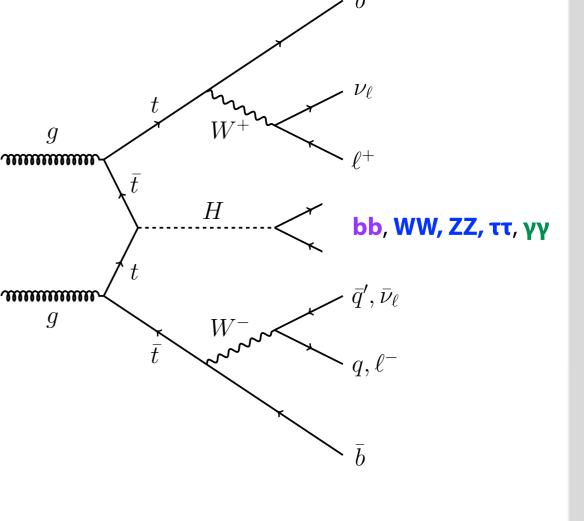


Results for ttH (CMS)

A. Gilbert on behalf of the CMS Collaboration

Higgs Coupling 2015, Lumley Castle | 13 October 2015

INSTITUTE OF EXPERIMENTAL PARTICLE PHYSICS (IEKP) – PHYSICS DEPARTMENT



Introduction

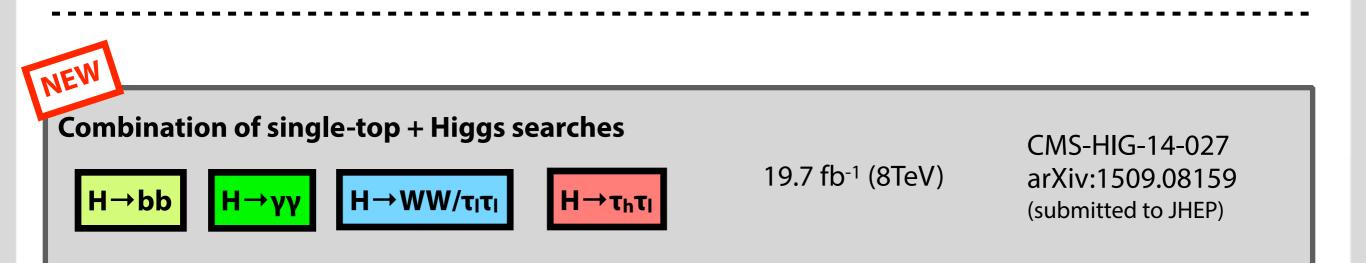
- Want to measure top-quark Yukawa coupling: yt ~ O(1) in the SM
- Indirect evidence from ggH production and $H \rightarrow \gamma \gamma$ decay via loop contribution
 - But possibly modified by BSM contributions
 - ttH production is the best handle for tree-level coupling, but $\sigma \sim 130$ fb

Strategy:

- Target as many combinations of the tt final state (0,1 or 2 leptons) and Higgs decay as possible
- Target hadrons, leptons and yy Higgs decays
- Exploit high jet and b-jet multiplicity
- Extract signal using MVA or matrix element methods



