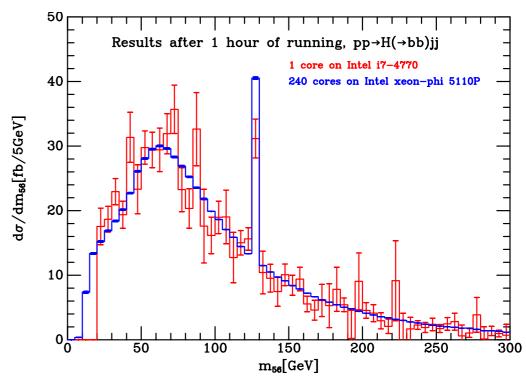
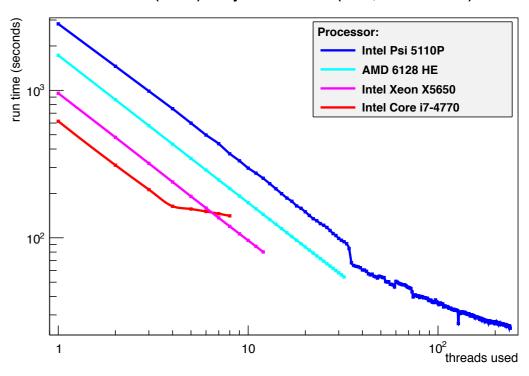
Off-shell measurements: in gluon fusion and in vector boson fusion and scattering

R. Keith Ellis, IPPP Durham, UK

- * MCFM v7.0
- * Off-shell behavior in gg→ZZ
- * Rates for vector boson scattering.
- ★ The importance of W+W+
- Prospects for coupling and width measurement.
- * Campbell, RKE, Giele, 1503.06182, Campbell, RKE, 1502.02990,
- * Campbell, RKE, Furlan, Rontsch, 1409.1897, Campbell, RKE, Williams, 1312.1628, 1311.3589


MCFM (Monte Carlo for FeMtobarn processes)


- MCFM is a parton-level Monte Carlo program that computes hadroncollider cross sections at NLO [Campbell, RKE, Williams]
- Gives access to explicit final states, distributions.
- Implements analytic results for matrix elements, so fast and numerically stable.
- * Flexible, freely distributed code, widely used in the community
- * Theoretical predictions for more than 300 processes, (extensive use at Tevatron and LHC, (cited by > 650 experimental papers).
- * Significant role as a catalyst for other theoretical efforts.
- * Eight updates to the code in the last eight years.
- * OpenMP version of MCFM v7.0 in March 2015.

MCFM and Open Multi-processing

- * OpenMP offers standardized way of exploiting multi-threading.
- e.g. standard option for gfortran and intel compilers.
- Automatically uses all available threads
- * Non destructive of the single thread code, (compiler directives are interpreted as comments, if compiled without openMP flag).
- * Full statistics contributes to the adaptation of the VEGAS grid.
- * It is our intention that the only thing that user is aware of is code speed-up.

PP-> H(->bb)+ 2 jets @ NLO (140,000 events)

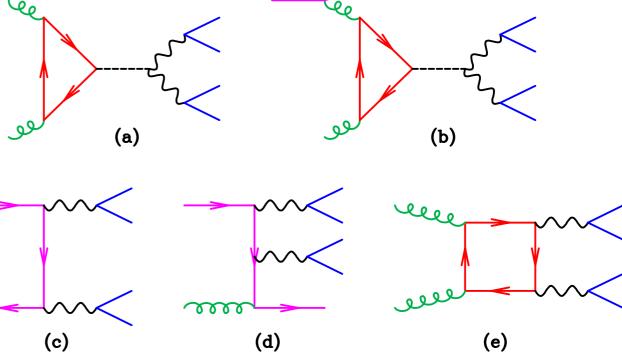
Speedup of 98x with 128 cores

Higgs constraints from gluon-gluon fusion

pp→e⁻e⁺µ⁻µ⁺ in the standard model

Mishmash of orders in perturbation theory

$$(a): g(-p_1) + g(-p_2) \to H \to e^-(p_3) + e^+(p_4) + \mu^-(p_5) + \mu^+(p_6) \qquad O(g_s^2 e^4)$$


$$(b): q(-p_1) + g(-p_2) \to H \to e^-(p_3) + e^+(p_4) + \mu^-(p_5) + \mu^+(p_6) + q(p_7) \qquad O(g_s^3 e^4)$$

$$(c): q(-p_1) + \bar{q}(-p_2) \to e^-(p_3) + e^+(p_4) + \mu^-(p_5) + \mu^+(p_6) \qquad O(e^4)$$

$$(d): q(-p_1) + g(-p_2) \to e^-(p_3) + e^+(p_4) + \mu^-(p_5) + \mu^+(p_6) + q(p_7) \qquad O(g_s^2 e^4)$$

