	0.12		0.19 0.16		$0.22 \ 0.15$	
Signal $H \rightarrow WW^* \mathcal{B}$	0.05	0.04	+	$0.05 \ 0.03$	+	$0.07 \ 0.04$	+
Signal ggF cross section	0.09	0.07	+	$0.13 \ 0.09$		0.03 0.03	+
Signal ggF acceptance	0.05	0.04	+	$0.06 \ 0.05$	+	$0.07 \ 0.07$	+
Signal VBF cross section	0.01	0.01	+		-	$0.07 \ 0.04$	+
Signal VBF acceptance	0.02	0.01	+		-	$0.15 \ 0.08$	+-
Background WW	0.06	0.06	+	$0.08 \ 0.08$		$0.07 \ 0.07$	+
Background top quark	0.03	0.03	+	$0.04 \ 0.04$	+	$0.06 \ 0.06$	+
Background misid. factor	0.05	0.05	+	$0.06 \ 0.06$	+	$0.02 \ 0.02$	+
Others	0.02	0.02	+	$0.02 \ 0.02$	+	0.03 0.03	+
Experimental systematics	0.07	0.06	+	0.08 0.08	+	0.18 0.14	+-
Background misid. factor	0.03	0.03	+	$0.04 \ 0.04$	+	$0.02 \ 0.01$	+
Bkg. $Z/\gamma^* \rightarrow ee, \ \mu\mu$	0.02	0.02	+	0.03 0.03	+	$0.01 \ 0.01$	+
Muons and electrons	0.04	0.04	+	$0.05 \ 0.04$	+	$0.03 \ 0.02$	+
Missing transv. momentum	0.02	0.02	+	$0.02 \ 0.01$	+	$0.05 \ 0.05$	+
Jets	0.03	0.02	+	0.03 0.03	÷	$0.15 \ 0.11$	+
Others	0.03	0.02	+	$0.03 \ 0.03$	+	0.06 0.06	+
Integrated luminosity	0.03	0.03	+	$0.03 \ 0.02$	+	$0.05 \ 0.03$	+
Total	0.23	0.21		0.29 0.26	<u> </u>	$0.53 \ 0.45$	
		-	30-15 0 15 30		-30-15 0 15 30		-60-30 0 30 60

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ④ ♥ ♥

T.Kishimoto (Kobe)

$H \rightarrow WW^*$: κ calculation

$$egin{aligned} \mu_{\mathrm{ggF}} & \propto & rac{\kappa_F^2 \cdot \kappa_V^2}{\left(\mathcal{B}_{H o f ar{f}} + \mathcal{B}_{H o gg}
ight) \kappa_F^2 + \left(\mathcal{B}_{H o VV}
ight) \kappa_V^2}, \ \mu_{\mathrm{VBF}} & \propto & rac{\kappa_V^4}{\left(\mathcal{B}_{H o f ar{f}} + \mathcal{B}_{H o gg}
ight) \kappa_F^2 + \left(\mathcal{B}_{H o VV}
ight) \kappa_V^2}. \end{aligned}$$

T.Kishimoto (Kobe)

▲□▶ ▲目▶

 $\bullet \square \bullet$

- ₹ ₹ >

 $\mathcal{O} \mathcal{Q} (\mathcal{P})$

\checkmark Likelihood scan as function of κ_V and κ_F :

 $\kappa_F = 0.85 + 0.26 - 0.20$ $\kappa_V = 1.06 + 0.10 - 0.10$

- Consistent with the SM expectation
- <u>Total uncertainty is ~10%</u>
 <u>for boson coupling</u>

< 1 → <

 $\checkmark Q (\sim$

$H \rightarrow \gamma \gamma$: event selections

✓ At least two photon candidates

- $E_T/m_{YY} > 0.35$ (0.25) for leading (sub-leading) photon

Event categorization

- <u>ttH enriched</u>:
 - b-tagged jets from top decay
- <u>VH enriched</u>:
 - Lepton, MET and jets from V decay
- <u>VBF enriched</u>:
 - BDT score based on VBF topology

backup for details

Oct. 12 2015

Higgs Couplings 2015

$H \rightarrow \gamma \gamma$: overview

✓ Decay to two photons via loop of other particles

- Event topology can be fully reconstructed
- Sensitive to new phenomena
- Diphoton events are divided into 12 categories to maximize sensitivities