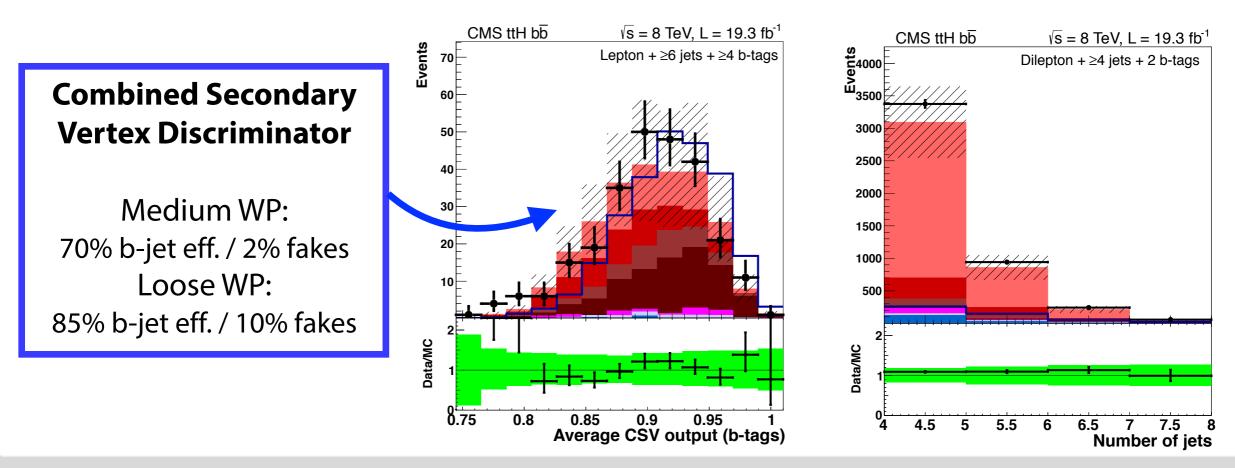
CMS Results

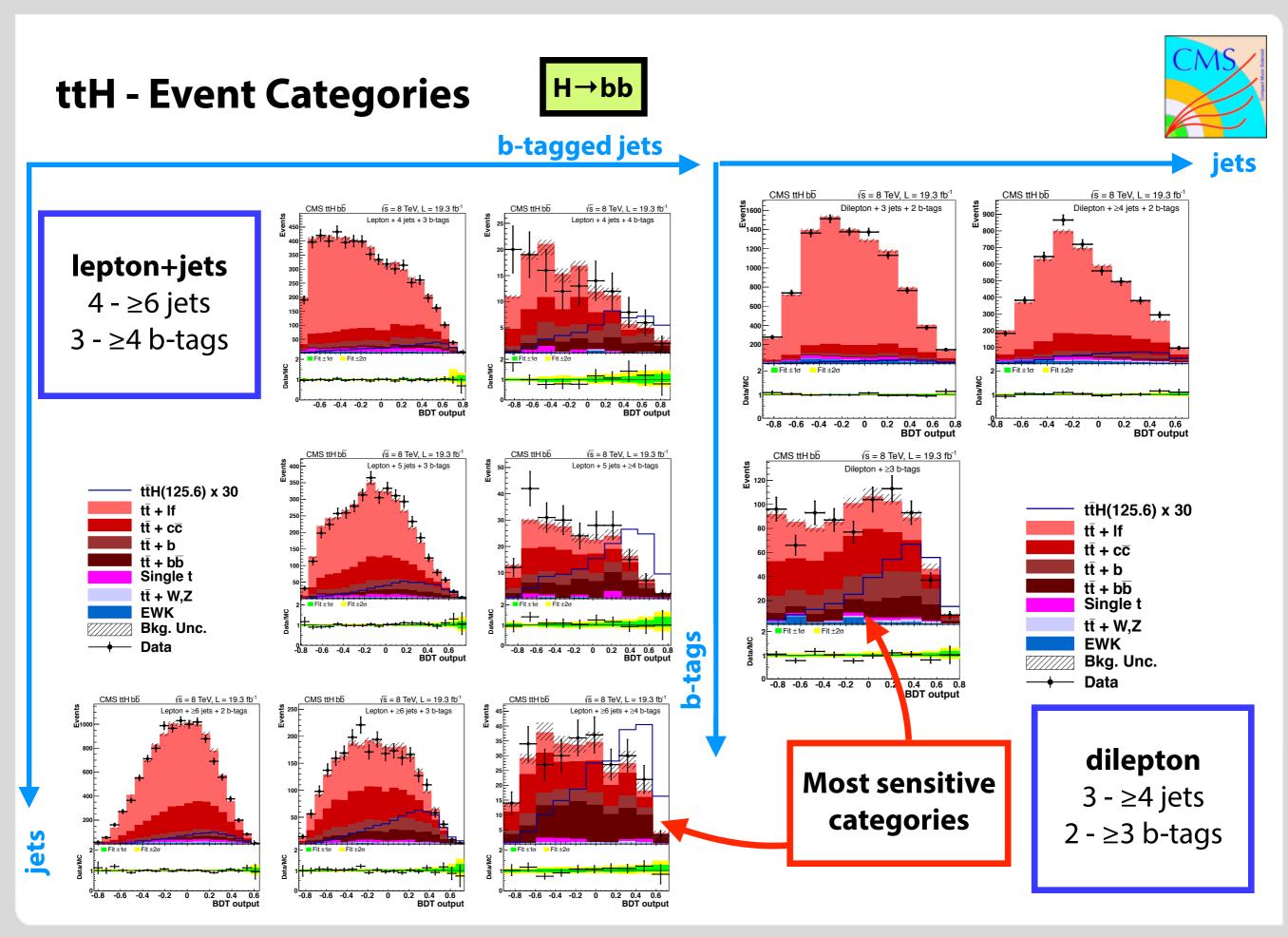

$ttH \rightarrow bb$ with a Matrix Element method

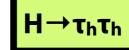
Alternative event categorisation and use of MEM to discriminate signal and background

```
19.5 fb<sup>-1</sup> (8TeV)
```

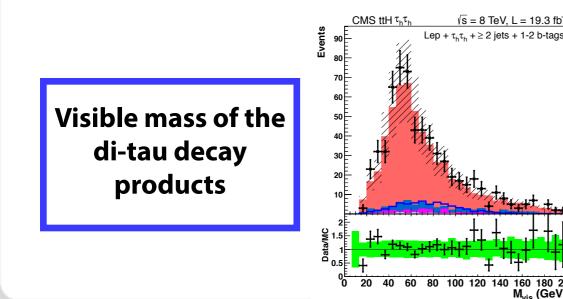
CMS-HIG-14-010 EPJ C 75 (2015)

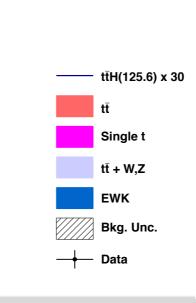


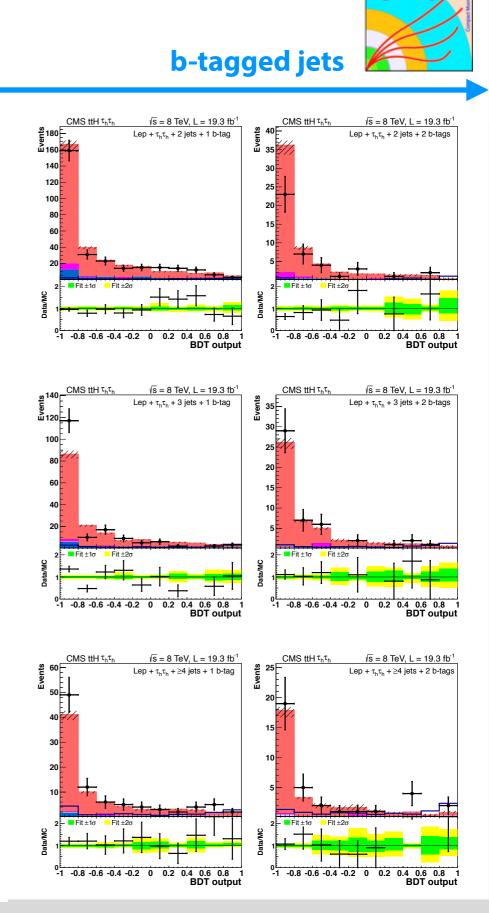

ttH - Analysis Overview



- Require at least one light lepton to suppress large multi-jet background
 - **lepton+jets channel**: single isolated lepton $+ \ge 4$ jets of which ≥ 2 are b-tagged
 - **dilepton channel**: oppositely charged leptons $+ \ge 3$ jets of which ≥ 2 are b-tagged
- Main backgrounds from tt+bb, mis-tagged tt+light and tt+cc, tt+V and single t
- Categorise on jet and b-tagged jet multiplicity, multivariate discriminator for signal extraction
- 10-15 input variables including object kinematics, event shape, b-tagging discriminant



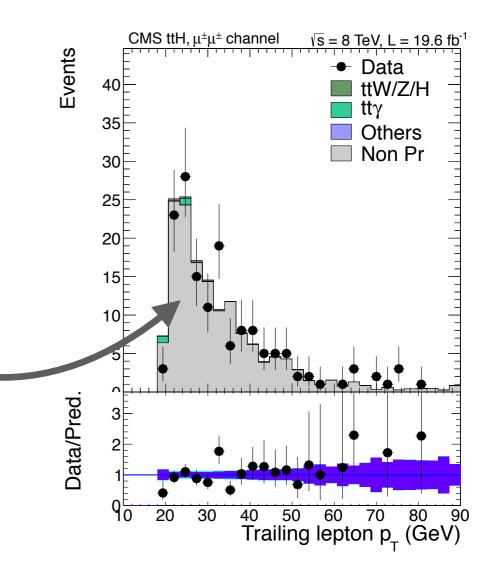



ttH - Event Categories

- A third channel targets Higgs decays to a pair of τ leptons which decay hadronically (τ_h)
 - Requires one e/ μ from tt decay, ≥ 2 additional jets of which \geq 1 b-tagged
 - τ_h candidates must contain a **single charged hadron**, pass decay mode identification and an MVA-based isolation discriminator
- Similar categorisation scheme with 2-4 jets and 1-2 b-tags
- One BDT trained for all categories
 - Most input variables related to the di-τ_h system

180 200 (GeV)

ttH - Analysis Overview

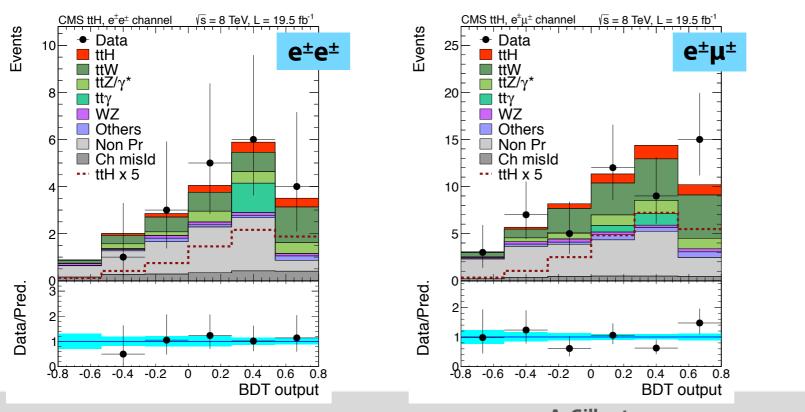

- Consider three multi-lepton final states, where at least one lepton originates in top decay
 - 2I (same-sign + at least 4 jets), 3I, 4I
 - All categories require ≥ 2 loose or ≥ 1 medium b-tagged jets
- Main backgrounds have ≥ 1 non-prompt lepton, e.g. from b hadron decay. Require leptons to pass BDT "prompt vs. non-prompt" discriminator using IP, isolation and nearest-jet properties

