

Call for MC&Tools for RUN-2 Review on experimental needs for (N)NLO MC and Tools for RUN-2

E. Pianori University of Warwick

on behalf of the ATLAS and CMS collaborations

Introduction

• (almost) all Higgs results from Run 1 are **statistically limited**

• Run-2 [2015-2018]

- x5 more luminosity [100/fb]
- x2 increase in Higgs cross section (8 -> 13 TeV)

x10 more Higgs

—> the statistical uncertainty — and all the statistically related experimental uncertainties — will rapidly decrease!

• Increasingly precise predictions for Higgs signal and backgrounds

- improved analytical calculations of inclusive and differential cross sections
- Broad spectrum of (N)NLO event generators available in the past few years
- -> ATLAS/CMS gearing up to use them in Run 2

In these slides:

- how theoretical predictions affected Run 1 results
- selected still-open topics of discussion

Not exhaustive list!

13.10.2015

ATLAS + CMS combination: signal strength

CDS record 2053103

SM signal yields in all channels scaled by same global signal strength mu assuming SM ratios of production cross-sections and decay rates

$$\mu_i^f = \frac{\sigma_i \cdot BR^f}{(\sigma_i)_{SM} \cdot (BR^f)_{SM}} = \mu_i \times \mu^f$$

	Best-fit μ	Uncertainty				
		Total	Stat	Expt	Thbgd	Thsig
ATLAS and CMS (meas.)	1.09	+0.11 -0.10	+0.07 -0.07	+0.04 -0.04	+0.03 -0.03	+0.07 -0.06
ATLAS and CMS (exp.)	_	+0.11 -0.10	+0.07 -0.07	+0.04 -0.04	+0.03 -0.03	+0.06 -0.06

Most precise result at the expense of the largest assumptions

signal theoretical uncertainties same size as statistical uncertainty

-> in Run 2, statistical uncertainty will decrease quickly

Build likelihood function for each signal, control region of the data

$$L(\vec{N} | \vec{\mu}_{i}, \vec{\mu}_{f}, \vec{\theta}) = \prod_{k=0, nbins} Poisson \left(N_{k} | \sum_{i,f} \mu_{i} \cdot \mu^{f} \cdot S_{i,k}^{f}(\vec{\theta}) + \sum_{m} B_{m}(\vec{\theta})\right)$$

$$Inclusive SM cross-section$$

$$Acceptance (from MC)$$

$$Efficiency (from MC)$$

$$Higgs BR$$

$$\mathcal{L}(k) \times \{\sigma_{i}^{SM} \times A_{i}^{f}(k) \times \varepsilon_{i}^{f}(k) \times BR_{SM}^{f}\}$$

Build likelihood function for each signal, control region of the data

$$L(\vec{N} | \vec{\mu}_{i}, \vec{\mu}_{f}, \vec{\theta}) = \prod_{k=0, nbins} Poisson \left(N_{k} | \sum_{i,f} \mu_{i} \cdot \mu^{f} \cdot S_{i,k}^{f}(\vec{\theta}) + \sum_{m} B_{m}(\vec{\theta})\right)$$

$$Inclusive SM cross-section$$

$$Acceptance (from MC)$$

$$Efficiency (from MC)$$

$$Higgs BR$$

$$\mathcal{L}(k) \times (\sigma_{i}^{SM} \times A_{i}^{f}(k) \times \varepsilon_{i}^{f}(k) \times BR_{SM}^{f})$$
affected by theory uncertainties on inclusive SM cross sections and BR

m_A (Gev

Build likelihood function for each signal, control region of the data

$$L(\vec{N} | \vec{\mu}_{i}, \vec{\mu}_{f}, \vec{\theta}) = \prod_{k=0, nbins} Poisson \left(N_{k} | \sum_{i,f} \mu_{i} \cdot \mu^{f} \cdot S_{i,k}^{f}(\vec{\theta}) + \sum_{m} B_{m}(\vec{\theta}) \right)$$

$$Inclusive SM cross-section$$

$$Acceptance (from MC)$$

$$Efficiency (from MC)$$

$$Higgs BR$$

$$\mathcal{L}(k) \times \left\{ \sigma_{i}^{SM} \times A_{i}^{f}(k) \times \varepsilon_{i}^{f}(k) \times BR_{SM}^{f} \right\}$$
Backgrounds are mostly data-driven, except WW, ZZ and tt+h.f./V+h.f.