 $H \rightarrow \gamma \gamma$ candidate

Event categories

$\underline{8~{\rm TeV}}$ data sample

Process	4ℓ		3ℓ			2ℓ		
Category	2SFOS	1SFOS	3SF	1SFOS	0SFOS	DFOS	SS2jet	SS1jet
Higgs boson								
$VH \ (H \to WW^*)$	0.203 ± 0.030	$0.228 {\pm} 0.034$	$0.73 {\pm} 0.10$	$1.61 {\pm} 0.18$	1.43 ± 0.16	2.15 ± 0.30	$1.04{\pm}0.18$	$2.04{\pm}0.30$
$VH \ (H \to \tau \tau)$	0.0084 ± 0.0032	$0.012 {\pm} 0.004$	$0.057 {\pm} 0.011$	$0.152{\pm}0.023$	$0.248 {\pm} 0.035$		$0.036 {\pm} 0.008$	$0.27 {\pm} 0.04$
ggF			$0.076 {\pm} 0.015$	$0.085 {\pm} 0.018$	—	$2.4{\pm}0.5$		
VBF						$0.180 {\pm} 0.025$		
ttH								
Background								
V			$0.22 {\pm} 0.16$	$1.9 {\pm} 0.6$	$0.37 {\pm} 0.15$	14 ± 4	8 ± 4	15 ± 5
VV	1.17 ± 0.20	$0.31 {\pm} 0.06$	$19{\pm}3$	28 ± 4	4.7 ± 0.6	10.1 ± 1.6	11.2 ± 2.1	26 ± 4
VVV	0.12 ± 0.04	$0.10 {\pm} 0.04$	$0.8 {\pm} 0.3$	2.2 ± 0.7	2.93 ± 0.29			$0.47 {\pm} 0.05$
Тор	0.014 ± 0.011		$0.91 {\pm} 0.26$	$2.4{\pm}0.6$	3.7 ± 0.9	24 ± 4	$0.75 {\pm} 0.19$	1.3 ± 0.5
Others						2.3 ± 0.9	$0.71 {\pm} 0.30$	$0.60 {\pm} 0.24$
Total	1.30 ± 0.23	$0.41 {\pm} 0.09$	22 ± 4	34 ± 6	11.7 ± 1.8	50 ± 5	21 ± 5	44 ± 6
Observed events	0	3	22	38	14	63	25	62