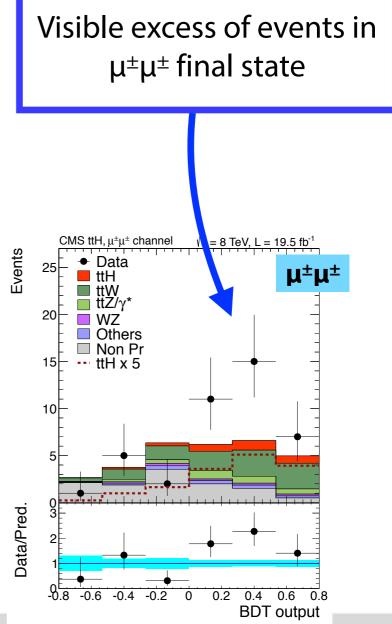
A. Gilbert

 $H \rightarrow WW/\tau\tau/ZZ$

Three main classes of backgrounds:

- tt+V: estimated from simulation normalised to NLO cross sections
- VV: mainly WW and WZ, normalised in a signaldepleted control region with ≥ 2 jets and a b-tag veto, or with inverted m_{II} veto
- tt̄/W/Z+jets with non-prompt leptons: data-driven using a "fake-rate" method applied to events in control region where at least one lepton fails lepton MVA

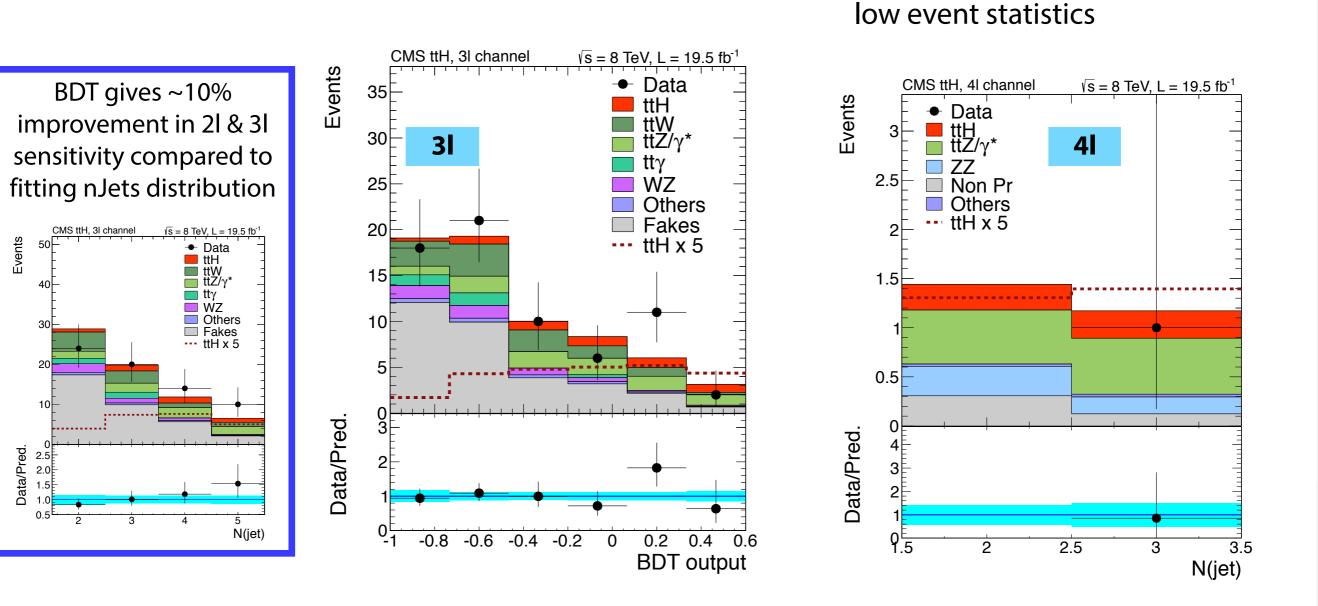

ttH - Signal Extraction



- 2l categories: fit output of a BDT discriminator trained to separate ttH vs tt+jets
- Input variables include the p_T and $|\eta|$ of the trailing lepton, transverse mass of the leading lepton and E_T^{miss} , event topology and energy sum variables
- Divide events into two categories based on lepton charge sum
 - ~ 5% improvement in sensitivity due to charge asymmetry

in SM backgrounds

ttH - Signal Extraction



4I category uses the jet multiplicity

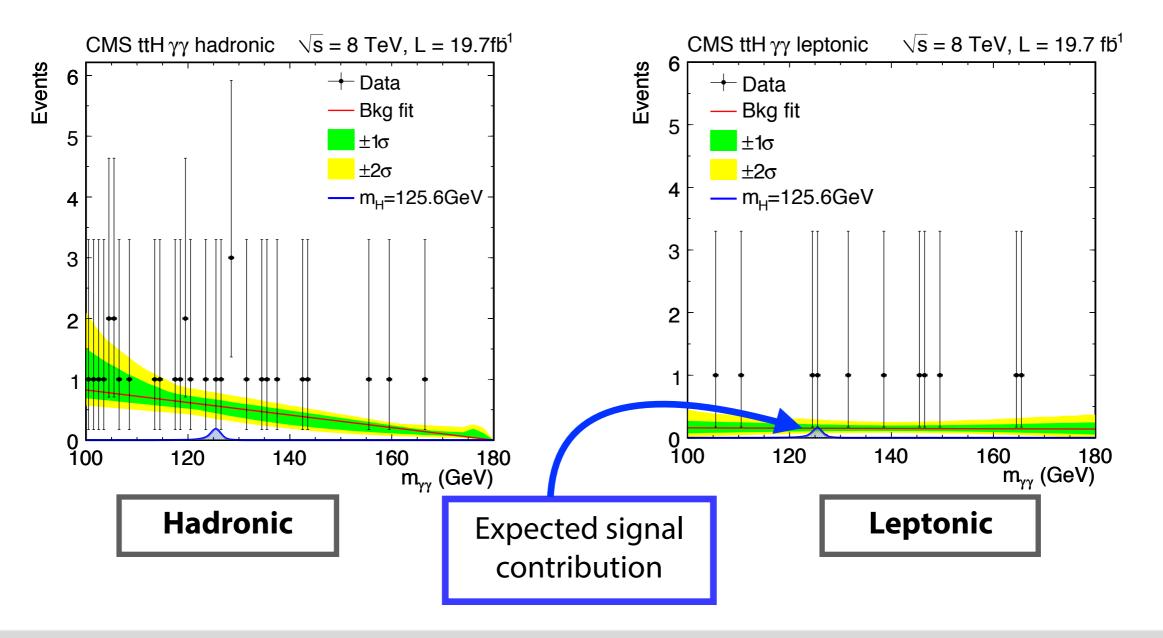
as discriminating variable due to

 3I category uses a similar BDT discriminator trained to separate ttH vs backgrounds

