

Higgs boson interactions with the Yukawa sector from ATLAS

Heather M. Gray, CERN on behalf of the ATLAS Collaboration

Introduction

• Tree-level terms in the SM Lagrangian for the SM $J^{PC}= 0^{++}$ Higgs

Higgs Decays to Fermions with ATLAS in Run-1

Decay Channel	Branching Ratio	ATLAS Run-1 µ
bb*	57.5 ± 1.9	0.6±0.4 ²
WW	21.6 ± 0.9	
gg	8.56 ± 0.86	
Ц	6.3 ± 0.36	1.4±0.4
CC	2.9 ± 0.35	
ZZ	2.67 ± 0.11	
γγ	0.228 ± 0.011	
Zγ	0.155 ± 0.014	
μμ	0.022 ± 0.001	0.7±3.6
J/ψγ	(2.8 ±0.2)x 10 ⁻⁴	< O(1000) x SM

ttH results not discussed here: see Valerio Dao's talk tomorrow morning ¹Tevatron: σ (VH(bb) = 0.19 ± 0.09 pb ²Includes ttH ³Includes WW

- 3 channels (lep-lep, lep-had, had-had)
- Two categories (VBF, boost)
- Main challenges are mass resolution, triggering (had-had) and controlling the Z->ττ and multijet backgrounds

 Associated production with a b vector boson 4

- 3 channels (0, 1, 2-lepton)
- Categories in p^V, number of jets and b-tag purity
- Challenges include mass resolution and ttbar, V+jets and multijet backgrounds
- Two oppositely charged μ muons, p_T > 25, 15 GeV, E_T^{miss} < 80 GeV
- 1 channel
- 7 categories
- Challenges include small branching ratio and control of the Z background

See Daniel Büscher's talk on VH(bb) on Wednesday afternoon

Categories

- Most LHC Higgs analyses use categories to improve sensitivity
- Main strategy is to separate events with different significance ~S/√B

 $\sqrt{\frac{S_1^2}{B_1} + \frac{S_2^2}{B_2}} >> \frac{S_1 + S_2}{\sqrt{B_1 + B_2}}$

- Differences can depend on resolution, background type or size, signal production mechanism or systematic uncertainties
- μ,τ: 7 categories
- b: 38 categories

µµ categories

\sqrt{s} [TeV]	Category	Ns	$\frac{N_{\rm S}}{\sqrt{N_{\rm B}}}$	FWHM [GeV]	$\chi^2/ndof$
8	non-cen. low $p_{\mathrm{T}}^{\mu^+\mu^-}$	6.1	0.07	6.6	49.8/48
8	cen. low $p_{\mathrm{T}}^{\mu^+\mu^-}$	2.6	0.06	5.5	52.8/48
8	non-cen. medium $p_{ m T}^{\mu^+\mu^-}$	10.4	0.15	6.6	45.1/48
8	cen. medium $p_{\rm T}^{\mu^+\mu^-}$	4.7	0.13	5.6	36.7/48
8	non-cen. high $p_{\rm T}^{\mu^+\mu^-}$	5.5	0.13	7.2	26.7/48
8	cen. high $p_{\rm T}^{\mu^+\mu^-}$	2.6	0.10	6.0	32.3/48
8	VBF	0.8	0.09	7.0	18.6/19
7	non-cen. low $p_{\mathrm{T}}^{\mu^+\mu^-}$	1.0	0.03	6.8	42.0/48
7	cen. low $p_{\mathrm{T}}^{\mu^+\mu^-}$	0.5	0.03	5.3	43.5/48
7	non-cen. medium $p_{ m T}^{\mu^+\mu^-}$	1.8	0.06	6.9	41.2/48
7	cen. medium $p_{\rm T}^{\mu^+\mu^-}$	0.8	0.05	5.5	34.4/48
7	non-cen. high $p_{\rm T}^{\mu^+\mu^-}$	0.9	0.05	7.5	60.0/48
7	cen. high $p_{\rm T}^{\mu^+\mu^-}$	0.5	0.05	5.9	56.2/48

b tagging categories

bb Categories

- 1

Data 2012

Single to Multijet

VH(bb) (µ=1.0)