μ_{ggF} versus μ_{VBF}

- exclusive final states very limited by statistical uncertainty
- theory uncertainties in exclusive regions are larger

Observed $\mu = 1.09$ Observed $\mu_{ggF} = 1.02$ Observed $\mu_{VBF} = 1.27$ Plot of error Plot of error Error Error Plot of error Source Error (scaled by 100)(scaled by 100) (scaled by 100)++_ $\Delta \mu (stat) / \mu_{VBF} = 34\%$ Data statistics 0.160.150.19 0.190.44 0.400.12Signal regions 0.12 $0.14 \ 0.14$ $0.38 \ 0.35$ 0.10Profiled control regions 0.10 $0.12 \ 0.12$ $0.21 \ 0.18$ Profiled signal regions 0.09 0.08 0.03 0.03 -+ + ÷ MC statistics 0.06 0.06 0.04 0.04 $0.05 \ 0.05$ $\Delta \mu$ (ThSig)/ μ_{VBF} =17% -Theoretical systematics 0.12 $0.22 \ 0.15$ 0.15 $0.19 \ 0.16$ Signal $H \to WW^* \mathcal{B}$ 0.040.07 0.040.05 $0.05 \ 0.03$ Signal ggF cross section 0.090.07 $0.13 \ 0.09$ $0.03 \ 0.03$ Signal ggF acceptance 0.050.04 $0.06 \ 0.05$ $0.07 \ 0.07$ Signal VBF cross section 0.010.010.07 0.04Signal VBF acceptance 0.020.01 $0.15 \ 0.08$ -Background WW 0.06 0.060.08 0.08 $0.07 \ 0.07$ Background top quark 0.030.030.04 0.040.06 0.06 Background misid. factor 0.05+ 0.050.06 0.06 0.02 0.02 ÷ Others 0.02 0.02 $0.02 \ 0.02$ 0.03 0.03 Experimental systematics + 0.07 0.06 0.08 0.08 - $0.18 \ 0.14$ -----Integrated luminosity 0.03 0.03 ÷ 0.05 0.03 $0.03 \ 0.02$ 0.23 0.21 Total $0.29 \ 0.26$ $0.53 \ 0.45$ -30-15 0 15 30 -30-15 0 15 30 -60-30 0 30 60

ATLAS, H->WW, PhysRevD.92.012006

13.10.2015

Generic parameterisations of experimental results

CDS record 2053103

• k-framework, using ratios of coupling modifiers

$$\sigma_i \cdot \mathrm{BR}^f = \frac{\sigma_i(\vec{\kappa}) \cdot \Gamma^f(\vec{\kappa})}{\Gamma_\mathrm{H}}, \quad \kappa_j^2 = \sigma_j / \sigma_j^{\mathrm{SM}} \text{ or } \kappa_j^2 = \Gamma^j / \Gamma_\mathrm{SM}^j.$$

affected by same theoretical uncertainties as signal strength

Most generic model is ratio of cross sections and branching ratios

$$\sigma_i \cdot \mathrm{BR}^f = \sigma(gg \to H \to ZZ) \times \left(\frac{\sigma_i}{\sigma_{ggF}}\right) \times \left(\frac{\mathrm{BR}^f}{\mathrm{BR}^{ZZ}}\right),$$

- ratios of cross sections and of BR independent of theoretical predictions on inclusive cross section and BR
- theoretical uncertainties still affect acceptance (jet-bin migration, PS/UE)

Recent progress: highlights

ggH modelling

n(jets)

11

- no NNLO QCD + NLO EWK MC generator yet!
- HJ MiNLO promoted to NNLO+PS generator by reweighting the events with the factor

 $\frac{\mathrm{d}\sigma^{(\mathrm{NNLO})}}{\mathrm{d}y_{\mathrm{H}}} / \frac{\mathrm{d}\sigma^{(\mathrm{HJ})}}{\mathrm{d}y_{\mathrm{H}}} \!=\! 1 + \mathcal{O}(\alpha_{S}^{2})$