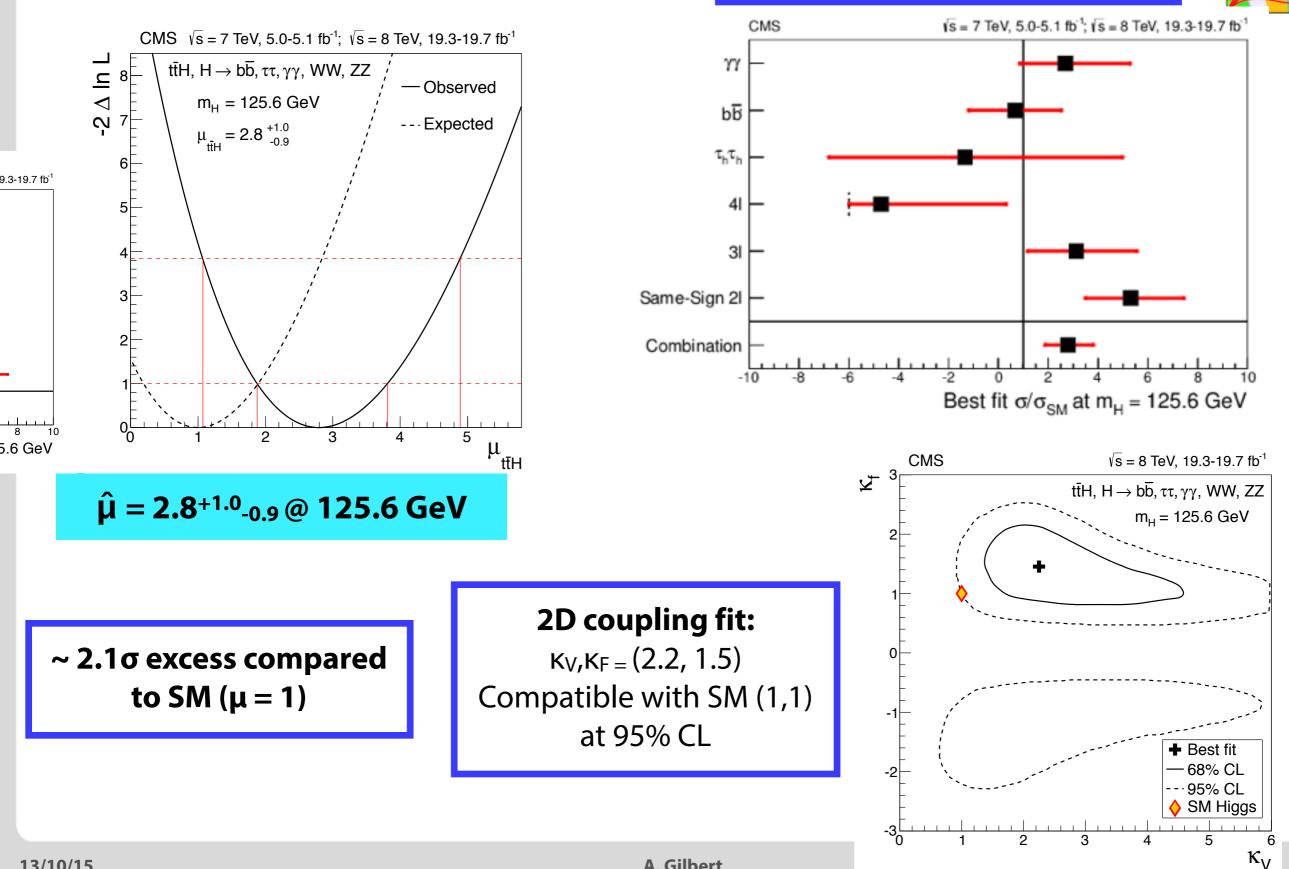
ttH - Analysis Overview

- Despite small H→γγ branching ratio (~2x10⁻³) exploit clean signature and excellent photon energy resolution
- Photon identification and energy measurement closely follows inclusive CMS $H \rightarrow \gamma \gamma$ analysis
- Loose selection on tt final state objects to accept as many signal events as possible
- Categorise events based on **hadronic** and **leptonic** tt final states:
 - **Hadronic:** \geq 4 jets, of which \geq 1 b-tagged, no high-p_T e/µ
 - **Leptonic:** ≥ 2 jets, of which ≥ 1 b-tagged, ≥ 1 e/ μ with $p_T > 20$ GeV
- Extract signal from fit to the **di-photon invariant mass** $m_{\gamma\gamma}$

Expected signal events


	1		$7\mathrm{TeV}$	8 T	eV
Analysis selections aim to			All decays	Hadronic channel	Leptonic channel
maximise ttH acceptance and minimise acceptance of other signal modes which peak at same m _{γγ}		$t\overline{t}H$	0.21	0.51	0.45
		$gg \to H$	0.01	0.02	0
		VBF H	0	0	0
		WH/ZH	0.01	0.01	0.01
		Total H	0.23	0.54	0.46
		Data	9	32	11

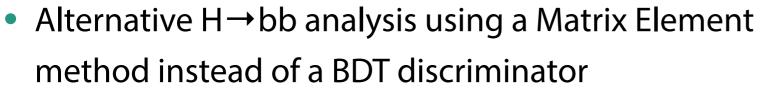
ttH - Signal extraction

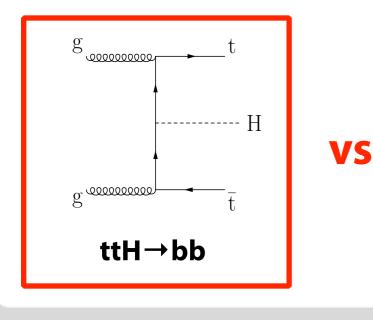


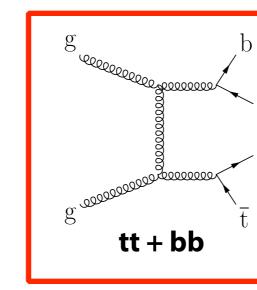
- Main backgrounds: top quarks + real/fake photons, high p_T photons + multi-jet
- Modelled by a functional form and determined by fit to $m_{\gamma\gamma}$ in the range 100-180 GeV
 - Exact form treated as a discrete nuisance parameter including exponential, power-law and polynomial functions