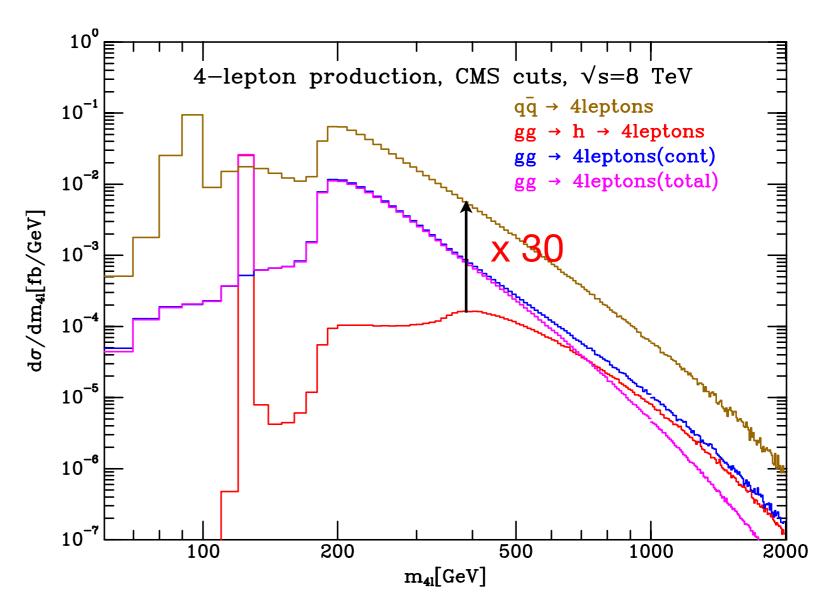
$$(e): g(-p_1) + g(-p_2) \to e^-(p_3) + e^+(p_4) + \mu^-(p_5) + \mu^+(p_6) \qquad O(g_s^2 e^4)$$

- Representative diagrams are:-
- * (a) and (e), (b) and (d) can interfere.
- (b-d) interference does not overwhelm (a-e).

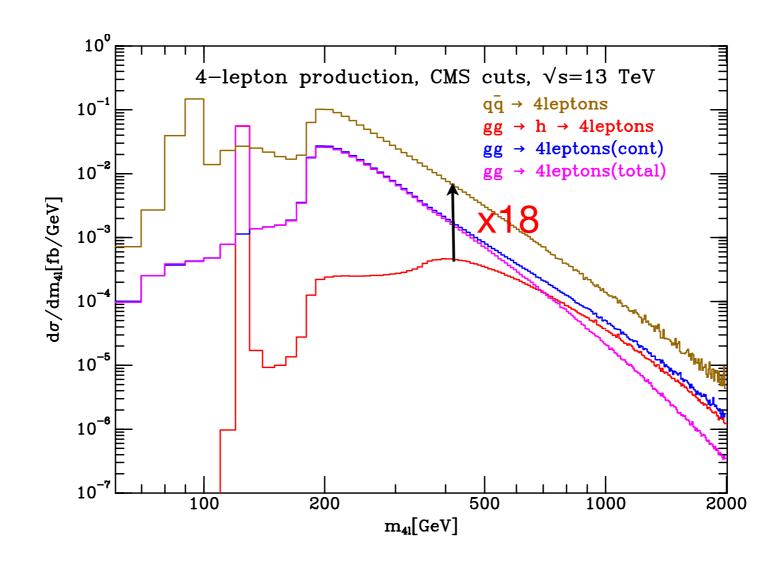
Higgs couplings and width

- * Off-shell tail is a valuable source of information about the Higgs production and decay couplings $\sigma_{
 m off} \propto g_i^2 g_f^2$
- Higgs cross section under the peak depends on ratio of couplings and width.

$$\sigma_{
m peak} \propto rac{g_i^2 g_f^2}{\Gamma}$$


- * So measurements at the peak cannot untangle couplings and width.
- * Off-peak cross section is independent of the width, but still depends on $g_i^2g_f^2$ (modulo interference, see later).
- * Taking ratio $\frac{\left(\frac{\sigma_{\rm off}}{\sigma_{\rm peak}}\right)_{\rm experimental~gg}}{\left(\frac{\sigma_{\rm off}}{\sigma_{\rm peak}}\right)_{\rm theoretical~SM}} = \frac{\Gamma}{\Gamma^{\rm SM}}$
- * Ratio depends linearly on the Higgs boson width, (but see later).