60

50

ATLAS

√s = 8 TeV ∫Ldt = 20.3 fb⁻ 1 *lep., 2 jets, 1 tag*

Signal Extraction

Key discriminating quality of the Higgs is

BDT Variables

bb Variables

ττ Variables

Variable	0-Lepton	1-Lepton	2-Lepton
p_{T}^{V}		×	×
$E_{\mathrm{T}}^{\mathrm{miss}}$	×	×	×
$p_{\mathrm{T}}^{b_1}$	×	×	×
$p_{\mathrm{T}}^{b_2}$	×	×	×
m_{bb}	×	×	×
$\Delta R(b_1, b_2)$	×	×	×
$ \Delta\eta(b_1,b_2) $	×		×
$\Delta \phi(V,bb)$	×	×	×
$ \Delta\eta(V,bb) $			×
H_{T}	×		
$\min[\Delta \phi(\ell,b)]$		×	
m_{T}^{W}		×	
$m_{\ell\ell}$			×
$MV1c(b_1)$	×	×	×
$MV1c(b_2)$	×	×	×
	Only	y in 3-jet ev	rents
$p_{\mathrm{T}}^{\mathrm{jet}_3}$	×	×	Х
m_{bbj}	×	×	×

Variable	VBF			Boosted		
Variable	$ au_{ m lep} au_{ m lep}$	$\tau_{\rm lep} \tau_{\rm had}$	$ au_{ m had} au_{ m had}$	$ au_{ m lep} au_{ m lep}$	$\tau_{\rm lep} \tau_{\rm had}$	$ au_{ m had} au_{ m had}$
$m_{ au au}^{ m MMC}$	•	•	•	•	•	•
$\Delta R(\tau_1, \tau_2)$	•	•	•		•	•
$\Delta \eta(j_1, j_2)$	•	•	•			
m_{j_1, j_2}	•	•	•			
$\eta_{j_1} \times \eta_{j_2}$		•	•			
$p_{\mathrm{T}}^{\mathrm{Total}}$		•	•			
Sum $p_{\rm T}$					•	•
$p_{\mathrm{T}}^{ au_{1}}/p_{\mathrm{T}}^{ au_{2}}$					•	•
$E_{\rm T}^{\rm miss}\phi$ centrality		•	•	•	•	•
m_{ℓ,ℓ,j_1}				•		
m_{ℓ_1,ℓ_2}				•		
$\Delta\phi(\ell_1,\ell_2)$				•		
Sphericity				•		
$p_{\mathrm{T}}^{\ell_1}$				•		
$p_{\mathrm{T}}^{j_1}$				•		
$E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}^{\ell_2}$				•		
m _T		•			•	
$\min(\Delta \eta_{\ell_1 \ell_2, \text{jets}})$	•					
$\boxed{C_{\eta_1,\eta_2}(\eta_{\ell_1}) \cdot C_{\eta_1,\eta_2}(\eta_{\ell_2})}$	•					
$C_{\eta_1,\eta_2}(\eta_\ell)$		•				
$C_{\eta_1,\eta_2}(\eta_{j_3})$	•					
$C_{\eta_1,\eta_2}(\eta_{\tau_1})$			•			
$C_{\eta_1,\eta_2}(\eta_{\tau_2})$			•			

tagging

9

energy (p_T , MET, H_T)

angular ($\Delta R, \Delta \phi$)

BDT Variables

_∐ _0 5

(c)