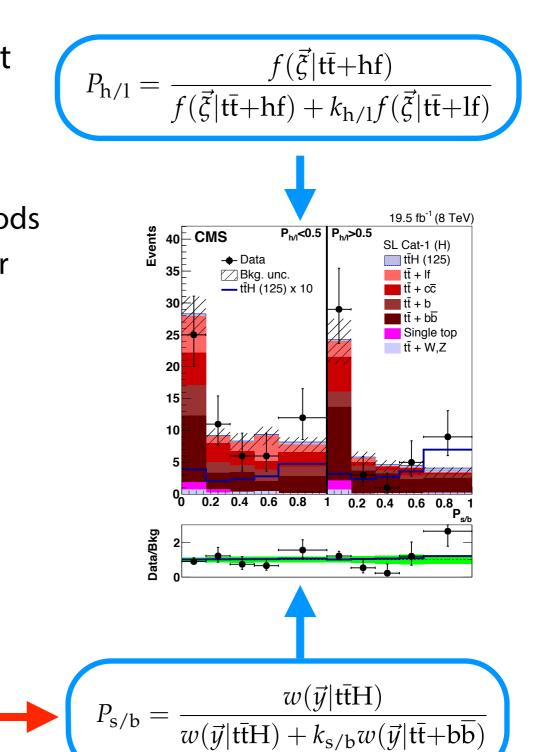
ttH - Results

13/10/15

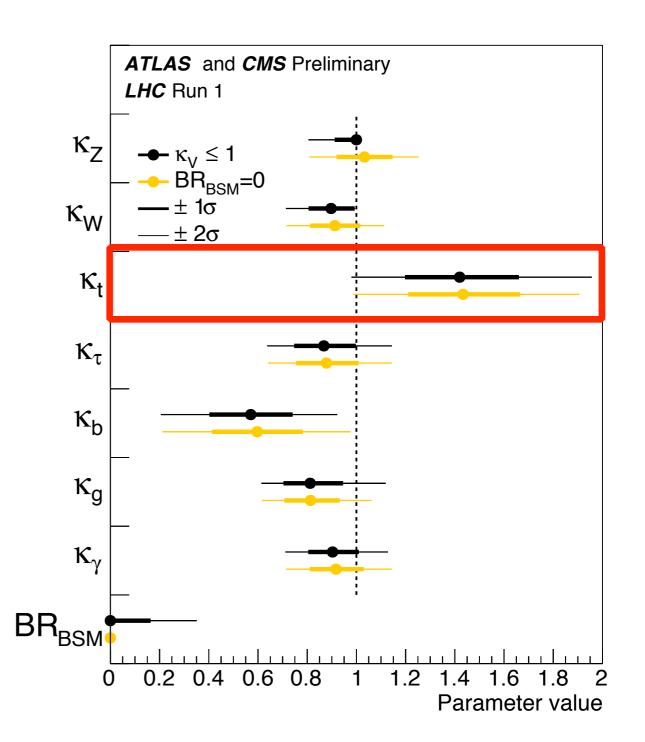

p-value for compatibility of separate channel results with common $\mu = 29\%$


A. Gilbert


Matrix Element Method



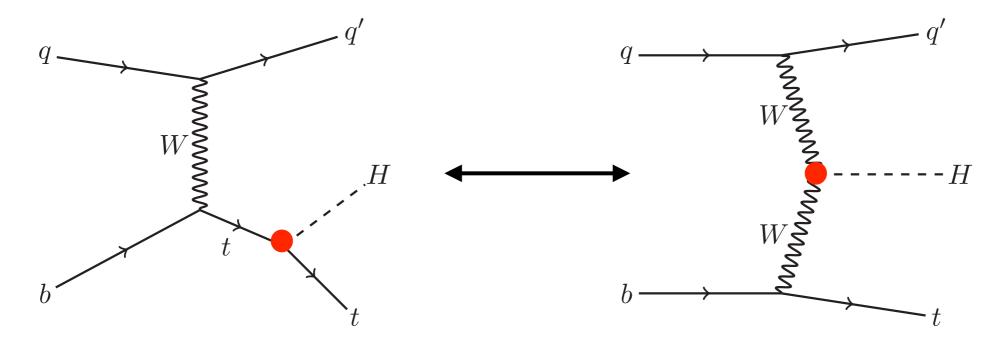
- Fit 2D distribution of $P_{s/b}$ and $P_{h/l}$
 - P_{s/b}: Ratio of signal (ttH) and bkg (tt+bb) likelihoods computed from LO matrix elements with transfer functions to model experimental resolution
 - P_{h/I}: likelihood of b-tagging observables
- ~30% improved sensitivity compared to BDT analysis


 $\hat{\mu} = 1.2^{+1.6}_{-1.5} @ 125.6 \text{ GeV}$

13/10/15

Role of ttH in the Coupling Combination

- Results of a combination of CMS and ATLAS Higgs analyses has been released
- ttH analyses play an important role
- In particular: constraint on κ_t in coupling modifier model where loop processes are not resolved
 - E.g. gluon-gluon fusion production assumed to scale with κ_g, not as a function of κ_t and κ_b
- Combined result of $\kappa_t = 1.43^{+0.23} 0.22$


ATLAS-CONF-2015-044/CMS-PAS-HIG-15-002

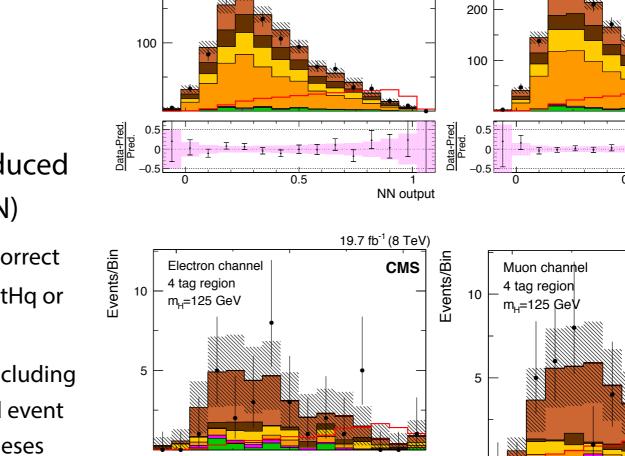
Single-top + Higgs Production

- Novel channel to probe the sign of Ct and search for new physics: single top + Higgs production
 - Proceeds mainly via the t-channel tHq process:

- t and W couple to H with opposite sign: destructive interference of main diagrams
- SM cross section of \sim 18 fb (cf. 130 fb for ttH), but enhanced by factor of 15 if C_t = -1
- $C_t = -1$ can be excluded given constraint from inclusive $H \rightarrow \gamma \gamma$ search, but assumes no new particles in loop for that decay
- Searches exploit $t \rightarrow lvb$ decay and presence of a typically forward hadronic jet in the final sate

Single-top + Higgs Production н→ы

Expect at least five quarks in the final state: H→bb (2), t→lvb (1), forward q (1), b from strong interaction in tHq process (1)


Electron channel

3 tag region

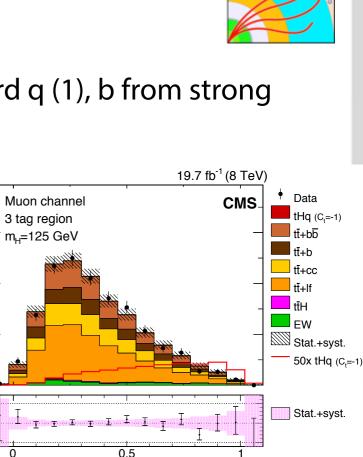
m_µ=125 GeV

Events/Bin 00

- Preselects events with a single e/µ candidate and ≥ 4 jets
- 2 event categories:
 - \geq 4 jets + \geq 3 b-tags
 - \geq 5 jets + \geq 4 b-tags
- Significant tt+jets background reduced with artificial neural networks (NN)
 - 1st stage: use NNs trained to identify correct association of jets → quarks for either tHq or tt+jets hypothesis
 - 2nd stage: signal vs background NN including lepton & jet kinematics, b-tagging and event topology variables under both hypotheses
- Signal extracted by fit to NN output distribution

0.5

19.7 fb⁻¹ (8 TeV)


CMS

Events/Bin

Data-Pred. Pred.

