

Christoph Englert

Higgs Boson Boosted Topologies

Higgs Couplings 2015

Lumley Castle October 13, 2015

Boosting the Higgs

- Currently everything looks like the SM within (big statistical) errors
- Most 7+8 TeV measurements are rather inclusive
- Where is new physics?
 Effective Field Theory?
 concrete models?

[ATLAS-CONF-2015-044]

Boosting the Higgs

BSM physics in the Higgs sector

Effective Field Theory

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \sum_i rac{c_i}{\Lambda^2} \mathcal{O}_i$$

[Buchmüller, Wyler `87] [Hagiwara, Peccei, Zeppenfeld, Hikasa`87] [Giudice, Grojean, Pomarol, Rattazzi `07] [Grzadkowski, Iskrzynski, Misiak, Rosiek `10]

Michael Trott, this workshop

Nausheen Shah, Brian Batell this workshop

Benefits of boosted Higgs final states

- contd. Higgs characterisation (spin & CP measurements)
 EFT
 - ► access VH production mechanisms
 - ► break degeneracies in the dim 6 coupling fit
 - ☞ access sensitivity in rare final states
- concrete models
 - extended Higgs sector exotics (light and heavy)

Tools & Developments

► 1994: boosted hadronic W's and tops

[Seymour `94]

- 2002: boosted hadronic W's from strongly interacting WW
 Systems
- ► 2008: boosted Higgs to bottoms

[Butterworth, Davison, Rubin, Salam `08]

 Higgs discovery in associated production feasible and crucially relies on background rejection based on boosted final states and jet substructure technology

filtering trimming mass drop

Tools & Developments

since then rapid developments within the BOOST community

jet "grooming" methods (inverted jet algorithms + extras)

filtering [Butterworth, Davison, Rubin, Salam `08]

► pruning [Ellis, Vermillion, Walsh `09]

trimming [Krohn, Thaler, Wang `10]

capture complementary complementary information

[Soper, Spannowsky `10]

subjet techniques well understood in QCD

- resummed calcuations for filtering, trimming, pruning
- QCD-improved definitions of (soft) mass drop

[Dasgupta, Fregoso, Marzani, Salam `13]

Tools & Developments

- since then rapid developments within the BOOST community
- plethora of jet substructure techniques on the market

Boosted Higgs EFT

destructive interference

HH: a case for boosted Higgs

[Glover, van der Bij `87] [Plehn, Spira, Zerwas `96] [Djouadi, Killian, Mühlleitner, Zerwas `99]

> [Plehn, Baur, Rainwater `03] [Dolan, CE, Spannowsky `12] [Papaefstathiou, Yang, Zurita `12] [Barr, Dolan, CE, Spannowsky `13]

 $b\bar{b}\gamma\gamma$: 1.3 σ at 3/ab, limited statistics [ATLAS PHYS-PUB 2014-19]

Michael Spannowsky, this workshop

overconsttaining the Higgs system

Can replace HH with off-shell and H+jet measurements to break
 degeneracies
 [Grojean et al `13] [Schlaffer et al `14] [Buschmann et al `14, `14]

typical S/B thresholds motivate the boosted regime, but do not forget background systematics

Litmus test in Higgs physics

 Higgs discovery in VH, H >bottoms feasible and relies on background rejection based on boosted final states and subject technology
 [Butterworth, Davison, Rubin, Salam `08]

Thresholds = boost

- thresholds can render subdominant contributions relevant at high luminosity & energy
- ➡ interference of contributions non-negligible and important for BSM

[Kniehl `90] [Matsuura, Hamberg, van Neerven `90]

Thresholds = boost

- thresholds can render subdominant contributions relevant at high luminosity & energy
- ➡ interference of contributions non-negligible and important for BSM

exotics: NMSSM

B.3 (Point ID 210)	Scenario		
M_h, M_{H_s}, M_H	124.1 GeV	184.3 GeV	463.1 GeV
M_{A_s}, M_A	133.4 GeV	457.2 GeV	