3

 4 5 $\Delta R(b_1,b_2)$

10

Mass Resolution

- σ: 2.3 GeV (μ), 11 GeV (b), ~19 GeV (τ)
- Improving reconstructed mass resolution improves sensitivity
- b-jets: hadronic jet resolution
 - energy from muons from semi-leptonic decays
 +30%
 - kinematic fit
- τ: resolution lost due to neutrinos
 - Leptonic: dominated by two neutrinos, but otherwise clean
 - Hadronic: calorimeter clusters
- Missing MMC calculator to solve for under constrained neutrino momenta

Backgrounds

- Similar problem:all three analyses have a difficult irreducible background from events with identical final state but with the Z-boson instead of the Higgs
 - Dominant background for µµ
- Different strategies to control backgrounds adopted in each analysis
 - MC-based partially constrained by data
 - Extracted from data with embedding
- bb: also backgrounds from V+jets and top
- Jet faking lepton backgrounds are extracted from data as typically poorly modelled in MC
 - Important both for 1-lepton bb and lep-had and had-had ττ

Embedding: controlling the $Z \rightarrow \tau \tau$ background

Precisely estimate the Z→TT background from data via embedding

More details in Jessica Liebal's talk on Wednesday afternoon

Multijet estimates

- lep-had: fake factor method
 - Medium/Loose not Medium
 - f(p_T, q/g, 1/3-track)
 - W+jets validation region
- had-had: template fit
 - Reverse isolation and require same-sign charge/other track multiplicity
 - Fit $\Delta \eta (\tau_{had} \tau_{had})$
- O-lepton: ABCD method
- 1-lepton: template fit
 - Loosen isolation and tag and reweight

• Fit E_Tmiss

14

bb Backgrounds

- bb: ~30% stat, ~25% syst
 - Systematics on backgrounds are already starting to play a key role in the analysis
- Many techniques used to estimate and validate backgrounds
 - Categories with different tightness of tagging requirements to control the V +jets backgrounds
 - Cross channel fit to use 1-lepton and 2-lepton channels to constrain backgrounds in 0lepton
 - Cross-check by extracting the diboson signal

0.1

ATLAS

Systematic Uncertainties

Source of Uncertainty	Uncertainty on μ
Signal region statistics (data)	$+0.27 \\ -0.26$
Jet energy scale	± 0.13
Tau energy scale	± 0.07 L
Tau identification	± 0.06
Background normalisation	± 0.12
Background estimate stat.	± 0.10
BR $(H \to \tau \tau)$	± 0.08
Parton shower/Underlying event	± 0.04
PDF	± 0.03
Total sys.	$+0.33 \\ -0.26$
Total	$+0.43 \\ -0.37$

Source (experimental)	Uncertainty (%)
Luminosity	± 1.8 (7 TeV), ± 2.8 (8 TeV)
Muon efficiency	± 1
Muon momentum res.	±1 •
Muon trigger	± 1.5
Muon isolation	±1.1
Pile-up reweighting	± 1
Jet energy scale	+3.4 -4.5 (VBF)
Source (theory)	Uncertainty (%)
Higgs boson branching ratio	±7
QCD scale	± 8 (ggF), ± 1 (VBF, VH)
PDFs + α_s	± 8 (ggF), ± 4 (VBF, VH)
ggF uncert. in VBF	± 22
Multi-parton inter. in VBF	\pm 9 (ggF), \pm 4 (VBF)