NN output

300

NN output

19.7 fb⁻¹ (8 TeV)

0.5

CMS

NN output

Data-Pred. Pred. Data

tī+bb

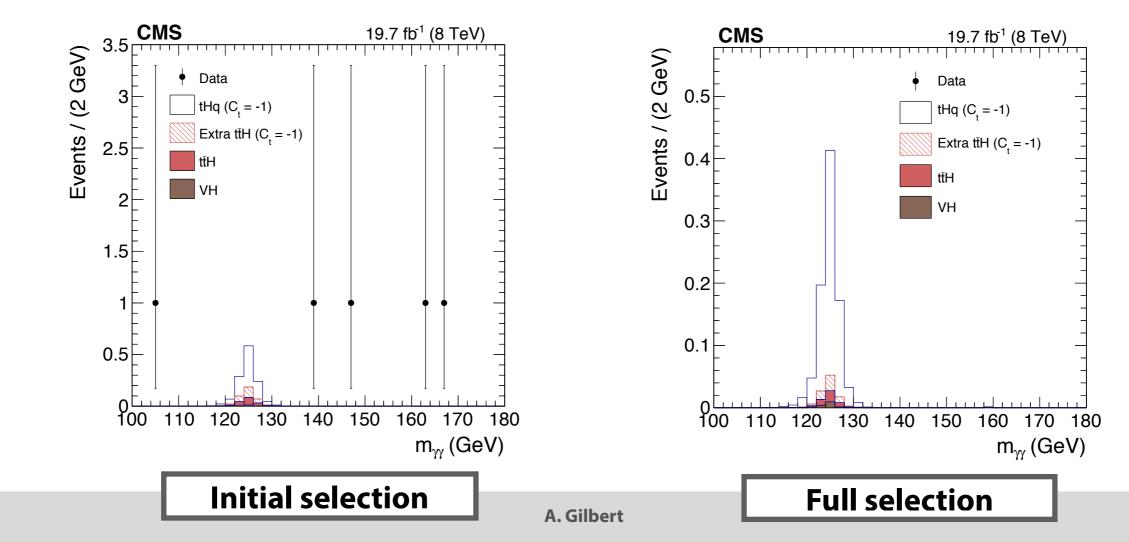
tī+b

tī+cc tī+lf

tīH EW

Stat.+syst. 20x tHg (C,=

Stat.+syst.


tHq (C,=-1)

Single-top + Higgs Production

- With $C_t = -1 H \rightarrow \gamma \gamma BR$ also enhanced by ~ x2
- Initial selection:

13/10/15

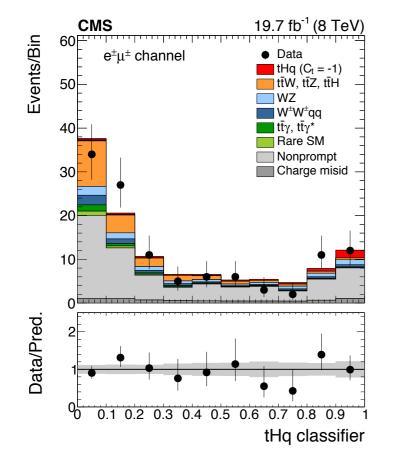
- 2 high pT photons, 1 isolated lepton, \ge 1 b-tagged jet, forward jet with $|\eta| > 1$
- Then apply cut on likelihood classifier using jet multiplicity, top quark m_T , light jet η , $\Delta \eta^{lep-jet}$, lepton charge
- Zero events observed in signal region

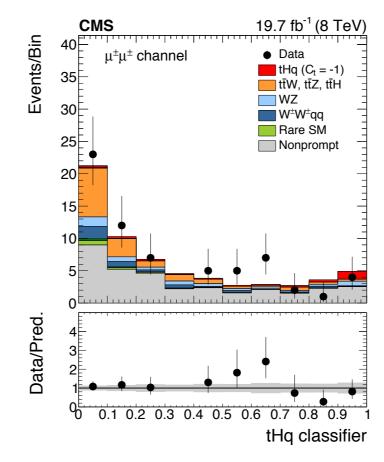
Ratio of s/ s+b likelihoods $L(x) = \frac{L_S(x)}{L_S(x) + L_B(x)}$

Bayes classifier:

$$\mathbf{L}^{i}(\mathbf{x}) = \prod_{j} p_{j}^{i}(\mathbf{x}^{j}),$$

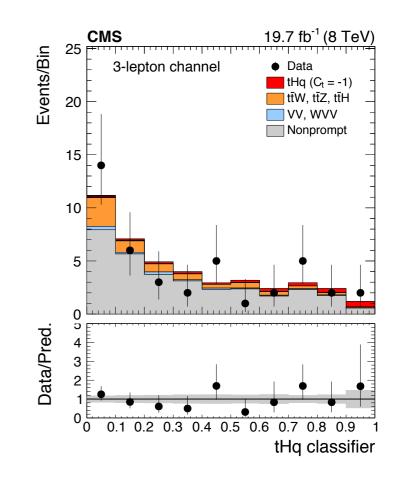
i = signal or bkg. process $p_{j}(x_{j}) pdf of variable j evaluated at x$



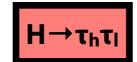

Single-top + Higgs Production H→WW

• Event categories:

- Same sign dilepton (eµ or µµ)
- Three lepton (eee, μμμ, eeμ, eμμ)
- All categories require a central b-tagged jet and an additional forward jet
- Largest background from tt+jets production (Nonprompt)
- Fit for signal with multi-variate likelihood classifier, inputs include jet multiplicity and kinematic variables

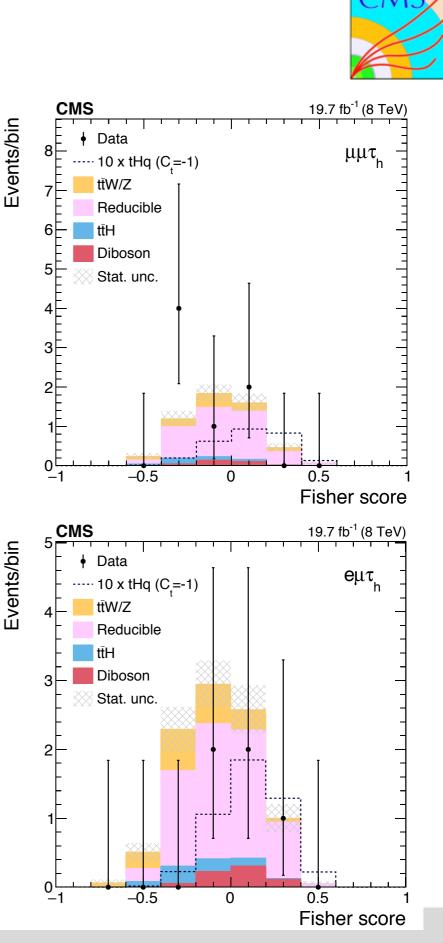


Bayes classifier: Ratio of s/ s+b likelihoods


$$L(\mathbf{x}) = \frac{L_{S}(\mathbf{x})}{L_{S}(\mathbf{x}) + L_{B}(\mathbf{x})}$$