ggF: The big picture @ 8TeV


- Peak at Z mass due to singly resonant diagrams.
- Interference is an important effect off-resonance.
- Destructive at large mass, as expected.
- * With the standard model width, Γ_H, challenging to see enhancement/ deficit due to Higgs channel.
- * 3 phenomena happening in the tail.

```
p_{T,\mu} > 5 \text{ GeV}, \ |\eta_{\mu}| < 2.4, p_{T,e} > 7 \text{ GeV}, \ |\eta_{e}| < 2.5, m_{ll} > 4 \text{ GeV}, \ m_{4\ell} > 100 \text{ GeV}.
```

CMS cuts CMS PAS HIG-13-002

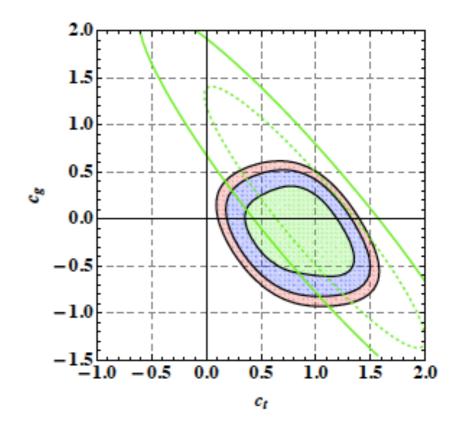
ggF: The big picture @ 13 TeV

- * σ_{qqb} (m_{4l}=400)/ σ^{H}_{gg} (m_{4l}=400) \approx 18 at \sqrt{s} =13 TeV
- * (c.f. ~30 at √s=8 TeV).
- * Higgs off-shell contribution is relatively bigger at higher energy.

Criticisms of the CM method

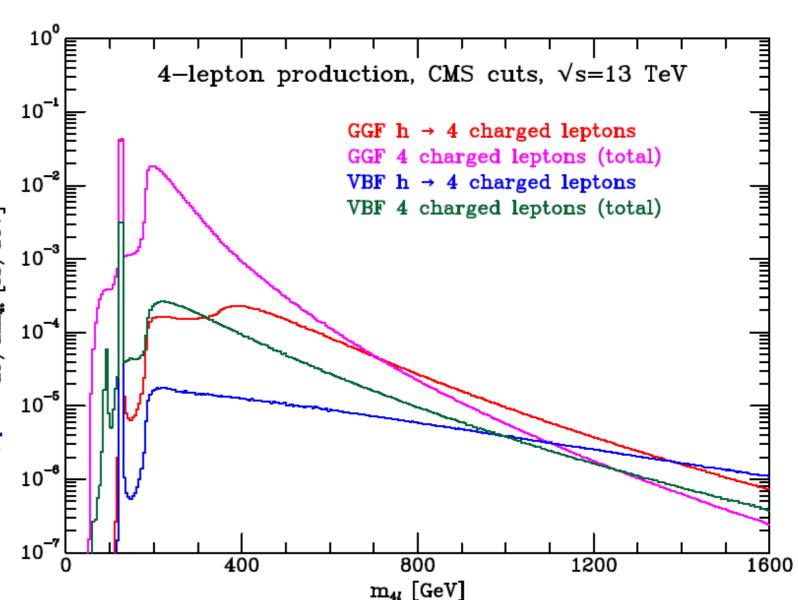
* The CM method relies on the assumption that the onshell (at m_{4l} =125 GeV) and off-shell couplings (at m_{4l} ≈400 GeV) are the same. Englert et al, 1410.5440,1405.0285

Cacciapaglia et al, 1406.1757 Azatov et al, 1406.6338 Gaines et al, 1403.4951


- * K-factor of interference of background and signal only approximately known. Melnikov, 1503.0127,Li et al, 1504.02388
- * We will therefore investigate the same method in VBF Higgs production which has a different theoretical "systematic".
- * VBF starts at tree graph level.

Every cloud has a silver lining.

- In the standard model the off-shell Higgs cross section shows sensitivity to the top quark running in the loop.
- * Off shell cross section (similar to large pt cross section) provides a window on constituents (or effective operators) contributing to the Higgs production.


$$\mathcal{L} = -c_t \frac{m_t}{v} \bar{t}th + \frac{g_s^2}{48\pi^2} c_g \frac{h}{v} G_{\mu\nu} G^{\mu\nu},$$

 Constraint on dimension six operators with 3 ab⁻¹ Azatov et al, 1406.6338

Gluon-gluon fusion vs Vector boson fusion

- * (pp \rightarrow e⁻e⁺ μ ⁻ μ ⁺) vs (pp \rightarrow jet+jet+e⁻e⁺ μ ⁻ μ ⁺ with VBF cuts)
- * EW cross section for Higgs ~10% of gg fusion.
- Higgs tail relatively more important in pp → jet+jet+e⁻e⁺μ⁻μ⁺
- * Different slope for VBF Higgs tail (E² vs E).