Intrinsic uncertainty: in which region of phase space the reweighting is done

ATL-PHYS-PUB-2014-022 Event fraction $\sqrt{s} = 8 \text{ TeV}$ Powheg NNLOPS Sherpa MEPS@NLO A lot of progress and new tools: Powheg HJ Minlo - automatic generation of NLO+PS processes Powheg HJJ Minlo - attention to non-accounted diagrams in NLO! gq/qq negligible (<few %) in NNLO inclusive 10^{-1} but gq is 30% of H+1 jet NNLO - merging/matching multi-leg processes various schemes: POWHEG MiNLO, Fx-Fx aMC@NLO, SHERPA MEPS@NLO, PYTHIA8/UNLOPS, HW++/Matchbox 1.4 1.2 **Q)** Systematic comparison including Ratio 1 uncertainties? 0.8 0.6 > 3 0 2

13.10.2015

Higgs P_T

 HRes combines the NNLO calculation in HNNLO with the small pT-resummation implemented in HqT

arxiv:1306.4581

finite quark-mass effect included in v2.3

in Run1 POWHEG+PYTHIA reweighed to HRes(v2) NNLL+NNLO p_T(H) **Q) higher precision MCs for Run 2. Reweighting p_T(H)?**

Jet binning

CMS. H ->WW: HIG-13-023

- improve S/B ratio in bin with different background compositions
- affected by large dependencies on QCD corrections

,		- /			
Source	${\rm H} \rightarrow$	$q\overline{q} \rightarrow$	$\rm gg \rightarrow$	Non-Z resonant	$ m V\gamma^{(*)}$
Source	ww	ww	ww	WZ/ZZ	
Luminosity	2.2 - 2.6			2.2 - 2.6	2.2-2.6
Lepton efficiency	3.5	3.5	3.5	3.5	3.5
Lepton momentum scale	2.0	2.0	2.0	2.0	2.0
$\vec{E}_{\mathrm{T}}^{\mathrm{miss}}$ resolution	2.0	2.0	2.0	2.0	1.0
Jet counting categorization	7-20		5.5	5.5	5.5
Signal cross section	5 - 15				
$\mathbf{q}\overline{\mathbf{q}}\rightarrow WW$ normalization		10			
$gg \rightarrow WW$ normalization			30		
WZ/ZZ cross section				4.0	_
$t\bar{t} + tW$ normalization					_
$\mathbf{Z}/\gamma^* \rightarrow \ell \ell$ normalization					_
W + jets normalization					
MC statistics	1.0	1.0	1.0	4.0	20

- various method to estimate effect of missing higher orders corrections to yields in jet-bins:
 - Stewart-Tackman [ST] [PRD 85 (2012) 034011]
 - Jet-Veto efficiency [JVE]: include resummed results [PRL 109 (2012) 202001]

vields uncertainties [%]

- Updated ST with 0,1-jet resume by Tackmann, Petriello et al [PRD 89 (2014) 074044]
- other groups with SCET (soft-collinear effective theory), Neubert et al.[arXiv:1412.8408]

Q) correlation between N(jets) and p_T(H)?

- veto third jet to isolate VBF H production
- signal/bkg separation increased by MVA based selection
 - —> need precise event generations for ggH+jets, VBF+jets
- ggH background contamination in VBF region: \sim 30% reduction of theory uncertainty possible in the future (Gosam HJJJ at NLO)