Signal	
Cross section (scale)	$1\%~(q\overline{q}),~50\%~(gg)$
Cross section (PDF)	$2.4\%~(q\overline{q}),~17\%~(gg)$
Branching ratio	3.3~%
Acceptance (scale)	1.5% – 3.3%
3-jet acceptance (scale)	3.3% - 4.2%
$p_{\rm T}^V$ shape (scale)	S
Acceptance (PDF)	2%– $5%$
$p_{\rm T}^V$ shape (NLO EW correction)	S
Acceptance (parton shower)	8%–1 $3%$
Z+jets	
Zl normalisation, 3/2-jet ratio	5%
Zcl 3/2-jet ratio	26%
Z+hf 3/2-jet ratio	20%
Z + hf/Zbb ratio	12%
$\Delta \phi(\text{jet}_1, \text{jet}_2), p_{\text{T}}^V, m_{bb}$	S
W+jets	
Wl normalisation, 3/2-jet ratio	10%
Wcl, W +hf 3/2-jet ratio	10%
Wbl/Wbb ratio	35%
Wbc/Wbb, Wcc/Wbb ratio	12%
$\Delta \phi(\text{jet}_1, \text{jet}_2), p_{\mathrm{T}}^V, m_{bb}$	S
$t\bar{t}$	
3/2-jet ratio	20%
High/low- $p_{\rm T}^V$ ratio	7.5%
Top-quark $p_{\rm T}, m_{bb}, E_{\rm T}^{\rm miss}$	S
Single top)
Cross section	4% (<i>s</i> -, <i>t</i> -channel), $7%$ (<i>Wt</i>)
Acceptance (generator)	3%– $52%$
$m_{bb}, p_{\mathrm{T}}^{b_1}$	S
Diboson	
Cross section and acceptance (scale)	3%– $29%$
Cross section and acceptance (PDF)	2%– $4%$
m _{bb}	S
Multijet	
0-, 2-lepton channels normalisation	100%
1-lepton channel normalisation	2%– $60%$
Template variations, reweighting	S

Key systematics

Systematics

Results

Visualising the excess

Order bins from all categories by expected S/B to visualise signal in a single plot

Warning: A number of possible definitions for the x-axis

Visualising the excess

Or project back onto mass variables for more physical visualisation Note: need to weight events by 'significance', otherwise dominated by high statistics, low sensitivity regions Excess is visible, though not yet sufficient statistics to see shape

Conclusion

- Higgs fermionic sector is a challenging and interesting area of active research
- ATLAS Run-1 combination
 - **4.4** σ (3.3 σ exp) evidence for τ coupling
 - $>5\sigma$ in combination with CMS
 - Large part of VBF observation
 - 1.7 σ (2.7 σ exp) for **b** coupling
 - 7.0 (7.7 exp) x SM limit for μ coupling
- Run-1 has been an excellent proving ground in developing analyses in the fermionic channels
 - Higher statistics of Run-2 will only make them even more interesting

