

CMS experiment: Higgs boson interactions with the gauge sector

Xavier Janssen (University of Antwerp) **On behalf of the CMS Collaboration**

Higgs Couplings 2015, 12-15 Oct 2015 IPPP, Durham, UK

SM H Boson Production and Decay at LHC

Gluon fusion (gg \rightarrow H) it the dominant production mechanism at LHC but VBF, VH and ttH allow to test H couplings/properties.

γγ, ZZ and WW decays continue to play a key role to study H@125 GeV properties/couplings

Also studying the Zγ mode.

$H \rightarrow \gamma \gamma$: Overview

- □ Fully reconstructed decay with excellent mass resolution (1-2%)
- **Large** continuum background from QCD $\gamma\gamma$ and γ +jet \rightarrow Photon ID BDT to reject jet fakes
- Analysis separated in several di-photon categories to exploit different S/B ratio
- □ Dedicated VBF (di-jet BDT) as well as VH and ttH (event topology tags) categories
 - → In total 25 analysis categories (11 in 2011 and 14 in 2012)

 $\sqrt{s} = 7$ TeV, L = 5.1 fb⁻¹; $\sqrt{s} = 8$ TeV, L = 19.7 fb⁻¹

$H \rightarrow ZZ \rightarrow 4l$: Overview

 \rightarrow 6.8 σ signal @ 125.6 GeV

4/19

→ Compatible with SM Higgs (within ~23-30% uncertainty on total signal strength)

+ Talk on Higgs combination ATLAS+CMS this afternoon (K. Grimm)

X. Janssen - 12/10/2015 CMS: Higgs boson interactions with the gauge sector

5/19

$H \rightarrow \gamma \gamma \& H \rightarrow ZZ \rightarrow 4l$: Mass

CMS: Higgs boson interactions with the gauge sector

6/19

Width from on-shell $H \rightarrow ZZ \rightarrow 4l$ and $H \rightarrow \gamma\gamma$

arXiv:1412.8662

□ For m_H = 125 GeV → Γ_H ~ 4 MeV
 □ Higgs width from H→ZZ→4I and H→γγ resonance shapes @ ~125 GeV only with reduced precision of ~GeV due to detector resolution for e/γ/μ p_T measurements

Higgs Width from off-shell H \rightarrow ZZ

Assuming Higgs boson is produced on-shell is far from real Higgs mass lineshape

- → Competing effects from BW in high mass region and $\Gamma_{H\rightarrow 4I}$ cause plateau
- → ~8% of total H→ZZ cross section found in m_{ZZ} > 2m_Z region

$$\frac{d\sigma_{\rm gg \rightarrow H \rightarrow ZZ}}{dm_{ZZ}^2} \propto g_{\rm gg H}^2 g_{\rm HZZ}^2 \frac{F(m_{ZZ})}{(m_{ZZ}^2 - m_{\rm H}^2)^2 + m_{\rm H}^2 \Gamma_{\rm H}^2}$$

Which gives for on-peak:

$$\sigma_{\rm gg \to H \to ZZ}^{\rm on-peak} \propto \frac{g_{\rm ggH}^2 g_{\rm HZZ}^2}{\Gamma_{\rm H}}$$

and for off-peak:

CMS

$$\sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak} \propto g_{\rm ggH}^2 g_{\rm HZZ}^2$$

 \rightarrow Off-peak to peak ratio sensitive to $\Gamma_{\rm H}$:

$$rac{\sigma_{
m off-peak}}{\sigma_{
m peak}} \propto \Gamma_H$$

→ Need to account for large interference with non resonant ZZ background at high m_{ZZ}

+ Talk on Mass and Width ATLAS+CMS this afternoon (I. Giotis) + Talk on H lifetime with H→ZZ→4I on Wednesday (c. You)

Final states with 2 leptons:

- □ 2 leptons (e or μ) + MET
- □ H→WW→2l2v + 0/1-jet → 2D Shape in m_{μ}/m_{τ} (eµ) & cuts (ee/µµ)

$\Box \text{ VBF H} \rightarrow \text{WW} \rightarrow 2\text{I}2\text{v} + 2\text{q}$

- → |∆η(jj)| > 3.5 & m_{ii} > 500 GeV
- → 1D Shape in m_{\parallel} (e_{μ}) & cuts (ee/µµ)

\Box VH \rightarrow 2l2v + 2q

- → V=W/Z: 65 < m_{ii} < 105 GeV & |∆η(jj)| < 1.5
- → cut based analysis

Final states with 3 leptons:

→ Large excess at low Higgs mass → @ m_H = 125.6 GeV:

μ = 0.71 ± 0.12 (stat.) ± 0.14 (syst.) = 0.71 ± 0.18 (stat.+syst.)