		Observe	ed $\mu_{VBF} = 1.27$	
$H \rightarrow \chi \chi$	Source	Error + –	Plot of error (scaled by 100)	_
$= \begin{array}{c} ggF VBF WH ZH t\overline{t}H bbH tH - \\ \hline ATLAS Simulation H \rightarrow \gamma\gamma VS = 8 \text{ TeV} - \\ t\overline{t}H \text{leptonic} - \\ t\overline{t}H \text{hadronic} - \\ VH dilepton - \\ \hline \end{array}$	Data statistics Signal regions Profiled control regions Profiled signal regions	$\begin{array}{c} 0.44 \ 0.40 \\ 0.38 \ 0.35 \\ 0.21 \ 0.18 \\ 0.09 \ 0.08 \end{array}$	+	
VH one lepton	MC statistics	$0.05 \ 0.05$	+	_
$\begin{array}{c} VH E_{T} \\ VH \text{ bedrome} \\ VBF tight \\ VBF loose \\ \hline orward - nglor_{T} \\ \hline central - high p_{T} \\ \hline central - low p_{T} \\ \hline 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 \\ \hline Fraction of each signal process per category \\ \end{array}$	Theoretical systematics Signal $H \rightarrow WW^* \mathcal{B}$ Signal ggF cross section Signal ggF acceptance Signal VBF cross section Signal VBF acceptance Background WW Background top quark Background top quark Background misid. factor Others	$\begin{array}{cccccc} 0.22 & 0.15 \\ 0.07 & 0.04 \\ 0.03 & 0.03 \\ 0.07 & 0.07 \\ 0.07 & 0.07 \\ 0.07 & 0.04 \\ 0.15 & 0.08 \\ 0.07 & 0.07 \\ 0.06 & 0.06 \\ 0.02 & 0.02 \\ 0.03 & 0.03 \\ \end{array}$	+ + + + + + + + + +	30% unc on ggH yield due to CJV 50% unc on ggH yield due to QCD scale variations on BDT shape

Q)What EXPs should do for H+2-jet bin in RUN-2?

13.10.2015

Fully Differential cross section: VBF

NNLO QCD correction to σ_{TOT} very small, well within NLO QCD scale unc O(3%)

Fully differential VBF Higgs cross section [Cacciari et all, PRL 115 (2015) 082002] k(NNLO/NLO): 5%(1%) with (without) VBF cuts, outside of NLO band

13.10.2015

15

Fully Differential cross section: VBF

NNLO QCD correction to σ_{TOT} very small, well within NLO QCD scale unc O(3%)

Fully differential VBF Higgs cross section [Cacciari et all, PRL 115 (2015) 082002] k(NNLO/NLO): 5%(1%) with (without) VBF cuts, outside of NLO band

Fully Differential cross section: VBF

NNLO QCD correction to σ_{TOT} very small, well within NLO QCD scale unc O(3%)

Fully differential VBF Higgs cross section [Cacciari et all,<u>PRL 115 (2015) 082002</u>] k(NNLO/NLO): 5%(1%) with (without) VBF cuts, outside of NLO band

- gg—>ZH contribution increase at high p_T(H) most sensitive region
- only LO generators available during Run 1
- k(NLO/LO) ~ 2 Q) pT dependency?

- LO gg—> ZHj and gg—> ZH available in aMC@NLO/POWHEG/SHERPA
- MLM merged ZHj and ZH: more accurate prediction of the kinematics (reduce shower uncertainty)

Q) NLO gg -> ZH MC?

Background Modelling: H —>WW

- Precise knowledge of background also crucial
- Modelling of continuum WW background one of the largest sources of theory unc

WW				[NLO]
$q\bar{q} \rightarrow WW$ and qg	$j \rightarrow 1$	WW	POWHEG	+PYTHIA6
		Observ	$\mu = 1.09$	
Source	Er	ror	Plot of error	_
	+	-	(scaled by 100))
Data statistics	0.16	0.15		
Signal regions	0.12	0.12		
Profiled control regions	0.10	0.10		
Profiled signal regions	-	-	-	
MC statistics	0.04	0.04	+	
Theoretical systematics	0.15	0.12	+	
Signal $H \rightarrow WW^* B$	0.05	0.04	+	
Signal ggF cross section	0.09	0.07	+	
Signal ggF acceptance	0.05	0.04	+	
Signal VBF cross section	0.01	0.01	+	
Signal VBF acceptance	0.02	0.01	+	uncertainty or
Background WW	0.06	0.06	+	extrapolation
Background top quark	0.03	0.03	+	
Background misid. factor	0.05	0.05	+	
Others	0.02	0.02	+	

ATLAS, H—>WW, <u>PhysRevD.92.012006</u>

13.10.2015

E. Pianori, Higgs Coupling 2015

WARWICK

Background Modelling: Di-boson

 NNLO QCD pp—> WW/ZZ/Wg/Zg calculations by M. Grazzini et al NNLO correction at 9-12% for pp—>WW (gg—>WW contributes to 35% at NNLO) NNLO correction at 12-17% for pp—>ZZ (gg—>ZZ contributes to 58-62% at NNLO)

Final goal is to have a public program [MATRIX] that can deal with all pp—>VV processes, including leptonic decay and off-shell effect, and fully differential. Not available yet.