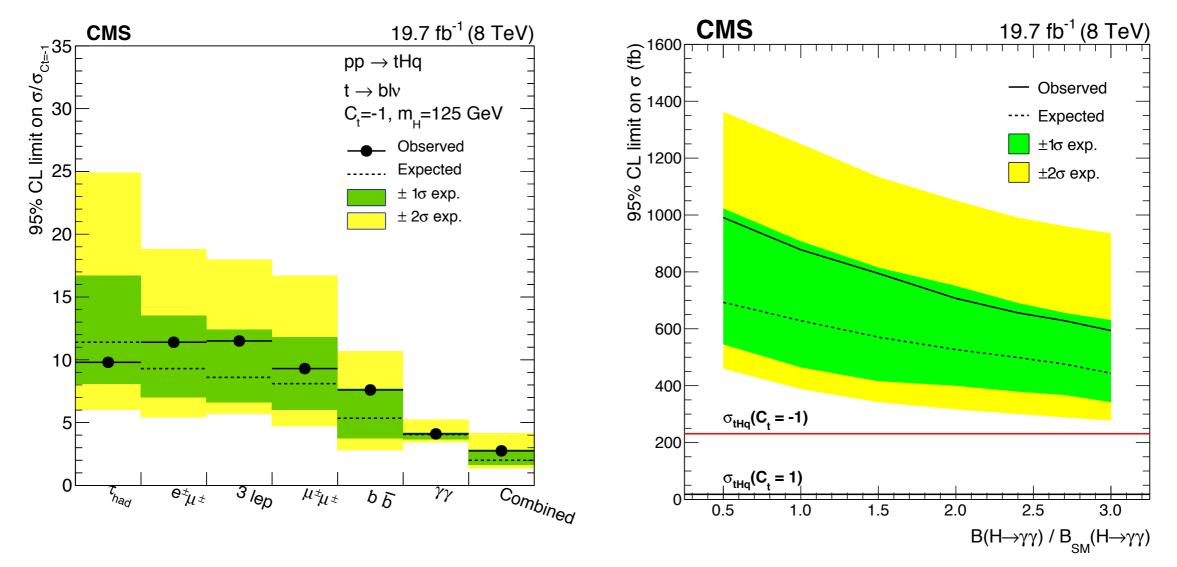
$$\mathbf{L}^{i}(\mathbf{x}) = \prod_{j} p_{j}^{i}(\mathbf{x}^{j}),$$

i = signal or bkg. process $p_{j}(x_{j}) pdf of variable j evaluated at x$

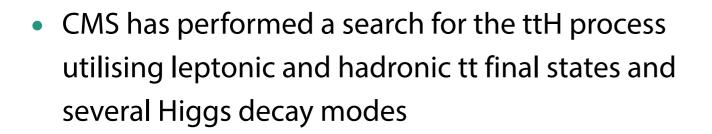


Single-top + Higgs Production H→

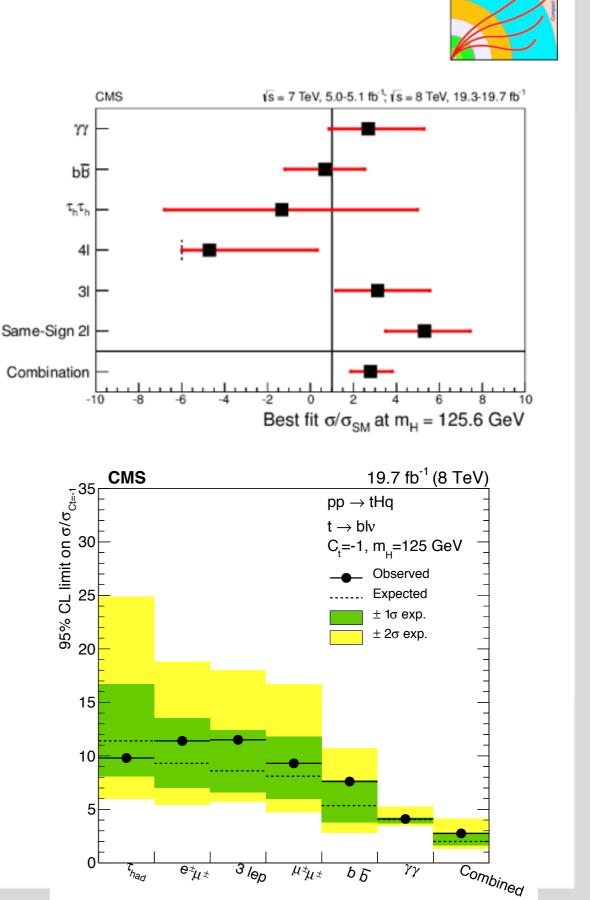
- Target $H \rightarrow \tau_{\mu} \tau_{h}$ and $H \rightarrow \tau_{e} \tau_{h}$ final states with additional same-sign lepton from top decay
- Irreducible backgrounds from WZ, ZZ, ttH, and $t\bar{t} + V$ production modelled with MC
- Signal extraction uses a linear Fisher discriminant exploiting forward jet properties, b-jet multiplicity and other kinematic variables


Process	eμτ _h	$\mu\mu au_{ m h}$	
$\overline{tHq, C_t = -1}$	0.42 ± 0.05	0.26 ± 0.03	
tHW, $C_t = -1$	0.06 ± 0.01	0.04 ± 0.01	
tīH	0.6 ± 0.1	0.3 ± 0.1	
tĪV	1.8 ± 0.4	0.9 ± 0.2	
VV	0.7 ± 0.1	0.3 ± 0.1	
Reducible	6.3 ± 3.1	4.5 ± 1.9	
Total background	9.5 ± 3.7	5.4 ± 2.4	
Data	5	7	

Results



- No significant excess of events observed over background-only expectation
- Set limits on **tHq production cross section relative to C_t = -1** expectation and assuming SM branching fractions: observed 95% CL limit of 2.8 (2.0 expected) on $\sigma/\sigma_{Ct=-1}$



• As $C_t = -1$ also enhances $H \rightarrow \gamma \gamma$ for all production modes, also set limits on **tHq cross section as a** function of $B(H \rightarrow \gamma \gamma)/B_{SM}(H \rightarrow \gamma \gamma)$. Observed limits in range 600-1000 fb (450-700 fb expected)

Summary

- Combined signal strength:
 - $\hat{\mu} = 2.8^{+1.0}_{-0.9} @ 125.6 \text{ GeV}$
- Good prospects for LHC Run 2 due to factor ~4 enhancement in signal cross section (though backgrounds also enhanced)
- Dedicated searches for the enhancement of singletop + Higgs production
 - Observed limit of 2.8 (2.0 expected) on $\sigma/\sigma_{Ct=-1}$

Backup

	Rate uncertainty				
Source	Signal	Backgrounds	Shape		
Experimental					
Integrated luminosity	2.2–2.6%	2.2–2.6%	No		
Jet energy scale	0.0-8.4%	0.1–11.5%	Yes		
CSV b-tagging	0.9–21.7%	3.0–29.0%	Yes		
Lepton reco. and ID	0.3–14.0%	1.4–14.0%	No		
Lepton misidentification rate (H \rightarrow leptons)		35.1–45.7%	Yes		
Tau reco. and ID (H \rightarrow hadrons)	11.3–14.3%	24.1-28.8%	Yes		
Photon reco. and ID (H \rightarrow photons)	1.6–3.2%		Yes		
MC statistics		0.2–7.0%	Yes		
Theoretical					
NLO scales and PDF	9.7–14.8%	3.4–14.7%	No		
MC modeling	2.3–5.1%	0.9–16.8%	Yes		
Top quark $p_{\rm T}$		1.4–6.9%	Yes		
Additional hf uncertainty (H \rightarrow hadrons)	—	50%	No		
H contamination (H \rightarrow photons)	36.7-41.2%		No		
WZ (ZZ) uncertainty (H \rightarrow leptons)	—	22% (19%)	No		