・ロト < 団ト < 三ト < 三ト < 三 </p>

$H \rightarrow \gamma \gamma$: BDT_{VBF}

Oct. 12 2015

E

- 4 目 ト - 4 目 ト

44

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

$H \rightarrow \gamma \gamma$: event categorization

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

王

$H \rightarrow \gamma \gamma$: systematics

		Syst. source	N _{NP}	Implementation	Section
	ŗ.	Scales	7	$N_{ m S}^p F_{ m LN}(\sigma_i, heta_i)$	VIII A 1
	ield Theo	$PDF + \alpha_S$	2	$N_{ m S}^p F_{ m LN}(\sigma_i, heta_i)$	VIII A 1
ield		Br. ratio	1	$N_{ m S}^{ m tot}F_{ m LN}(\sigma_i, heta_i)$	VIII A 1
Y		Luminosity	2	$N_{ m S}^{ m tot}F_{ m LN}(\sigma_i, heta_i)$	VIII A 3.1
	xp.	Trigger	2	$N_{ m S}^{ m tot}F_{ m LN}(\sigma_i, heta_i)$	VIII A 3.2
	щ	Photon ID	2	$N_{ m S}^{ m p}F_{ m LN}(\sigma_i, heta_i)$	VIII A 3.3
		Isolation	2	$N_{ m S}^{ m p}F_{ m LN}(\sigma_i, heta_i)$	VIII A 3.4
MC		MC stats.	14	$N_{ m S}^p F_{ m G}(\sigma_i^p, heta_i)$	VIII A 2
		Jet-bin	2	$N_{ m S}^{ m ggF} F_{ m LN}(\sigma_i^{ m ggF}, heta_i^{ m ggF})$	VIIIB1.1
		UE+PS	1	$N^p_{ m S} F_{ m G}(\sigma^p_i, heta_i)$	VIIIB12
S	igrations Theory	F Higgs p_T		$N_{ m S}^{ m ggF} F_{ m G}(\sigma_i^{ m ggF}, heta_i^{ m ggF})$	VIIIB1.3
tior		$\Delta \phi_{jj}$	1	$N_{ m S}^{ m ggF}F_{ m LN}(\sigma_i^{ m ggF}, \theta_i^{ m ggF})$	VIIIB14
igra		η^*		$N_{ m S}^{ m ggF}F_{ m LN}(\sigma_i^{ m ggF}, \theta_i^{ m ggF})$	VIIIB14
М		$t\bar{t}H$ model	2	$N_{\rm S}^{t\bar{t}H}F_{\rm LN}(\sigma_i^{t\bar{t}H},\theta_i^{t\bar{t}H})$	VIII B 1.5
	HF content		1	$N_{ m S}^p F_{ m LN}(\sigma_i^p, heta_i)$	VIII B 1.5
	Scale $(t\bar{t}H \text{ cat.})$		4	$N^p_{ m S}F_{ m LN}(\sigma^{tar{t}H}_i, heta^{tar{t}H}_i)$	VIII B 1.5
	ġ	Jet reco.	20	$N_{ m S}^p F_{ m G}(\sigma_i^p, heta_i)$	VIIIB2.1
	ΞX	$E_{\mathrm{T}}^{\mathrm{miss}}$	5	$N_{ m S}^p F_{ m G}(\sigma_i^p, heta_i)$	VIIIB2.1
		b-tagging	13	$N^p_{ m S} F_{ m G}(\sigma^p_i, heta_i)$	VIII B 2.2
	Lepton ID+isol.		2	$N_{ m S}^p F_{ m G}(\sigma_i^p, heta_i)$	VIIIB2.3
	I	lepton isolation	2	$N_{ m S}^p F_{ m G}(\sigma^p_i, heta_i)$	VIII B 2.3
		Resolution	4	$\sigma_{ m CB}F_{ m LN}(\sigma_i, heta_i)$	VIII C 1
Mass	- Alass			$\sigma_{ m GA}F_{ m LN}(\sigma_i, heta_i)$	
~	Scale		43	$\mu_{ m CB} F_{ m G}(\sigma_i, heta_i)$	VIII C 2
				$\mu_{ m GA}F_{ m G}(\sigma_i, heta_i)$	
Back.	Spurious signal		12	$N_{\mathrm{spur},c} heta_{\mathrm{spur},c}$	VIIB

Uncertainty group	$\sigma_{\mu}^{ m syst.}$
Theory (yield)	0.09
Experimental (yield)	0.02
Luminosity	0.03
MC statistics	< 0.01
Theory (migrations)	0.03
Experimental (migrations)	0.02
Resolution	0.07
Mass scale	0.02
Background shape	0.02

T.Kishimoto (Kobe)

▲□▶▲□▶▲■▶▲■▶ ● ● ● ●

Combined results

 $\mu_{\text{comb}} = 1.18^{+0.15}_{-0.14} \ [\pm 0.10(\text{stat.}) \pm 0.07(\text{syst.})^{+0.08}_{-0.07}(\text{theo.})]$ $\kappa_{V} = 1.09 \ \pm 0.07 \ [^{+0.05}_{-0.05}(\text{stat.})^{+0.03}_{-0.03}(\text{syst.})^{+0.04}_{-0.03}(\text{theo.})]$ $\kappa_{F} = 1.11 \ \pm 0.16 \ [^{+0.12}_{-0.11}(\text{stat.})^{+0.10}_{-0.09}(\text{syst.})^{+0.06}_{-0.05}(\text{theo.})]$

$$\sigma_i \cdot \mathrm{BR}_f = \left(\sigma_{\mathrm{ggF}} \cdot \mathrm{BR}_{WW^*}\right) \times \left(\frac{\sigma_i}{\sigma_{\mathrm{ggF}}}\right) \times \left(\frac{\mathrm{BR}_f}{\mathrm{BR}_{WW^*}}\right) = \sigma(gg \to H \to WW^*) \times \left(\frac{\sigma_i}{\sigma_{\mathrm{ggF}}}\right) \times \left(\frac{\Gamma_f}{\Gamma_{WW^*}}\right).$$