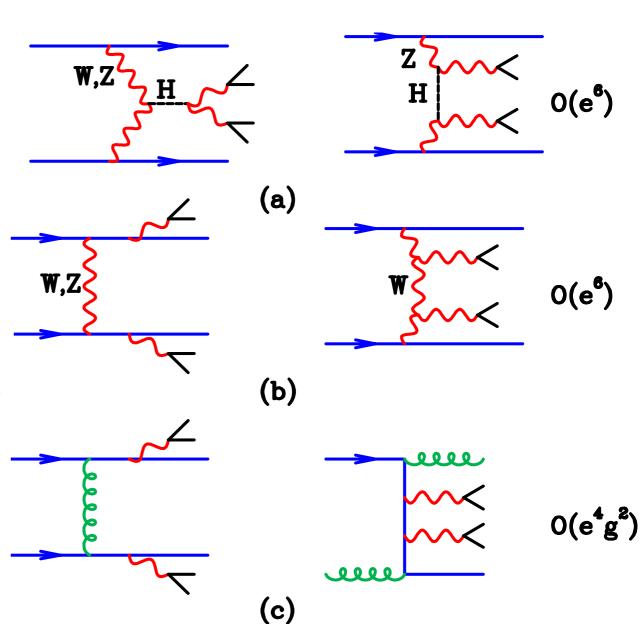
Diagrams for pp → jet+jet+e⁻e+µ⁻µ+

* Off-shell behaviour for VBF, subject of much theoretical study.

* Jet cuts

 $p_{T,J} > 20 \text{ GeV}, |\eta_J| < 4.5, R = 0.4.$

* CMS lepton cuts

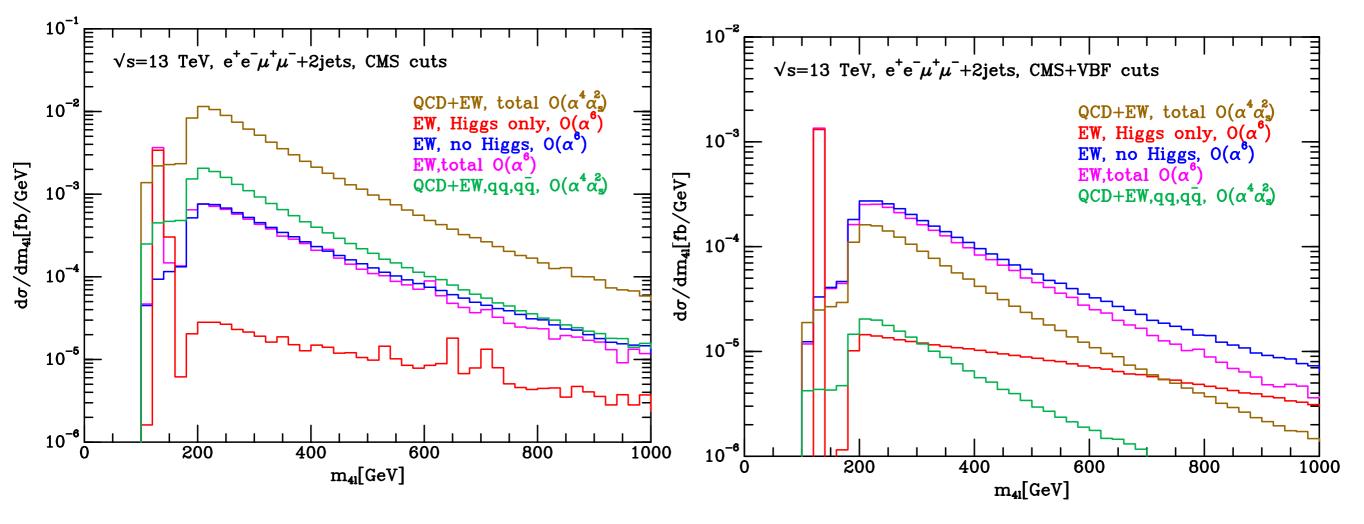

 $p_{T,\ell} > 20 \text{ GeV}$, $|\eta_\ell| < 2.5$, $m_{ll} > 10 \text{ GeV}$, for all charged lepton combinations.

 $E_T > 40 \text{ GeV}$.