ATLAS+CMS	ATLAS+CMS	ATLAS	CMS
Measured	Expected uncertainty	Measured	Measured
$1.00_{-0.11}^{+0.10}$	$^{+0.10}_{-0.10}$	$0.98^{+0.14}_{-0.14}$	$1.04_{-0.16}^{+0.15}$
$0.91\substack{+0.09 \\ -0.09}$	$^{+0.09}_{-0.09}$	$0.91\substack{+0.12 \\ -0.13}$	$0.92\substack{+0.14 \\ -0.14}$
$0.89^{+0.15}_{-0.13}$	$^{+0.14}_{-0.13}$	$0.98\substack{+0.21 \\ -0.18}$	$0.78\substack{+0.20 \\ -0.16}$
$0.90\substack{+0.14\\-0.13}$	$^{+0.15}_{-0.14}$	$0.99\substack{+0.20 \\ -0.18}$	$0.83\substack{+0.20 \\ -0.18}$
$0.67\substack{+0.22\\-0.20}$	$^{+0.23}_{-0.22}$	$0.65\substack{+0.29 \\ -0.30}$	$0.71\substack{+0.34 \\ -0.29}$
$0.2^{+1.2}_{-0.2}$	$+0.9 \\ -1.0$	$0.0^{+1.4}$	$0.5^{+1.4}_{-0.5}$
	$\begin{array}{c} \text{ATLAS+CMS} \\ \hline \text{Measured} \\ 1.00^{+0.10}_{-0.11} \\ 0.91^{+0.09}_{-0.09} \\ 0.89^{+0.15}_{-0.13} \\ 0.90^{+0.14}_{-0.13} \\ 0.67^{+0.22}_{-0.20} \\ 0.2^{+1.2}_{-0.2} \end{array}$	$\begin{array}{rl} \mbox{ATLAS+CMS} & \mbox{ATLAS+CMS} \\ \hline \mbox{Measured} & \mbox{Expected uncertainty} \\ \hline 1.00^{+0.10}_{-0.11} & {}^{+0.10}_{-0.10} \\ 0.91^{+0.09}_{-0.09} & {}^{+0.09}_{-0.09} \\ 0.89^{+0.15}_{-0.13} & {}^{+0.14}_{-0.13} \\ 0.90^{+0.14}_{-0.13} & {}^{+0.15}_{-0.14} \\ 0.67^{+0.22}_{-0.20} & {}^{+0.23}_{-0.22} \\ 0.2^{+1.2}_{-0.2} & {}^{+0.9}_{-1.0} \\ \end{array}$	$\begin{array}{c cccc} \text{ATLAS+CMS} & \text{ATLAS+CMS} & \text{ATLAS} \\ \hline \text{Measured} & \text{Expected uncertainty} & \text{Measured} \\ \hline 1.00^{+0.10}_{-0.11} & \stackrel{+0.10}{-0.10} & 0.98^{+0.14}_{-0.14} \\ \hline 0.91^{+0.09}_{-0.09} & \stackrel{+0.09}{-0.09} & 0.91^{+0.12}_{-0.13} \\ \hline 0.89^{+0.15}_{-0.13} & \stackrel{+0.14}{-0.13} & 0.98^{+0.21}_{-0.18} \\ \hline 0.90^{+0.14}_{-0.13} & \stackrel{+0.15}{-0.14} & 0.99^{+0.20}_{-0.18} \\ \hline 0.67^{+0.22}_{-0.20} & \stackrel{+0.23}{-0.22} & 0.65^{+0.29}_{-0.30} \\ \hline 0.2^{+1.2}_{-0.2} & \stackrel{+0.9}{-1.0} & 0.0^{+1.4} \\ \hline \end{array}$

References

- ττ: <u>http://link.springer.com/article/10.1007/JHEP04(2015)117</u>
 - Embedding: http://arxiv.org/abs/1506.05623
- bb: http://link.springer.com/article/10.1007/JHEP01(2015)069
 - (Tevatron: Phys.Rev.D 88, 052014 (2013))
- μμ: <u>http://www.sciencedirect.com/science/article/pii/</u> S0370269314006583
- ATLAS-CMS Coupling Combination: https://atlas.web.cern.ch/Atlas/
 https://atlas.web.cern.ch/Atlas/

Backup

μμ

Table 1

Number of expected signal events for $m_H = 125$ GeV, number of expected background events predicted by the MC simulation, and number of observed data events within a window of $|m_H - m_{\mu^+\mu^-}| \le 2.5$ GeV after all selection criteria are applied. Only statistical uncertainties are given. The theoretical systematic uncertainty on the dominant Z/γ^* background is about 4%. The MC background yields are given to illustrate the expected background composition.

	7 TeV	8 TeV
Signal (125 GeV)	5.6 ± 0.1	32.7 ± 0.2
Z/γ^*	3110 ± 40	16660 ± 270
$WZ/ZZ/W\gamma$	2.2 ± 0.2	12.3 ± 0.7
tĪ	75.6 ± 1.8	509.2 ± 2.7
WW	23.2 ± 0.5	123.3 ± 1.6
Single top	7.2 ± 0.9	54.5 ± 0.6
W + jets	3.2 ± 1.5	38 ± 4
Total Bkg.	3220 ± 40	17390 ± 270
Observed	3344	17745