• but no NNLO+PS MC exist yet!

Q) Apply NNLO QCD correction (as a function of 4l invariant mass) with exp cuts?

• Full NLO EW corrections for WW and ZZ production are complete now. as important as NNLO QCD

Q) Assume factorization of NNLO QCD and NLO EW? EW K-factors included via reweighting distributions?

Background Modelling: heavy flavour

tt+bb/tt+cc: non-reducible background to ttH->bb

H.F. cross section not very well known inclusive t-tbar pT distribution [NLO+PS] re-weighted to 7TeV data

Sou	rce	Rate uncertainty	Shape	tīH	Proces tī+jets	s Others	<u>CMS, ttH: arxiv:1502.02485.pdf</u>
	Theo	pretical uncertaintie	S				yields uncertainties [%]
$\log p_{\rm T}$ m	odelling	3-8%	Yes		~		[t-thar+0.1.2n]OMADGRADH 5.1.3]
$\mu_{\rm R}/\mu_{\rm F}$ va	riations	2-25%	res		~		
tt+bb norn	nalisation	50%	No		~		
tt+b norm	alisation	50%	No		~		NI O merged predictions available now!
tt+cc norn	nalisation	50%	No		✓		NLO mergeu predictions available now:
Signal cros	ss section	7%	No	√		,	
Background c	ross sections	2-20%	No	/	~	v	ATLAS VU SHE JUED 01 (2015) 060 $\Delta \hat{\mu}$
PD		3-9%	No	~	~	~	ATLAS, VII->DD, <u>JITLP 01 (2015) 009</u>
Statistical uncerta	inty (bin-by-bin)	4-30%	Yes	√	✓	✓	-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
 V+h.f.: r modelled v (massive b shape com different g 	najor bac vith SHERPA - and c-) parison bet enerator for	kground to LO V+p me ween r V+h.f.	o VH erged	Signal	$W+b\overline{b}$ (p_T^V) W+bl to W+ $(p_T^V > 120)$ W+ W+HF acceptance	, W+c̄c̄ m _j shaj > 120 GeV) b̄b̄ normalisati) GeV) b̄b̄ normalisati p ^V _T shape (3-je e (parton showe	pe on on on on er)
				Z+bl	to Z+bচ nor b-jet €	malisation (2-j	on •••
data/MC co	mparisons i	n b-jet tag r	egion		Z+b	ō, Z+cē m _j sha	pe
13.10.2015		E.	Pianor	i, Hio	ggs Co	upling 2	2015 22

Differential cross section

Most model-independent way to present experimental results

$$\sigma_i = rac{N_i^{data} - N_i^{bkg}}{c_i \int L dt}$$
 i: bin of observable

Theoretical uncertainties have limited impact on differential cross section:

uncertainty on σ	Baseline	Njets >=3	VBF-enhanced
Signal extraction (stat)	±22	±33	±34
Jet energy scale/resolution		+15, -13	+12, -11
Theoretical modelling	+3.3, -1.0	+6.3, -4.9	+2.2,-3.2

Perfect laboratory to test SM predictions and indirectly constrain new physics

- with increasing stat, need highly accurate theoretical predictions to compare to

- need **predictions able to describe complicated fiducial volumes** (include decay modes)

Caola et al, arxiv:1508.02684

ATLAS (H-> $\gamma\gamma$) $\sigma_{H+j}^{\text{fid}}(8 \text{ TeV}) = 21.5 \pm 5.3(\text{stat.}) \pm 2.4(\text{syst.}) \pm 0.6(\text{lumi}) \text{ fb.}$

H+1jet NNLO prediction $\sigma_{\text{NNLO}}^{\text{fid}} = 9.45^{+0.58}_{-0.82} \text{ fb}$

Fiducial Volume:2 isolated photons, |η| < 2.37 $p_T/m_{YY} > 0.35$ (0.25)≥1 jet: $p_T > 30$ GeV, |y| < 4.4.