Backup

Category	Signature	Trigger	Signature
	Lepton + Jets	Single Lepton	$1 \ e/\mu, \ p_{\rm T} > 30 {\rm GeV}$
$ H \rightarrow Hadrons$	$(t\bar{t}H \rightarrow \ell\nu jjbbbb)$		$\geq 4 \text{ jets} + \geq 2 \text{ b-tags}, p_{\mathrm{T}} > 30 \mathrm{GeV}$
$H \rightarrow b\overline{b}$	Dilepton	Dilepton	$1 e/\mu, p_{\rm T} > 20 {\rm GeV}$
$\mathrm{H} \rightarrow \tau_{\mathrm{h}} \tau_{\mathrm{h}}$	$(t\bar{t}H \rightarrow \ell\nu\ell\nu bbbb)$		$1 \ e/\mu, \ p_{\rm T} > 10 {\rm GeV}$
$H \to WW$			$\geq 3 \text{ jets} + \geq 2 \text{ b-tags}, p_{\mathrm{T}} > 30 \mathrm{GeV}$
	Hadronic τ	Single Lepton	$1 \ e/\mu, \ p_{\rm T} > 30 {\rm GeV}$
	$(t\bar{t}H \rightarrow \ell\nu\tau_h[\nu]\tau_h[\nu]jjbb)$		$2 \tau_{\rm h}, p_{\rm T} > 20 {\rm GeV}$
			≥ 2 jets + 1-2 b-tags, $p_{\rm T} > 30 \text{GeV}$
	Leptonic	Diphoton	$2 \gamma, p_{\rm T} > m_{\gamma\gamma}/2 (25) \text{GeV for } 1^{\text{st}} (2^{\text{nd}})$
$H \rightarrow Photons$	$(t\bar{t}H \rightarrow \ell\nu jjbb\gamma\gamma,$		$\geq 1 e/\mu, p_{\rm T} > 20 \mathrm{GeV}$
$\mathrm{H} \to \gamma \gamma$	$t\bar{t}H \rightarrow \ell \nu \ell \nu b b \gamma \gamma)$		$\geq 2 \text{ jets} + \geq 1 \text{ b-tags}, p_{\mathrm{T}} > 25 \mathrm{GeV}$
	Hadronic	Diphoton	$2 \gamma, p_{\rm T} > m_{\gamma\gamma}/2 (25) \text{GeV for } 1^{\text{st}} (2^{\text{nd}})$
	$(t\bar{t}H \rightarrow jjjjbb\gamma\gamma)$		$0 \ e/\mu, \ p_{\rm T} > 20 {\rm GeV}$
			$\geq 4 \text{ jets} + \geq 1 \text{ b-tags}, p_{\mathrm{T}} > 25 \text{ GeV}$
	Same-Sign Dilepton	Dilepton	$2 e/\mu, p_{\rm T} > 20 {\rm GeV}$
$H \rightarrow Leptons$	$(t\bar{t}H \to \ell^{\pm}\nu\ell^{\pm}[\nu]jjj[j]bb)$		$\geq 4 \text{ jets} + \geq 1 \text{ b-tags}, p_{\mathrm{T}} > 25 \mathrm{GeV}$
$H \to WW$	3 Lepton	Dilepton,	$1 \ e/\mu, p_{\rm T} > 20 {\rm GeV}$
$\mathrm{H} \to \tau \tau$	$(t\bar{t}H \rightarrow \ell\nu\ell[\nu]\ell[\nu]j[j]bb)$	Trielectron	$1 \ e/\mu, \ p_{\rm T} > 10 {\rm GeV}$
$H \rightarrow ZZ$			$1 e(\mu), p_{\rm T} > 7(5) {\rm GeV}$
			$\geq 2 \text{ jets} + \geq 1 \text{ b-tags}, p_{\mathrm{T}} > 25 \text{ GeV}$
	4 Lepton	Dilepton,	$1 \ e/\mu, p_{\rm T} > 20 {\rm GeV}$
	$(t\bar{t}H \to \ell\nu\ell\nu\ell[\nu]\ell[\nu]bb)$	Trielectron	$1 \ e/\mu, \ p_{\rm T} > 10 {\rm GeV}$
			$2 e(\mu), p_{\rm T} > 7(5) {\rm GeV}$
			$\geq 2 \text{ jets} + \geq 1 \text{ b-tags}, p_{\mathrm{T}} > 25 \mathrm{GeV}$

Event yields in the $H \rightarrow$ leptons search channels

	ee	$e\mu$	$\mu\mu$	3ℓ	4ℓ
$t\bar{t}H, H \to WW$	1.0 ± 0.1	3.2 ± 0.4	2.4 ± 0.3	3.4 ± 0.5	0.29 ± 0.04
$t\bar{t}H, H \rightarrow ZZ$		0.1 ± 0.0	0.1 ± 0.0	0.2 ± 0.0	0.09 ± 0.02
$t\bar{t}H, H \rightarrow \tau\tau$	0.3 ± 0.0	1.0 ± 0.1	0.7 ± 0.1	1.1 ± 0.2	0.15 ± 0.02
$\overline{\mathrm{t}}\overline{\mathrm{t}}W$	4.3 ± 0.6	16.5 ± 2.3	10.4 ± 1.5	10.3 ± 1.9	
$ t\bar{t} Z/\gamma^*$	1.8 ± 0.4	4.9 ± 0.9	2.9 ± 0.5	8.4 ± 1.7	1.12 ± 0.62
$t\overline{t}WW$	0.1 ± 0.0	0.4 ± 0.1	0.3 ± 0.0	0.4 ± 0.1	0.04 ± 0.02
$ ext{ t} \overline{ ext{t}} \gamma$	1.3 ± 0.3	1.9 ± 0.5		2.6 ± 0.6	
WZ	0.6 ± 0.6	1.5 ± 1.7	1.0 ± 1.1	3.9 ± 0.7	
ZZ		0.1 ± 0.1	0.1 ± 0.0	0.3 ± 0.1	0.47 ± 0.10
Rare SM bkg.	0.4 ± 0.1	1.6 ± 0.4	1.1 ± 0.3	0.8 ± 0.3	0.01 ± 0.00
Non-prompt	7.6 ± 2.5	20.0 ± 4.4	11.9 ± 4.2	33.3 ± 7.5	0.43 ± 0.22
Charge misidentified	1.8 ± 0.5	2.3 ± 0.7			
All signals	1.4 ± 0.2	4.3 ± 0.6	3.1 ± 0.4	4.7 ± 0.7	0.54 ± 0.08
All backgrounds	18.0 ± 2.7	49.3 ± 5.4	27.7 ± 4.7	59.8 ± 8.0	2.07 ± 0.67
Data	19	51	41	68	1