Additional VBF cuts

 $y_{gap} > 2.5$, $\eta_1 \times \eta_2 < 0$, $m_{j_1 j_2} > 500$ GeV.

$$\eta_J^{min} < \eta_\ell < \eta_J^{max}$$
 .



Shorthand notation, WW,WZ,ZZ

- Processes referred to as W-W+,W±W±,W±Z,ZZ
- * This is a short-hand for all doubly-resonant, singly-resonant and non-resonant contributions that lead to the same four lepton final state.
- * e.g. the doubly resonant processes are:-

VBF cuts @ 13 TeV

- * Run II will give us access to VBF
- * For ZZ, VBF cuts reduce the strong $O(\alpha^4 \alpha_s^2)$ background, but $gq \rightarrow gq e^-e^+\mu^-\mu^+$ still significant.
- This same statement holds for W+W-,W±Z

Rates for signal and background

Signal, O(α⁶)

Factor takes into account sum over e, μ and v_e, v_μ, v_τ

Background, $O(\alpha^4\alpha_s^2)$

Process	Nominal	Cut	σ [fb]	Factor	Events	
	process		$O(lpha^6)$		in 100 fb^{-1}	\ \ / + \ \ / +
$pp \rightarrow e^- \mu^+ \nu_\mu \bar{\nu}_e jj$	W^-W^+	$m_T^{WW} > 300 \text{ GeV}$	0.2378	x4	95	W+W+
$pp \rightarrow \nu_e e^+ \nu_\mu \mu^+ jj$	W^+W^+	$m_T^{WW} > 300 \text{ GeV}$	0.1358	x2	27	
$pp \rightarrow e^- \bar{\nu_e} \mu^- \bar{\nu_\mu} jj$	W^-W^-	$m_T^{WW} > 300 \text{ GeV}$	0.0440	x2	9	
$pp \rightarrow \nu_e e^+ \mu^- \mu^+ \mu^+ jj$	W^+Z	$m_T^{WZ} > 300 \text{ GeV}$	0.0492	x4	20	
$pp \rightarrow e^- \bar{\nu_e} \mu^- \mu^+ jj$	W^-Z	$m_T^{WZ} > 300 \text{ GeV}$	0.0242	x4	10	
$pp \rightarrow l^- l^+ \nu_l \bar{\nu}_l jj$	ZZ	$m_T^{ZZ} > 300 \text{ GeV}$	0.0225	x6	14	
$pp \to l^- l^+ \nu_l \bar{\nu}_l jj$	ZZ	$m_T^{WW} > 300 \text{ GeV}$	0.0181	x6	11	
$pp \rightarrow e^-e^+\mu^-\mu^+jj$	ZZ	$m_{4l} > 300 \text{ GeV}$	0.0218	x2	4	

Table 3. Electroweak $(\mathcal{O}(\alpha^6))$ cross sections at $\sqrt{s} = 13$ TeV, under the cuts given in Eqs. (2.2)–(2.6) and the off-shell definition specified in the table. The factor gives the approximate number by which the result shown for specific lepton flavours must be multiplied to account for two flavours of charged leptons, e, μ and three flavours of neutral leptons, ν_e, ν_μ, ν_τ .

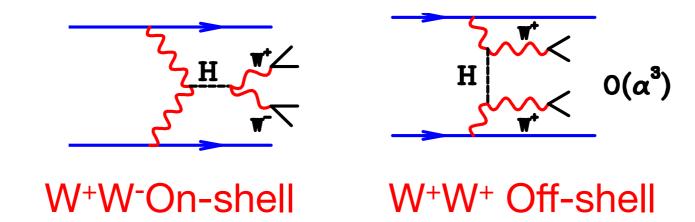
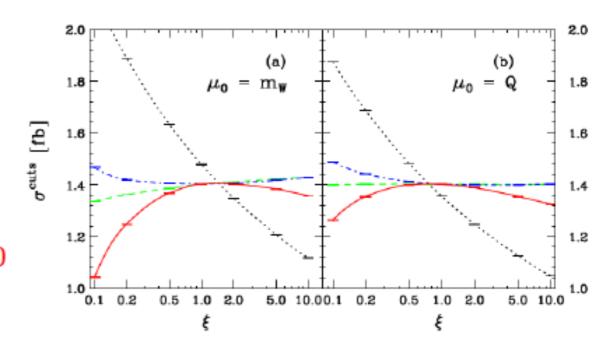