13.10.2015

Interference in off-shell H—>VV analyses

- Off-shell, gg —> H* —> VV and gg —> VV continuum interference is large
 – no interference effect for on-shell [Kauer, Passarino, <u>JHEP 08 (2012) 116]</u>
- gg —> VV known only at LO, as well as interference term [gg2VV and MCFM] gg—>H*—>VV also modelled at LO, NNLO k-factors as a function of m(VV) applied

$$K^{H^*}(m_{VV}) = \sigma_{gg \to H^* \to VV}^{NNLO} / \sigma_{gg \to H^* \to VV}^{LO}$$

k-factor for background un-known:

CMS: k_{continuum} = k_{signal} [Phys. Lett. B 736 (2014) 64]

ATLAS: results as a function unknown k_{continuum}/k_{signal} [Eur. Phys. J. C (2015) 75:335]

E. Pianori, Higgs Coupling 2015

Interference in off-shell H—>VV analyses

- Off-shell, gg —> H* —> VV and gg —> VV continuum interference is large
 – no interference effect for on-shell [Kauer, Passarino, <u>JHEP 08 (2012) 116]</u>
- gg —> VV known only at LO, as well as interference term [gg2VV and MCFM] gg—>H*—>VV also modelled at LO, NNLO k-factors as a function of m(VV) applied

$$K^{H^*}(m_{VV}) = \sigma_{gg \to H^* \to VV}^{NNLO} / \sigma_{gg \to H^* \to VV}^{LO}$$

k-factor for background un-known:

CMS: k_{continuum} = k_{signal} [Phys. Lett. B 736 (2014) 64]

ATLAS: results as a function unknown k_{continuum}/k_{signal} [Eur. Phys. J. C (2015) 75:335]

• Off-shell region useful to set constraints on the H width

 $\sigma_{\rm gg \to H \to ZZ^*}^{\rm on-shell} \sim \frac{g_{\rm ggH}^2 g_{\rm HZZ}^2}{m_{\rm H} \Gamma_{\rm H}} \quad \sigma_{\rm gg \to H^* \to ZZ}^{\rm off-shell} \sim \frac{g_{\rm ggH}^2 g_{\rm HZZ}^2}{(2m_Z)^2}$

CMS:

unc on gg —> ZZ are the largest ones

ATLAS: unc on interference and K^{H} (m_{VV}) dominant ones on $\mu_{off\mbox{-shell}}$

13.10.2015

E. Pianori, Higgs Coupling 2015

gg —> ZZ production

new preprint, 22 Sept: <u>http://arxiv.org/pdf/1509.06734.pdf</u> [Caola et al]

 NLO QCD correction to gg —> ZZ: σ(gg—>ZZ) increases by O(50% – 100%) σ(pp—>ZZ) increases by O(6-8%), outside of QCD scale unc on recent NNLO QCD calculation [Grazzini et al, <u>arxiv:1507.06257</u>]

ggH:

- high precision MC generators
- Not exhaustive list! - Higgs pT re-weighting and correlation to N(jets)
- ggH+2jets in VBF region and CJV

VBF:

NNLO corrections in complex phase space

VH:

- gg—>ZH NLO MC

Backgrounds:

- DiBoson: NNLO+PS MC

inclusion of EWK corrections

 $qq \rightarrow VV NLO MC$

improved predictions for tt+h.f. and V+jets/V+h.f.

Conclusion

- Statistical uncertainty will rapidly decrease in Run2
 —> need increasingly precise predictions
- In Run 2, more model-independent experimental results when possible (differential cross sections) but theory uncertainty will still affect coupling analyses
- Not only for signal, backgrounds prediction important too need to cover the backgrounds with the same systematic approach used for the signal
- Close connection between experiments and Higgs cross section working group is fundamental experiments will follow up very closely the phenomenological news
- Having common approaches in ATLAS/CMS very important —> need clear recommendations

Leftover from RUN-1 and challenge for RUN-2

Processes

- Needs to survey detectable processes for Higgs production and decay for Run-2 and beyond!
- Tool development is also very important aspect
 - I. Main Production processes
 - II. Associated Higgs production with heavy quarks
 - III. Associated production with heavy quarks
 - IV. Higgs boson pair/triple production
 - V. Higgs production in association with gauge boson pairs [VVH]
 - VI. Higgs production in association with gauge bosons and $\cite{[qqVH]}\cite{[qqV$
 - VII. Guage boson scattering
 - VIII. Rare process and decay

Q) any other process?