	Exp.	Obs.
Significance	5.8 σ	4.3 σ

→ Compatible within 1 σ with SM
 → Good precision on ggH
 → Large error for VBF+VH

$H \rightarrow Z\gamma$ and $H \rightarrow \gamma\gamma^* \rightarrow \gamma l^+l^-$

Zγ: arXiv:1307.5515 H→γγ→γll: arXiv:1507.03031

<u>Н→Zү</u>

- Select e+e-γ and μ+μ-γ events with m_µ>50 GeV
- □ If more than one I+I- pair, select the one most compatible with Z mass

→ Sensitivity ~7 x SM, no excess of events

Higgs Spin and Parity

□ Study the kinematic distributions of the decay products:

- > Two production angles: θ^* and Φ_1 in the X rest frame
- > Three decay angles: θ 1, θ 2, and Φ in the V rest frames

Angular distributions determined by the tensor structure of the HVV interactions

- □ H→ZZ→4I: The information is condensed in a set of $\frac{100}{6}$ discriminants based on **Matrix Element** calculations $\frac{100}{6}$ so
- □ H→WW: Reduced information available → 2D templates of m_{II} , m_{T} in e_{μ} channel 0/1-jet

arXiv:1411.3441

Spin 0 and anomalous couplings

Combine ZZ and WW w.r.t. to ratio of couplings in both channels: R_{ai}

→ No sign of deviations to the SM but need more data to better constraints some of the couplings

X. Janssen - 12/10/2015 CMS: Higgs boson interactions with the gauge sector

arXiv:1411.3441

Fiducial and Differential Cross-sections

Design fiducial phase-space selection:

- □ As close as possible to the reconstructed level selection
- Unfolding should only impact minimally the distributions: minimize extrapolation to larger phase-space

Fiducial should minimize model dependence:
Try to have the acceptance similar for different "reasonable" signal models
Definition should be easily implemented in different MC simulation

Signal extraction: Fit mass (m_{YY} or m₄₁) in bins of the desired quantity (e.g. p_{T,H})
 Unfolding: Fold in the response matrix into the likelihood minimization

H→γγ Fiducial Cross-section

Fiducial Volume: $|\eta_{\gamma}| < 2.5$ Isolated $\gamma: \sum_{i} E_{T,i} < 10 \text{ GeV}$ in a $\Delta R < 0.4$ cone around γ $p_{T}^{\gamma 1}/m_{\gamma \gamma} > 1/3$ $p_{T}^{\gamma 2}/m_{\gamma \gamma} > 1/4$

→ ~60% signal efficiency

Methodology:

- □ Perform event classification in σ(m_{γγ})/m_{gg}
 → Avoid kinematic correlations
 - to observable (like in BDT)
- Fit m_{γγ} in each class in bins of the observable
- Include response matrix in LH to correct to particle level

→ Observed cross-section in fiducial volume:

$$\sigma_{\rm obs} = 32^{+10}_{-10} \, ({\rm stat})^{+3}_{-3} \, ({\rm syst}) \, {\rm fb}$$

→ In agreement with theory predictions:

$$\sigma_{\text{HRES}+\text{XH}} = 31^{+4}_{-3} \text{ fb},$$

$$\sigma_{\text{POWHEG}+\text{XH}} = 32^{+6}_{-5} \text{ fb},$$

$$\sigma_{\text{MADGRAPH5}_{aMC@NLO+\text{XH}}} = 30^{+6}_{-5} \text{ fb}.$$

$H \rightarrow \gamma \gamma$ Differential Cross-sections

→ Already some good precision → Data fairly described by theory predictions → More variables in backup

H→ZZ→4l Fiducial Cross-section

Requirements for the $\mathrm{H} ightarrow 4\ell$ fiducial p	ohase space	Mathadalagu
Lepton kinematics and isolatic	n	<u>memodology</u> .
leading lepton $p_{\rm T}$	$p_{\rm T} > 20 { m GeV}$	☐ Fit the m₄ in bins of the
next-to-leading lepton $p_{\rm T}$	$p_{\mathrm{T}} > 10 \ \mathrm{GeV}$	
additional electrons (muons) $p_{\rm T}$	$p_{\mathrm{T}} > 7(5) \ \mathrm{GeV}$	variable including:
pseudorapidity of electrons (muons)	$ \eta < 2.5(2.4)$	- backgrounds
$p_{\rm T}$ sum of all stable particles within $\Delta R < 0.4$ from lepton	less than $0.4 \cdot p_{\mathrm{T}}$	
Event topology		- tiducial signal
existence of at least two SFOS lepton pairs, where leptons s	atisfy criteria above	- non-fiducial signal
inv. mass of the Z_1 candidate	$40 \text{GeV} < m(Z_1) < 120 \text{GeV}$	- non-nuuciai signai
inv. mass of the Z_2 candidate	$12 \text{GeV} < m(Z_2) < 120 \text{GeV}$	LH fit embedding the
distance between selected four leptons	$\Delta R(\ell_i \ell_j) > 0.02$ for any $i \neq j$	
inv. mass of any opposite sign lepton pair	$m(\ell^+\ell'^-) > 4 \text{GeV}$	response matrix to correc
inv. mass of the selected four leptons	$105{ m GeV} < m_{4\ell} < 140{ m GeV}$	to narticle level
the selected four leptons must originate from the $H\to 4\ell$ d	ecay	