bb

Process	Generator
$Signal^{(\star)}$	
$q\overline{q} \rightarrow ZH \rightarrow \nu\nu bb/\ell\ell bb$	PYTHIA8
$gg ightarrow ZH ightarrow u u bb/\ell\ell bb$	POWHEG+PYTHIA8
$q\overline{q} \to WH \to \ell \nu bb$	PYTHIA8
Vector boson $+$ jets	
$W \to \ell \nu$	Sherpa 1.4.1
$Z/\gamma * o \ell \ell$	Sherpa 1.4.1
Z ightarrow u u	Sherpa 1.4.1
Top-quark	
$tar{t}$	POWHEG+PYTHIA
<i>t</i> -channel	AcerMC+pythia
s-channel	POWHEG+PYTHIA
Wt	POWHEG+PYTHIA
$Diboson^{(\star)}$	POWHEG+PYTHIA8
WW	POWHEG+PYTHIA8
WZ	POWHEG+PYTHIA8
ZZ	POWHEG+PYTHIA8

Table 1. The generators used for the simulation of the signal and background processes. (*) For the analysis of the 7 TeV data, PYTHIA8 is used for the simulation of the $gg \rightarrow ZH$ process, and HERWIG for the simulation of diboson processes.

VH(bb) Selection Cuts

Variable		Dijet-mass analysis				Multiv	ariate analysis
Common selection							
$p_{\mathrm{T}}^{V} \; [\mathrm{GeV}]$	0–90	$90^{(*)}$ -120	120-160	160-200	> 200	0–120	> 120
$\Delta R(\mathrm{jet}_1,\mathrm{jet}_2)$	0.7 - 3.4	0.7 – 3.0	0.7 – 2.3	0.7 – 1.8	< 1.4	> 0.7 ($p_{\mathrm{T}}^V < 200 \text{ GeV}$
		0-lept	on selection	on			
$p_{\rm T}^{\rm miss} [{ m GeV}]$		> 30		> 30			> 30
$\Delta \phi(\boldsymbol{E_{\mathrm{T}}^{\mathrm{miss}}},\boldsymbol{p_{\mathrm{T}}^{\mathrm{miss}}})$		$<\pi/2$		$<\pi/2$		NU	$<\pi/2$
$\min[\Delta \phi(\boldsymbol{E_{T}^{miss}}, jet)]$	NIT	—		> 1.5			> 1.5
$\Delta \phi(\boldsymbol{E_{T}^{miss}}, dijet)$	NU	> 2.2		> 2.8			_
$\sum_{i=1}^{N_{\text{jet}}=2(3)} p_{\text{T}}^{\text{jet}_i} \text{ [GeV]}$		> 120 (NU)	>	120(150)			> 120 (150)
		1-lept	on selection	on			
$m_{\mathrm{T}}^{W} \; [\mathrm{GeV}]$		<	< 120				_
$H_{\rm T} \ [{ m GeV}]$		> 180		_		> 180	_
$E_{\rm T}^{\rm miss}$ [GeV]		- > 20 > 50		_	> 20		
2-lepton selection							
$m_{\ell\ell} \ [{ m GeV}]$		83-99				71-121	
$E_{\rm T}^{\rm miss}$ [GeV]		< 60					_

$m_H = 125 \mathrm{GeV} \mathrm{at} \sqrt{s} = 8 \mathrm{TeV}$							
Process	Cross section V DD [fb]	Acceptance [%]					
1 100005	$CIOSS SECTION \times DIV [ID]$	0-lepton	1-lepton	2-lepton			
$q\overline{q} \to (Z \to \ell\ell)(H \to b\overline{b})$	14.9	—	1.3(1.1)	13.4(10.9)			
$gg \to (Z \to \ell \ell)(H \to b\overline{b})$	1.3	—	0.9(0.7)	$10.5 \ (8.1)$			
$q\overline{q} \to (W \to \ell\nu)(H \to b\overline{b})$	131.7	0.3~(0.3)	4.2(3.7)	—			
$q\overline{q} \to (Z \to \nu\nu)(H \to b\overline{b})$	44.2	4.0(3.8)	—	_			
$gg \to (Z \to \nu \nu)(H \to b\overline{b})$	3.8	5.5(5.0)	—	—			