WARWICK THE UNIVERSITY OF WARWICK

[gg—>H, qqH, VH]

[bbH/ttH/ccH]

[tHq,WtH,btH,tH,bH]

[HH,qqHH,VHH,ttHH,tjHH,HHH]

[WW—>WW, WW—>HH, etc]

```
[qq\rightarrowHy, t\rightarrowcH, etc]
[quarkonia J/\Psi(Y)+y, y/W/Z+P, etc ]
```

Using these results and the N3LO computation of the Higgs total cross section, one can find the fraction of Higgs boson events without detectable jet radiation —> reduce uncertainty on σ_{0-jet}

Can be compared with measured fiducial cross section from ATLAS

13.10.2015

R. Boughezal, F. Caola, K.M., F. Petriello, M. Schulze [arXiv:1504.07922]

NNLO corrections increase H+jet production cross section by O(20%) and significantly reduce the scale dependence uncertainty

NNLO H+1 jets

 $\sigma_{\rm LO} = 3.9^{+1.7}_{-1.1} {\rm \ pb}$

 $\sigma_{\rm NLO} = 5.6^{+1.3}_{-1.1} \text{ pb}$

The cross sections for the anti-kt

algorithm with the jet transverse

TeV LHC.

momentum cut of 30 GeV at the 8

 $\sigma_{\rm NNLO} = 6.7^{+0.5}_{-0.6} \text{ pb}$

[Many thanks to P. F. Monni and F. Dulat]

F. Caola, LHCHXSWG WG1 meeting, May 2015

	ord	$\sigma_{0-\text{jet}}^{\text{f.o.}}$ (JVE)	$\sigma_{0-\text{jet}}^{\text{f.o.+NNLL}}$ (JVE)	$\sigma_{0-\text{jet}}^{\text{f.o.+NN}\text{LL}}$ (scales)
-iet bin	NNLO	$26.2^{+4.0}_{-4.0} \text{ pb}$	$25.8^{+3.8}_{-3.8}$	$25.8^{+1.6}_{-1.6}$
]01.0	N ³ LO	$27.2^{+2.7}_{-2.7} { m ~pb}$	$27.2^{+1.4}_{-1.4}$	$27.2^{+0.9}_{-0.9}$

	ord	$\sigma^{\rm f.o.}_{\geq 1- m jet}~(m scales)$	$\sigma_{\geq 1-\mathrm{jet}}^{\mathrm{f.o.}}$ (JVE)	$\sigma_{\geq 1-\mathrm{jet}}^{\mathrm{f.o.+NNLL}}$ (JVE)
≥1-jet bin	NLO	$14.7^{+2.8}_{-2.8} { m ~pb}$	$14.7^{+3.4}_{-3.4}$	$15.1^{+2.7}_{-2.7}$
	NNLO	$17.5^{+1.3}_{-1.3}$ pb	$17.5^{+2.6}_{-2.6}$	$17.5^{+1.1}_{-1.1}$

- Logs completely under control (logR: see [Dasgupta, Dreyer, Salam, Soyez (2015)])
- No breakdown of f.o. perturbation theory for p_T ~ 30 GeV
- Reliable error estimate from lower orders
- Logs help in reducing uncertainties
- Significant decrease of pert. uncertainty

25

- differential predictions in form of histograms
- EW corrections at the percent level (5-10% VBF, comparable to QCD ones)
 estimated with HAWK/VBFNLO
- Assume approximate factorisation of QCD and EWK corrections
- Accounted for via MC reweighting as a function of pT(H), prescription on twiki

gg—>ZH: Better description by merging and matching

Merging-matching in MG5_aMC@NLO/Pythia8.2

13.10.2015