Fiducial cross section ${ m H} ightarrow 4\ell$ at 7 TeV			
Measured	$0.56^{+0.67}_{-0.44}$ (stat.) $^{+0.21}_{-0.06}$ (sys.) $^{+0.02}_{-0.02}$ (model) fb		
$gg \rightarrow H(HRES) + XH$	$0.93^{+0.10}_{-0.11}$ fb		
Fiducial cross section $\mathrm{H} ightarrow 4\ell$ at 8 TeV			
Measured	$1.11^{+0.41}_{-0.35}$ (stat.) $^{+0.14}_{-0.10}$ (sys.) $^{+0.08}_{-0.02}$ (model) fb		
$gg \rightarrow H(HRES) + XH$	$1.15^{+0.12}_{-0.13}$ fb		
Ratio of fiducial cross sections of $H \to 4\ell$ at 7 and 8 TeV			
Measured	$0.51^{+0.71}_{-0.40}({ m stat.}){}^{+0.13}_{-0.05}({ m sys.}){}^{+0.00}_{-0.03}({ m model})$		
$gg \rightarrow H(HRES) + XH$	$0.805\substack{+0.003\\-0.010}$		

CMS-PAS-HIG-14-028

→ Good agreement with theory predictions

H→ZZ→4l Differential Cross-sections

Enough data at 8 TeV to extract differential cross-sections already:

X. Janssen - 12/10/2015 CMS: Higgs boson interactions with the gauge sector

CMS-PAS-HIG-14-028

Conclusions

After the Higgs discovery in 2012, the CMS $H \rightarrow \gamma\gamma$, $H \rightarrow ZZ \rightarrow 4I$ and $H \rightarrow WW \rightarrow 2I2v$ analysis's allowed to further measure its properties:

 \Box Higgs Mass ($\gamma\gamma$ +ZZ): $m_{H} = 125.02^{+0.26}_{-0.27}$ (stat)^{+0.14}_{-0.15} (syst)

□ Higgs Width:

- > Direct Measurement ($\gamma\gamma$ +ZZ): $\Gamma_{\rm H}$ < 1.7 GeV @ 95% CL
- > Constraint from ZZ off-shell: $\Gamma_{H} < 22 \text{ MeV} @ 95\% \text{ CL}$

Precise measurements of signal strength and couplings:

- γγ: μ = 1.14 +- 0.21 (stat.) $^{+0.13}_{-0.09}$ (th.) $^{+0.09}_{-0.05}$ (sys.)
 ZZ: μ = 0.93 $^{+0.26}_{-0.23}$ (stat.) $^{+0.13}_{-0.09}$ (syst.)
- > WW: $\mu = 0.71 \pm 0.12$ (stat.) ± 0.14 (syst.)
- \succ + contribution to global coupling fit (not shown)
- **Exclusion** of all Spin 1&2 models

□ Exclusion of 0⁻

- **Limits on anomalous couplings for spin 0: no deviations**
- \Box First measurements of cross-sections in H $\rightarrow\gamma\gamma$ and H \rightarrow ZZ

→ Discovered Higgs Boson is SM like within uncertainties

BACKUP SLIDES

Brass + Plastic scintillator ~7,000 channels

LHC and CMS

p-p collisions at center of mass energy of:

- □ 7 TeV : ~5 fb⁻¹ in 2011
- □ 8 TeV : ~ 20 fb⁻¹ in 2012
- □ 13 TeV : since restart in March 2015
- → Study Standard Model at high energy
- → Precise measurements of top quark
- → Search/study Higgs Boson
- → Search for BSM particles
- + Heavy lons collisions: study of dense matter/medium properties
 - Can detect and measure momentum of: Electrons Photons
 - □ Hadrons
 - Muons
 - Transverse momentum of particles escaping detection (neutrinos, BSM particles, …)
 - = Missing transverse energy

Cross-sections

$H \rightarrow \gamma \gamma$ Differential Cross-sections

23/19

$H \rightarrow \gamma \gamma$ Differential Cross-sections

25/19

X. Janssen - 12/10/2015 CMS: Higgs boson interactions with the gauge sector

10

10

H→ZZ→4l Differential Cross-sections

CMS-PAS-HIG-14-028

26/19

H→γγ Backups

CMS

Channel inter-calibration

- The uniformity and time stability of the single channel response affects the ٠ resolution
- Derive individual corrections in situ by equalising the response to diphoton ٠ resonaces (η, π^0) MS Preliminary 2012
 - Cross check using ϕ invariance of energy flow 0
 - And E/p ratio for electrons 0

180

160

ECAL Calibrations

- Monitor crystal transparency using blue (and green) laser light
 - Construct time dependent set of corrections to give a flat response over time
- Derive inter channel calibration constants
 - The uniformity of the single channel response affects the resolution
 - Individual corrections by equalising the response to diphoton resonances $(\eta, \pi^0, E/p \text{ and } \phi$ -symmetry
 - Zee events also used for eta and absolute scale
- Thanks to ECAL DPG for their work in calibration and simulation