						/OF 1 events
Process	Nominal	Cut	σ [fb]	Factor	Events	254 events
	process		$O(\alpha^4 \alpha_s^2)$		in 100 fb^{-1}	
$pp \to e^- \mu^+ \nu_\mu \bar{\nu}_e jj$	W^-W^+	$m_T^{WW} > 300 \text{ GeV}$	0.2227	x4	89	
$pp \to \nu_e e^+ \nu_\mu \mu^+ jj$	W^+W^+	$m_T^{WW} > 300 \text{ GeV}$	0.0079	x2	2	
$pp \rightarrow e^- \bar{\nu_e} \mu^- \bar{\nu_\mu} jj$	W^-W^-	$m_T^{WW} > 300 \text{ GeV}$	0.0025	x2	0	
$pp \rightarrow \nu_e e^+ \mu^- \mu^+ \mu^+ jj$	W^+Z	$m_T^{WZ} > 300 \text{ GeV}$	0.0916	x4	37	
$pp \rightarrow e^- \bar{\nu_e} \mu^- \mu^+ jj$	W^-Z	$m_T^{WZ} > 300 \text{ GeV}$	0.0454	x4	18	W+W+
$pp \rightarrow l^- l^+ \nu_l \bar{\nu}_l j j$	ZZ	$m_T^{ZZ} > 300 \text{ GeV}$	0.0143	x6	9	
$pp \rightarrow l^- l^+ \nu_l \bar{\nu}_l j j$	ZZ	$m_T^{WW} > 300 \text{ GeV}$	0.0118	x6	7	
$pp \rightarrow e^- e^+ \mu^- \mu^+ jj$	ZZ	$m_{4l} > 300 \text{ GeV}$	0.0147	x2	3	

Table 4. Mixed QCD-electroweak $(\mathcal{O}(\alpha^4 \alpha_s^2))$ cross sections at $\sqrt{s} = 13$ TeV, under the cuts given in Eqs. (2.2)–(2.6) and the off-shell definition specified in the table.

Ignore other sources of background, W+jet, QCD.....

c.f. ttbar

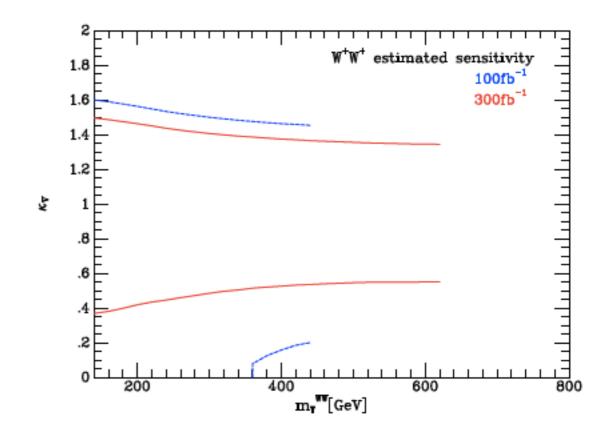
Most useful channel is W+W- vs W+W+


- * In the first instance, we work in the effective coupling framework, where standard couplings are rescaled by κ_{\lor} .
- * At $\sqrt{s}=8$ TeV, SM prediction displays a dependence on κ_{V}

$$\sigma_{fiducial}^{same-sign} = 1.015 - 0.106 \,\kappa_V^2 + 0.040 \,\kappa_V^4 \,\, \text{fb} \,\, .$$

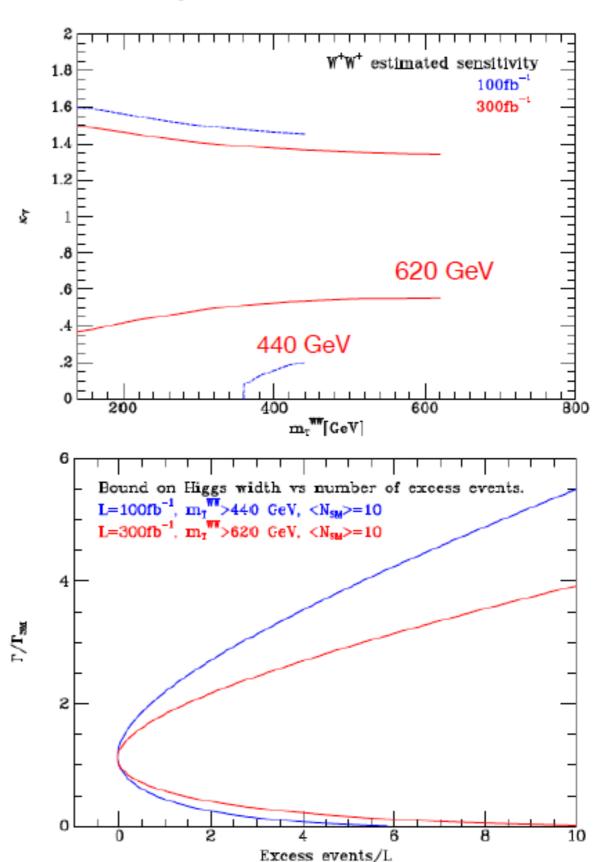
- * ATLAS on-shell signal-strength $\mu_{VBF}^{ATLAS} = 1.27^{+0.53}_{-0.45}$
- * ATLAS W+W+ measurement $\sigma^{measured} = 1.3 \pm 0.4(stat) \pm 0.2(syst) \, \mathrm{fb}$.
- * Bound is $\kappa_V < 7.8$.
- * Current notional width bound $\Gamma_H < 60.8 \times \Gamma_H^{SM}$.