B.3 (Point ID 210)	Signal Rates
$\sigma(ggH_s)$	390.38 fb
$\sigma(ggH_s){ m BR}(H_s o bar{b})$	160.37 fb
$\sigma(ggH_s)$ BR $(H_s \to \tau \tau)$	18.46 fb
$\sigma(ggH_s){ m BR}(H_s o WW)$	176.63 fb
$\sigma(ggH_s) BR(H_s \rightarrow ZZ)$	29.00 fb
$\sigma(ggH)$	1.326 pb
$\sigma(ggH) { m BR}(H o t\bar{t})$	684.96 fb
$\sigma(ggH) BR(H \rightarrow hH_s)$	184.85 fb
$\sigma(ggH)BR(H \rightarrow hH_s \rightarrow bb + bb)$	50.46 fb
$\sigma(ggH)BR(H \to hH_s \to bb + \tau\tau)$	11.08 fb
$\sigma(ggH)BR(H \to hH_s \to \tau\tau + \tau\tau)$	0.61 fb
$\sigma(ggH) { m BR}(H o hH_s o bb + \gamma\gamma)$	0.24 fb
(II) DD (II : 74)	00 41 0

- correlation of on- and off-shell regions can provide complementary yet highly non-linear information to constrain model parameters
- strong case for boosted Higgs final states, validation of new substructure techniques necessary

[King, Mühlleitner, Nevzorv, Walz `14]

exotics: NMSSM

strategies need to be validated

exotics reconstruction, e.g. ditau jets, double b jets, ... jet substructure

exotics: NMSSM

high discrimination taggers available from substructure developments

- pile-up & underlying event at LHC 13?
- general feasibility for modeldependent cross sections after fits?

D.1 (Point ID 5416)	Scenario		
M_{H_s}, M_h, M_H	9.6 GeV	124.2 GeV	793.4 GeV

D.1 (Point ID 5416)	Signal Rates	
$\sigma(ggh)$	44.28 pb	
$\sigma(ggh) BR(h \rightarrow H_s H_s)$	4.22 pb	
$\sigma(ggh) BR(h \to H_s H_s \to \tau \tau + \tau \tau)$	3.58 pb	
$\sigma(ggh)BR(h \to H_s H_s \to \tau \tau + \mu \mu)$	31.64 fb	
$\sigma(ggH_s)$	439.80 pb	
$\sigma(ggH_s)BR(H_s \to \mu\mu)$	1.79 pb	
$\sigma(ggH_s)BR(H_s \to \tau\tau)$	405.09 pb	
$\sigma(ggH_s)BR(H_s \to c\bar{c})$	5.17 pb	
$\sigma(ggH_s) \mathrm{BR}(H_s \to s\bar{s})$	7.24 pb	
$\sigma(ggH_s)$ BR $(H_s \to \gamma\gamma)$	7.95 fb	
$\sigma(ggH)$	38.72 fb	
$\sigma(ggH)BR(H \to t\bar{t})$	9.80 fb	
$\sigma(ggH) \mathrm{BR}(H o ilde{\chi}_1^0 ilde{\chi}_1^0)$	5.73 fb	
$\sigma(ggH)BR(H \to hH_s)$	8.08 fb	
$\sigma(ggH)BR(H \to hH_s \to bb + \tau\tau)$	4.26 fb	
$\sigma(ggH)BR(H \to hH_s \to \tau\tau + \tau\tau)$	0.45 fb	

 light exotics: "new" boosted strategies need to be validated

- ► LHC run II will bring Higgses at high pT with reasonable statistics
- Boosted Higgs final states are crucial tools if the new physics scale is well separated from the electroweak scale
- top (partner) thresholds can populate the boosted Higgs pT regime addining additional sensitivity
- Boosted Higgs final states can be "make-or-break" final states for extended Higgs sectors with new light degrees of freedom