CMS: Higgs boson interactions with the gauge sector

Energy regression

Use the raw supercluster energy and several other input variables

- \circ to model shower shape, position etc. (label inputs as $ec{x}$)
- Correct for local containment of showers and bremsstrahlung losses etc.
- Now use specialised BDT (not TMVA) to predict full probability distribution for E_{true}/E_{raw}
 - Distribution is given by a double CB which has six free params (μ , σ , $\alpha_{L'}$, $\alpha_{R'}$, $n_{L'}$, n_{R})
 - "Regress" the non-parametric dependence of each of these variables on the BDT input variables whilst minimising the likelihood,

$-\ln \mathcal{L} = -\sum_{MCphotons} \ln p(E_{true}/E_{raw}|\mu(\vec{x}), \sigma(\vec{x}), \alpha_L(\vec{x}), \alpha_R(\vec{x}), n_L(\vec{x}), n_R(\vec{x}))$

Best estimate for the true energy:

CMS

Per photon energy resolution:

Energy scale and smearing

- Apply residual scale corrections to the data and subsequent smearings to the MC
- resolve differences between data and MC from Z→ee decay (when electrons are reconstructed as photons)
- Employ a new multistep procedure
 - $\circ~$ Split data and MC into 59 run ranges, 4 η bins and 2 R_9 bins

CMS

- o Fit Z line shape and find scale correction from data→MC in run×|η| bins
- Simultaneously fit scale with a $\frac{100}{1000}$ Gaussian smearing term for MC in $|\eta| \times R_9$
 - In the barrel (for 8 TeV) the smearing term has an energy dependence by parameterisation through: $b/\sqrt{E_T} + c$
- Then have a further residual scale correction in $E_T \times |\eta| \times R_9$

manial Caller

Event Tag Summary

Labol	No. of classes		Main requirements	
Label	8 GeV	7 GeV	Main requirements	
tīH lopton tag	1 .		$p_{\rm T}^{\gamma}(1) > m_{\gamma\gamma}/2$	
turi iepton tag	1	*	1 b-tagged jet + 1 electron or muon	
			$p_{\rm T}^{\gamma}(1) > 3 \cdot m_{\gamma\gamma}/8$	
VH tight ℓ tag	1	1	e or μ , $p_{\rm T} > 20$ GeV, and $\not\!\!\!E_{\rm T} > 45$ GeV OR	
			2e or 2 μ , $p_{\rm T}$ > 10 GeV; 70 < $m_{\ell\ell}$ < 110 GeV	
VH loose / tag	1	1	$p_{\rm T}^{\gamma}(1) > 3 \cdot m_{\gamma\gamma}/8$	
VII loose & lag	1	1	e or μ , $p_{\rm T} > 20 {\rm GeV}$	
VBE dijet tag 0-2	3	2	$p_{\rm T}^{\gamma}(1) > m_{\gamma\gamma}/2$	
VDP ujet tag 0-2	5	2	2 jets; dijet and combined diphoton-dijet BDTs used	
VH #= tag	1	1	$p_{\rm T}^{\gamma}(1) > 3 \cdot m_{\gamma\gamma}/8$	
vii µr tag	1	1	$\not\!$	
tīH multijet tag	1	+	$p_{\rm T}^{\gamma}(1) > m_{\gamma\gamma}/2$	
turi intulijet tag	1	*	1 b-tagged jet + 4 more jets	
VH dijot tag 1 1		1	$p_{\rm T}^{\gamma}(1) > 3 \cdot m_{\gamma\gamma}/8$	
vii ujet tag	1	1	jet pair, $p_{\rm T} > 40$ GeV and $60 < m_{ m jj} < 120$ GeV	
Untagged 0-4	Uptaggad 0.4 E 4		The remaining events,	
Ontagged 0-4	5	4	classified using diphoton BDT	

* For the 7 TeV dataset, events in the ttH lepton tag and multijet tag classes are selected first, and combined to form a single event class.

Signal breakdown at 8 TeV

H→ZZ Width Backups

Width from on-shell $H \rightarrow ZZ \rightarrow 4l$ and $H \rightarrow \gamma\gamma$

arXiv:1412.8662

□ For m_H = 125 GeV → Γ_H ~ 4 MeV
 □ Higgs width from H→ZZ→4I and H→γγ resonance shapes @ ~125 GeV only with reduced precision of ~GeV due to detector resolution for e/γ/μ p_T measurements

CMS

Constraints on Higgs Width from off-shell H \rightarrow VV

	Tot[pb]	$M_{\rm ZZ} > 2 M_Z [{\rm pb}]$	R[%]
$gg \to H \to \text{ all}$	19.146	0.1525	0.8
$gg \to H \to ZZ$	0.5462	0.0416	7.6