W+W+ at NLO


- NLO Corrections are known to both the O(α⁶) and O(α⁴α_s²) processes.
- NLO corrections to O(α⁶)
 process are small. Jäger et, 0907.0580
- NLO Corrections to the O(α⁴α_s²) processes are <20% with VBF cuts.
- Interference between the two (at LO) is small (<3% for tight VBF cuts)
- * NLO corrections are completely known, unlike ggfusion case, where there are partial results.

Melia et al, 1007.5313, Campanario et al, 1311.6738

Limits from runs 2 and 3


- * Perform a simple analysis to determine optimal cut m_{cut} to isolate the off-shell tail.
- * Define a statistical uncertainty δ=√N. What values of κ_V can be excluded at 95% c.l. by an observation of N+2δ events?
- In all cases ensure that cut corresponds to a SM prediction of at least 10 events.
- Only W+W+ provides a lower bound.

- * For 100fb⁻¹ at =440GeV we find 0.20< κ_{V} <1.45
- * For 300fb⁻¹ the best lower limit corresponds to saturating the 10 event limit at m_{cut} =620GeV and we find 0.55< κ_{v} <1.3

Improvement with 100, 300fb⁻¹ at √s=13TeV

- Expected upper and lower bounds on Ky obtained from W+W+ events as a function of the transverse mass.
- Bounds are cut off when SM prediction falls below 10 events.
- In all cases the best bounds are achieved, taking the highest possible cut on the transverse mass.
- Possible width bounds with (100, 300fb⁻¹) are similar to those currently obtained from gg fusion (20fb⁻¹).

Suitability of effective operator formalism.

 First consider interim framework with (same) rescaled SM Higgs couplings to W and Z

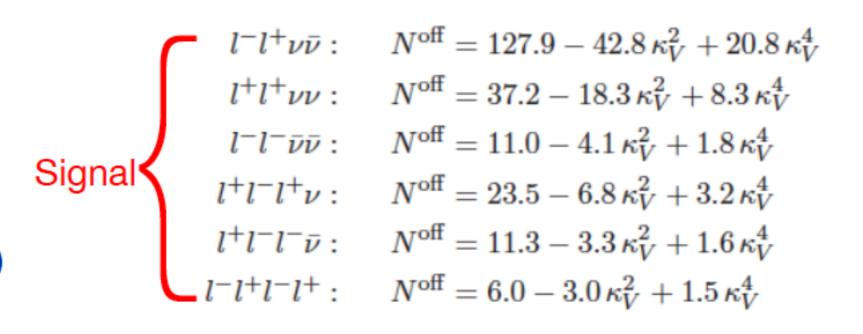
$$\frac{\Gamma_{WW}}{\Gamma_{WW}^{SM}} = \kappa_V^2, \quad \frac{\Gamma_{ZZ}}{\Gamma_{ZZ}^{SM}} = \kappa_V^2.$$

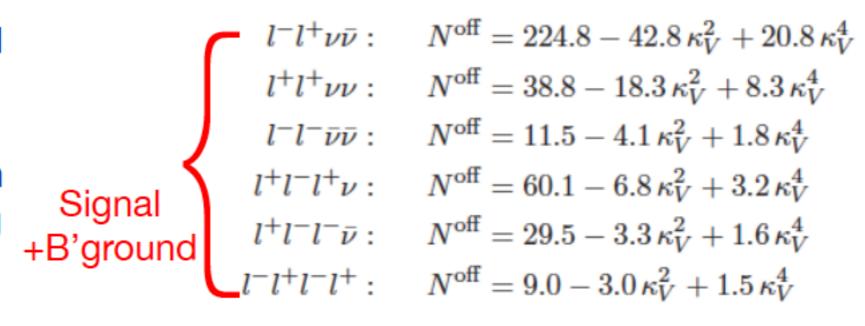
* We now also consider a higher dimension operator formalism, e.g.