Parameter		Be	st-fit value		SM prediction	
$\sigma(gg \to H \to WW^*)$ (pl	b) 4.8	$6^{+0.95}_{-0.90}$	$\begin{bmatrix} +0.76 & +0.52 & +0.26 \\ -0.74 & -0.48 & -0.18 \end{bmatrix}$		4.22 ± 0.47	
$\sigma_{\rm VBF}/\sigma_{\rm ggF}$	0.081	$^{+0.035}_{-0.026}$	$\begin{bmatrix} +0.031 + 0.016 + 0.008 \\ -0.024 - 0.010 - 0.005 \end{bmatrix}$		0.082 ± 0.009	
$\sigma_{WH}/\sigma_{ m ggF}$	0.053	+0.037 -0.026	$\begin{bmatrix} +0.032 + 0.018 + 0.008 \\ -0.023 - 0.012 - 0.004 \end{bmatrix}$		0.036 ± 0.004	
$\sigma_{ZH}/\sigma_{ m ggF}$	0.013	$+0.030 \\ -0.014$	$\begin{bmatrix} +0.021 + 0.020 + 0.005 \\ -0.013 - 0.005 - 0.002 \end{bmatrix}$		0.021 ± 0.002	
$\sigma_{ttH}/\sigma_{\rm ggF}$	0.012	$+0.007 \\ -0.005$	$\begin{bmatrix} +0.005 + 0.004 + 0.0014 \\ -0.004 - 0.003 - 0.0005 \end{bmatrix}$		0.007 ± 0.001	
$\Gamma_{\gamma\gamma}/\Gamma_{WW^*}$	0.010	$^{+0.003}_{-0.003}$	$\begin{bmatrix} +0.003 + 0.002 + 0.0006 \\ -0.002 - 0.001 - 0.0004 \end{bmatrix}$	0.010	0.00000000000000000000000000000000000	
$\Gamma_{ZZ^*}/\Gamma_{WW^*}$	0.1	$5^{+0.05}_{-0.04}$	$\begin{bmatrix} +0.046 + 0.022 + 0.008 \\ -0.036 - 0.013 - 0.005 \end{bmatrix}$	0.	$124 \pm < 0.001$	
$\Gamma_{\tau\tau}/\Gamma_{WW^*}$	0.3	$4^{+0.14}_{-0.11}$	$\begin{bmatrix} +0.112 + 0.084 + 0.032 \\ -0.090 - 0.053 - 0.017 \end{bmatrix}$		0.285 ± 0.006	
$\Gamma_{bb}/\Gamma_{WW^*}$	1.5	$3^{+1.64}_{-0.94}$	$\begin{bmatrix} +1.17 + 1.11 + 0.30 \\ -0.69 - 0.63 - 0.12 \end{bmatrix}$		2.60 ± 0.12	
Process	VBF	ttE	I WH	ZH	VH	
Observed	4.3	2.5	5 2.1	0.9	2.6	
Expected	3.8	1.	5 2.0	2.1	3.1	

T.Kishimoto (Kobe)

 $\mathcal{O} \mathcal{Q} (\mathcal{P})$

E

Prospects

ATLAS Simulation Preliminary $\sqrt{s} = 14 \text{ TeV}: \int \text{Ldt} = 300 \text{ fb}^{-1}; \int \text{Ldt} = 3000 \text{ fb}^{-1}$				
H→γγ (comb.)				
$H \rightarrow ZZ$ (comb.)				
H→ WW (comb.)				
H→ Zγ (incl.)				
$H \rightarrow b\overline{b}$ (comb.)				
H→ττ (VBF-like)				
H→μμ (comb.)				
	0 0.2 0.4 Δμ/μ			

ATLAS Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$

T.Kishimoto (Kobe)

E

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Prospects

Oct. 12 2015

ATLAS Simulation Preliminary

 $\mathcal{O} \mathcal{Q} \mathcal{O}$