Kauer, Passarino (*JHEP* 08 (2012)) Campbell, Ellis, Williams: arXiv:1311.3589v1 Caola, Melnikov (*Phys Rev D* 88 (2013) 054024) Zero Width Approximation is far from real Higgs mass

→ Competing effects from BW in high mass region and Γ_H →4l cause plateau in region → ~8% of total H→ZZ cross section found in m₇₇ > 2m₇ region

$$\frac{d\sigma_{\rm gg \rightarrow H \rightarrow ZZ}}{dm^2_{ZZ}} \propto g^2_{\rm gg H} g^2_{\rm HZZ} \frac{F(m_{ZZ})}{(m^2_{ZZ}-m^2_{\rm H})^2+m^2_{\rm H}\Gamma^2_{\rm H}}$$

-2

Which gives for on-peak:

$$\sigma_{\rm gg \to H \to ZZ}^{\rm on-peak} \propto \frac{g_{\rm ggH}^2 g_{\rm HZZ}}{\Gamma_{\rm H}},$$

and for off-peak:

$$\sigma_{\rm gg \rightarrow H \rightarrow ZZ}^{\rm off-peak} \propto g_{\rm ggH}^2 g_{\rm HZZ}^2$$

 \rightarrow Off-peak to peak ratio sensitive to $\Gamma_{\rm H}$:

$$rac{\sigma_{
m off-peak}}{\sigma_{
m peak}} \propto \Gamma_H$$

- → Need to account for large interference with non resonant ZZ background at high m_{ZZ}
- → Same for H→WW (Analysis ongoing)

Higgs Width from off-shell H \rightarrow ZZ

Monte Carlo simulation

CMS

□ gg→H: gg2VV LO (or MCFM) + NLO/LO m_{zz} dependent kfactors (same for signal and background):

Bonvini et al. (Phys Rev D 88 (2013) 034032)

- VBF: Phantom, ~7% on-peak, ~10% at high mass
- VH and ttH: negligible at high mass

Statistical approach

Perform a maximum likelihood fit based on the probability of each selected event to be signal (ggH or VBF) or background:

$$\begin{split} \mathcal{L} &= N_{\rm gg \to ZZ} \left[\mu_F \Gamma_H \times \mathcal{P}_{\rm sig}^{gg} + \sqrt{\mu_F \Gamma_H} \times \mathcal{P}_{\rm int}^{gg} + \mathcal{P}_{\rm bkg}^{gg} \right] + \\ & N_{\rm VBF} \left[\mu_V \Gamma_H \times \mathcal{P}_{\rm sig}^{VBF} + \sqrt{\mu_V \Gamma_H} \times \mathcal{P}_{\rm int}^{VBF} + \mathcal{P}_{\rm bkg}^{VBF} \right] + \\ & N_{\rm q\bar{q} \to ZZ} \mathcal{P}_{\rm bkg}^{\rm q\bar{q}} + N_{\rm Z+X} \mathcal{P}_{\rm bkg}^{\rm Z+X} + \dots \end{split}$$

❑ Use signal strength from legacy analysis: µ = 0.93+0.26-0.24

$\Gamma_{\rm H}$ from off-shell H \rightarrow ZZ \rightarrow 4l

- □ Selection consistent with "legacy" analysis
- □ Build discriminant discriminant for gg→ZZ production using matrix element likelihood approach (MELA)
- □ Optimal separation for gg→ZZ including signal, background, and their interference with any relative signal strength:

$$\mathcal{D}_{gg,a} = rac{\mathcal{P}_{gg,a}}{\mathcal{P}_{gg,a} + \mathcal{P}_{qar{q}}}$$

□ Use as input mZ1, mZ2 + five angles:

g(q)

Φ

g(q

 Φ_1

$\Gamma_{\rm H}$ from off-shell H \rightarrow ZZ \rightarrow 2l2v + Results

- Two isolated leptons p_T>20 GeV, veto Z peak and b-taggged jets + E_{T,miss}> 80 GeV +Δφ(jet,E_{T,miss})>0.5
- □ Data-driven estimate of reducible backgrounds (double and single top, WW, W+jets, Z+jets); qq→ZZ/WZ from MC

Fit the transverse mass:

+ Talk on Mass and Width ATLAS+CMS this afternoon (I. Giotis) + Talk on H lifetime with H→ZZ→4I on Wednesday (c. You)

H→WW Final states with two leptons

arXiv:1312.1129

H→ WW: Final states with 2 leptons

$H \rightarrow WW \rightarrow 2l_{2\nu}: 0/1$ -jet

arXiv:1312.1129

Selection:

- 0 or 1 jet (p_T >30 GeV)
- $p_T(II) > 30$ (45) GeV shape (cut-based)

Cut-based analysis (ee/ $\mu\mu$ + e μ as cross-check):