$$\mathcal{L}_{HD} = F_{HD} \operatorname{tr} \left[\mathbf{H}^{\dagger} \mathbf{H} - \frac{v^2}{4} \right] \cdot \operatorname{tr} \left[(\mathbf{D}_{\mu} \mathbf{H})^{\dagger} (\mathbf{D}^{\mu} \mathbf{H}) \right]$$

With operator we find Feynman rules

$$hW_{\mu}^{+}W_{\nu}^{-}: igM_{W}g_{\mu\nu}\frac{v^{2}F_{HD}}{2},$$

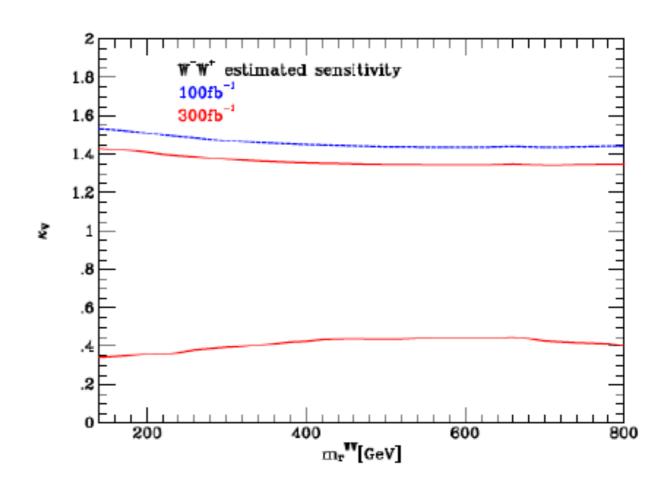

$$hZ_{\mu}Z_{\nu}: ig\frac{M_{W}}{\cos^{2}\theta_{W}}g_{\mu\nu}\frac{v^{2}F_{HD}}{2}$$


$$\kappa_{V} = 1 + F_{HD}\frac{v^{2}}{2}$$

- * To probe scales higher than 1TeV will require sensitivity to κ_V at the 3% level.
- * Premature to consider operator formalism.

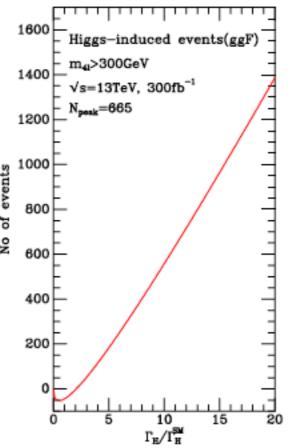
Effective coupling dependence of other processes

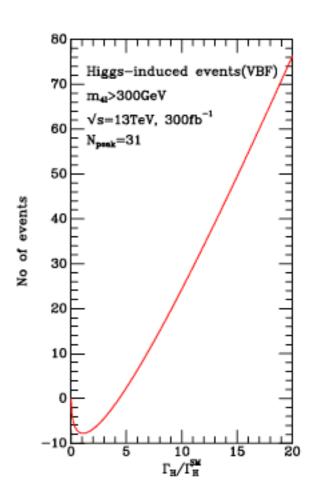
- * √s=13TeV
- * Note that numbers are not so different for $\kappa_V = 0$ (no Higgs) and $\kappa_V = 1$ (SM).
- For this energy and luminosity we cannot place the cut sufficiently high that non-cancelling terms dominate.



With cut on invariant mass/transverse mass

Bounds from on κ_V from W-W+ at $\sqrt{s}=13\text{TeV}$


- With a bigger data set 300fb⁻¹ we can also obtain lower bounds from the W-W+ process.
- * Tradeoff between decreasing statistics and increasing sensitivity.



$$0.45 < \kappa_V < 1.35$$
, $W^-W^+ (m_T^{WW} > 660 \text{ GeV})$.

Bounds on the Higgs width

- Best VBF bounds on the Higgs width come from the W+W+ channel.
- * NLO corrections completely known for this channel.
- VBF has a similar dependence as ggF on ratio of widths.
- Rate is for VBF is ~21 times smaller than for ggF, but rate is insensitive to Γ_H, exactly for Γ_H~1

Summary

- OpenMP leads to significant improvement in performance for MCFM. (MPI/quadruple precision will also be available soon).
- Measurement of off-shell couplings of the Higgs boson is of great interest.
- In view of large backgrounds in VBF processes, useful to consider W+W+ process for off-shell coupling measurement.
- W+W+ channel will achieve similar sensitivity to current gluon fusion results with 300fb⁻¹.
- * Assuming off-shell and on-shell couplings are the same, this measurement can be used to bound the Higgs boson width using VBF.
- This measurement is of great interest because of different theoretical "systematics" than gluon fusion.