$m_{\rm H}[{\rm GeV}]$	$p_{\rm T}^{\ell,\max}$ [GeV]	$p_{\mathrm{T}}^{\ell,\mathrm{min}}$ [GeV]	$m_{\ell\ell}$ [GeV]	$\Delta \phi_{\ell\ell}$ [dg.]	$m_{\mathrm{T}}^{\ell\ell \not \!\!\! E_{\mathrm{T}}}$ [GeV]
	>	>	<	<	[,]
120	20	10	40	115	[80,120]
125	23	10	43	100	[80,123]
130	25	10	45	90	[80,125]
160	30	25	50	60	[90,160]
200	40	25	90	100	[120,200]
400	90	25	300	175	[120,400]
600	140	25	500	175	[120,600]

Shape analysis (eµ Only):

- ◆ 2D shapes: m_T : higgs transverse mass
 m_{II} : di-lepton invariant mass
- Comparison from results for different WW MC: POWHEG, MADGRAPH, MC@NLO
- ◆ Study of compatibility between CR at high m_{II} and high m_T (see backup)
- Dedicated plots to template validation for Top and W+jet (see backup)
- → Default result: shape DF+cut-based SF

2D templates in m_{II} and $m_{T,H}$ (0 jet case):

→ post-fit data-background 1D projection from the 2D shape analysis weighted by S/(S+B):

→ 4 sigma evidence for H→ WW 0/1-jet → μ = 0.76 ± 0.21 @ m_H = 125 GeV

- ♦ 2 or 3 jets (p_T>30 GeV)
- ♦ |∆η(jj)| > 3.5
- ♦ m_{jj} > 500 GeV
- Lepton centrality w.r.t. jets

Cut-based analysis (ee/μμ/eμ):

- ◆ Same selection as 0/1-jet but m_T>30 GeV
- Tables with cut-based yields

Shape analysis (eµ Only):

- ◆ Fit to the m_{II} distribution: 14 (10) bins at 8 (7) TeV for 12< m_{II} < 600 GeV
- Pre-selection:
 - m_T < m_H
 - For m_H>250 GeV: leading lepton p_T >50 GeV

→ Default result: shape DF+cut-based SF

→ Mild excess for shape analysis: 1.3 sigma / μ = 0.62 + 0.58 – 0.47

$VH \rightarrow VWW \rightarrow 2l2\nu qq$

- Pre-selection:
 - m_{II} < 200 GeV
 - I∆R_{II} < 2.5</p>

VH→WW Final states with three leptons

Common selection:

- ♦ 3 isolated leptons with pT > 20, 10, 10 GeV
- ◆ Total lepton charge: ±1

arXiv:1312.1129

$WH \rightarrow WWW \rightarrow 3I_{3v}$

$ZH \rightarrow ZWW \rightarrow 3lvqq$

CMS: Higgs boson interactions with the gauge sector

400

H→WW: Backgrounds x-checks, systematics, Mass

arXiv:1312.1129

H→WW Systematics

Sources of uncertainties

- Theoretical uncertainties on PDF and QCD scale and generator uncertainties : 10-50 %
- Background normalization
 - WW and Top : 10-30 %
 - W+jets : 36 %
 - Z / $\gamma^* \rightarrow \, \ell \ell$: 20 % to > 100 %
 - W+ $\gamma^{\,(*)},\,Z\!/\gamma^{\,*}\,\rightarrow\,\tau\tau$: ~30 %
- MC description of experimental measurements (eff. , energy scale and resolution) : 2-10 %
- Luminosity : 4.4 %

> Uncertainty variation in shape templates

- Vertical morphing
 - Up/Down variations at each bin as a function of a single parameter
 - Correlations between variables are preserved when alternate shapes are constructed
- Instrumental variation
 - Lepton efficiency, lepton momentum scale/resolution, MET resolution, Jet energy resolution
- Background shape variation
 - W+jets : different jet $\textbf{p}_{_{T}}$ thresholds
 - WW : QCD scale variations and different generators (Madgraph/MC@NLO)
 - Top : different generators (POWHEG / Madgraph)
- Bin-by-bin statistical uncertainty
 - All bins up / down simultaneously
 - Consistent result with full independent bin-by-bin variation
- WW normalization is left to float (large sideband in high $m_{_{T}}$ and high $m_{_{\ell\ell}}$ is able to constrain it)
- WW PDF uncertainty : threated as shape systematic now

Wγ* background estimation

$W\gamma^{(*)}$ is a LO Madgraph sample with $m_{\mu} < 12 \text{ GeV}$

- Measure cross-section for muons :
 - Reconstruct $W\gamma^{(*)} \rightarrow e\mu\mu$ and $\mu\mu\mu$ in data using 20/10/3 lepton pt cuts allowing for m₁₁ in [0,12] GeV
 - Correct MC for observed event yield in data :

→ "k-factor" ~ 1.5 ± 0.5

→ systematic from difference between channels and low/high mass

> Important background in low mass region

Drell-Yan: Rin/out method

$$N_{out}^{ll,exp} = R_{out/in}^{ll}(N_{in}^{ll} - 0.5N_{in}^{e\mu}k_{ll}),$$

- → Systematic from looking at Rin/out from different MET bins
- → Show the Rin/out MET dependence in the paper

Top Estimation

CMS

eu O-jet

s=8 TeV. L = 19.5 fb

M- (GeV)

Top background estimated from top enriched region taking in-situ b-tag efficiencies

1-jet control region \rightarrow

← 0-jet control region

Figure 31: $m_{\ell\ell}$ (left) and $m_{\rm T}^{\ell\ell E_{\rm T}}$ (right) distributions in the 1-jet category for b-tagged events in different-flavor final state at the WW preselection level at $\sqrt{s} = 8$ TeV. The uncertainty band includes the statistical and systematic uncertainty of all background processes.

Unbinned parametric fit in $H \rightarrow WW \rightarrow 212\nu 0/1$ -jet

CMS

best u

observed

 0.88 ± 0.25

54/19

Parametric nature of the analysis allow to directly scan the (μ,m_H) plane and perform a fit of the mass for fixed value of μ :

55/19

Spin/Parity

arXiv:1312.1129

Introduction

□ Study the kinematic distributions of the decay products:

- > Two production angles: θ^* and Φ_1 in the X rest frame
- > Three decay angles: θ 1, θ 2, and Φ in the V rest frames
- Angular distributions determined by the tensor structure of the HVV interactions
- The number of kinematic variables available depends on the Higgs decay

 \rightarrow determines the strategy followed in each channel

□ Study production via gg and qq (or mix) □ Study decays to: ZZ→4I, WW→2I2 ν and $\gamma\gamma$

H→ZZ->4l Analysis

The complete final state can be reconstructed \rightarrow Full kinematic information accessible \rightarrow Best sensitivity

- **3 kinematic variables:** 5 angles : $\theta^*, \theta_1, \theta_2, \Phi, \Phi_1$; 3 masses: m_{Z1}, m_{Z2}, m_{41}
- The information is condensed in a set of discriminants based on:
 Matrix Element calculations, such as the Matrix Element Likelihood Approach (MELA) or BDT discriminants trained with simulation
- Also possible to perform an 8D fit to these variables (second analysis)

Example of angular distribution and discriminant for SM vs. 0- (fa1=1):

Two lepton final state (eµ) + two neutrinos →Full final state cannot be reconstructed → Rely on limited set kinematics: 2D templates of m_{II}, m_T in eµ channel only → Use only 0/1-jet and same selection as legacy

Examples of templates for SM Higgs and 2⁺_{min} and backgrounds 19.4 fb⁻¹ (8 TeV) 5¹⁰⁰ 80 ≝ 80 19.4 fb⁻¹ (8 TeV) 19.4 fb¹ (8 TeV ≥¹⁰⁰ الله (200) الله 80 $SM H \rightarrow WW \rightarrow 212v$ eµ 0-jet 2^{-}_{-} H \rightarrow WW \rightarrow 212v eµ 0-jet backgrounds eµ 0-jet e^b 15 80 100 10 60 60 60 10 50 40 5 40 40 5 20 20 20 80 80 60 100 120 60 100 120 60 80 100 120 m₇ [GeV] m, [GeV] m₇ [GeV]

→ Sensitivity lower than H→ZZ but not for all spin hypothesis → gain in the combination as well

Н→үү

Only a single kinematic variable encodes the spin information:

 \rightarrow cos θ * : cosine of scattering angle in the Collins-Soper frame

 \square CMS use that variable and follow legacy $H{\rightarrow}\gamma\gamma$ analysis selection

→ Sensitivity limited → Look at separation of SM Higgs and 2⁺_m only
X. Janssen - 12/10/2015
CMS: Higgs boson interactions with the gauge sector

Spin 1

□ J=1 not allowed for $X \rightarrow \gamma \gamma$ by the Landau-Yang theorem → Test for ZZ & WW under assumption it decouples from $\gamma \gamma$

Spin 2

Generic Lagrangian for spin 2 is a bit more complicate than spin 1:

$$\begin{split} L(\mathbf{X}_{J=2}\mathbf{Z}\mathbf{Z}) &\sim \Lambda^{-1} \left(-c_1 \mathbf{X}_{\mu\nu} \mathbf{Z}^{\mu\alpha} \mathbf{Z}^{\nu}_{\ \alpha} + \frac{c_2}{\Lambda^2} \left(\partial_{\alpha} \partial_{\beta} \mathbf{X}_{\mu\nu} \right) \mathbf{Z}^{\mu\alpha} \mathbf{Z}^{\nu\beta} + \frac{c_3}{\Lambda^2} \mathbf{X}_{\beta\nu} \left[\partial^{\alpha}, \left[\partial^{\beta}, \mathbf{Z}^{\mu\nu} \right] \right] \mathbf{Z}_{\mu\alpha} \\ &+ \frac{c_4}{2\Lambda^2} \mathbf{X}_{\mu\nu} \left[\partial^{\mu}, \left[\partial^{\nu}, \mathbf{Z}^{\alpha\beta} \right] \right] \mathbf{Z}_{\alpha\beta} + c_5 m_Z^2 \mathbf{X}_{\mu\nu} \mathbf{Z}^{\mu} \mathbf{Z}^{\nu} + \frac{2c_6 m_Z^2}{\Lambda^2} \partial_{\alpha} \mathbf{X}_{\mu\nu} \left[\partial^{\mu}, \mathbf{Z}^{\nu} \right] \mathbf{Z}^{\alpha} \\ &- \frac{c_7 m_Z^2}{2\Lambda^2} \mathbf{X}_{\mu\nu} \left[\partial^{\mu}, \left[\partial^{\nu}, \mathbf{Z}_{\alpha} \right] \right] \mathbf{Z}^{\alpha} + \frac{c_8}{2\Lambda^2} \mathbf{X}_{\mu\nu} \left[\partial^{\mu}, \left[\partial^{\nu}, \mathbf{Z}^{\alpha\beta} \right] \right] \mathbf{Z}_{\alpha\beta} \\ &- \frac{c_9 m_Z^2}{\Lambda^2} \epsilon_{\mu\nu\rho\sigma} \partial^{\sigma} \mathbf{X}^{\mu\alpha} \mathbf{Z}_{\nu} \partial_{\alpha} \mathbf{Z}^{\rho} + \frac{c_{10} m_Z^2}{\Lambda^4} \epsilon_{\mu\nu\rho\sigma} \partial^{\rho} \partial^{\beta} \mathbf{X}^{\mu\alpha} \left[\partial^{\sigma}, \left[\partial_{\alpha}, \mathbf{Z}^{\nu} \right] \right] \mathbf{Z}_{\beta} \right). \end{split}$$

→ Testing 10 models (x) 2 production modes: gg & qq (+ arbitrary mixture of gg/qq)

J ^P Model	$gg \to X \ Couplings$	$q\overline{q} \rightarrow X$ Couplings	$X \rightarrow VV$ Couplings
2_{m}^{+}	$c_{1}^{gg} eq 0$	$ ho_1 eq 0$	$c_1^{\mathrm{VV}}=c_5^{\mathrm{VV}} eq 0$
2_{h2}^+	$c_{2}^{gg} \neq 0$	$ ho_1 eq 0$	$c_{2}^{VV} \neq 0$
2_{h3}^+	$c_{3}^{gg} \neq 0$	$ ho_1 eq 0$	$c_3^{ m VV} eq 0$
2_h^+	$c_{4\alpha}^{gg} \neq 0$	$ ho_1 eq 0$	$c_4^{ m VV} eq 0$
2_b^+	$c_{1_{\alpha}}^{gg} \neq 0$	$ ho_1 eq 0$	$c_1^{VV} \ll c_5^{VV} \neq 0$
2_{h6}^+	$c_{1_{\infty}}^{gg} \neq 0$	$ ho_1 eq 0$	$c_{6}^{VV} \neq 0$
2_{h7}^+	$c_{1}^{gg} \neq 0$	$ ho_1 eq 0$	$c_{7}^{VV} \neq 0$
2_h^-	$c_{8}^{gg} \neq 0$	$ ho_2 eq 0$	$c_8^{ m VV} eq 0$
2_{h9}^{-}	$c_8^{gg} \neq 0$	$ ho_2 eq 0$	$c_9^{ m VV} eq 0$
2_{h10}^{-}	$c_8^{ m gg} eq 0$	$ ho_2 eq 0$	$c_{10}^{ m VV} eq 0$

Example: $gg \rightarrow 2^+_m$ with ZZ+WW+ $\gamma\gamma$

... and as function of f_{qq}

Spin 0

→ Perform Likelihood scans (1D and 2D) of f_x to set limits on the anomalous couplings

CMS

Anomalous couplings: Likelihood scans of f_x

$H \rightarrow ZZ$: Couplings constrained to be real, other couplings fixed to the SM

+ similar scans for H \rightarrow WW with lower sensitivity than H \rightarrow ZZ

64/19

Anomalous Couplings: ZZ+WW combination arXiv:1411.3441

General relationship between HWW and HZZ couplings:

$$r_{ai} = \frac{a_i^{\rm WW}/a_1^{\rm WW}}{a_i/a_1} \qquad r_{\rm ai} \left[-\infty, +\infty \right] \implies R_{ai} = \frac{r_{ai}|r_{ai}|}{1+r_{ai}^2} \qquad R_{\rm ai} \left[-1, +1 \right]$$

f_{ai} can then be written as a function of f_{ai}^{WW} via R_{ai}
 Two scenarios for combination:

> arbitrary relationship between a1 for W and Z : $a_1^{WW} \neq a_1^{ZZ}$

 \succ custodial symmetry: $a_1^{WW} = a_1^{ZZ}$

Example for R_{ai} = 0.5 (full 2D scan available)

→ Summary of limits on Anomalous couplings:

→ No sign of deviations to the SM but need more data to better constraints some of the couplings