Table 3. The cross section times branching ratio (BR) and acceptance for the three channels at 8 TeV. For ZH, the $q\bar{q}$ - and gg-initiated processes are shown separately. The branching ratios are calculated considering only decays to muons and electrons for $Z \to \ell \ell$, decays to all three lepton flavours for $W \to \ell \nu$ and decays to neutrinos for $Z \to \nu \nu$. The acceptance is calculated as the fraction of events remaining in the combined 2-tag signal regions of the MVA (dijet-mass analysis) after the full event selection.

VH(bb) Transformation

(c)

(d)

31

d Reweighting

(a)

0-, 2-lepton BDT Signal Region Distributions

34

(a)

Events / 0.22

Data/Pred

10⁵

10⁴

10³

(b)

(c)

1-lepton BDT Signal Region Distributions

(c)

(d)

b-tagging Output

36

		Dije	t-mass ana	lysis	MVA			
Channel		0-lepton 1-lepton 2-lepton			0-lepton	1-lepton	2-lepton	
	1-tag		MV1c		MV1c			
LL			m_{bb}		$BDT^{(*)}$	BI	TC	
MM	2-tag	m_{bb}			BDT(*)	BDT	ВDТ	
TT			m_{bb}			BDT		

37

VZ BDT distributions

7 TeV Final Distributions

39

best fit $\mu = \sigma / \sigma_{SM}$ for $m_{H} = 125 \text{ GeV}$

VH(bb) Results

(a)

(b)

VH(bb) Bin Content

Process	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5	Bin 6	Bin 7	Bin 8	Bin 9
Data	368550	141166	111865	20740	5538	2245	382	41	4
Signal	29	43	96	57	58	62	32	10.7	2.3
Background	368802	140846	111831	20722	5467	2189	364	37.9	3.4
S/B	8×10^{-5}	0.0003	0.0009	0.003	0.01	0.03	0.09	0.3	0.7
W+hf	14584	10626	15297	1948	618	250	45	8.2	0.7
Wcl	96282	30184	15227	1286	239	47	4.2	0.2	0.005
Wl	125676	14961	3722	588	107	16	1.3	0.03	0.001
Z + hf	10758	14167	21684	7458	1178	577	130	14.8	2.2
Zcl	13876	11048	4419	941	61	22	2.1	0.1	0.008
Zl	49750	18061	3044	537	48	15	1	0.05	0.004
$t\overline{t}$	30539	24824	26729	5595	2238	922	137	10	0.3
Single top	10356	9492	14279	1494	688	252	31	2.7	0.1
Diboson	4378	1831	1247	474	186	62	9.7	1	0.2
Multijet	12603	5650	6184	400	103	26	3	0.9	0

ττ

[Simpl(m) - 125 CoV]	MC concretor	$\sigma \times \mathcal{B}$ [pb]				
Signal $(m_H = 125 \text{ GeV})$	MC generator	$\sqrt{s} = 8$	$\sqrt{s} = 8$ TeV			
ggF, $H \to \tau \tau$	Powheg [42–45]	1.22	NNLO+NNLL	[48-53, 84]		
	+ Pythia8 [46]					
VBF, $H \to \tau \tau$	Powheg $+$ Pythia8	0.100	(N)NLO	[57-59, 84]		
$WH, H \to \tau \tau$	Pythia8	0.0445	NNLO	[62, 84]		
$ZH, H \to \tau \tau$	Pythia8	0.0262	NNLO	[62, 84]		
Beelveround	MC concretor	$\sigma \times \mathcal{B}$ [r	ob]			
Dackground	MC generator	$\sqrt{s} = 8$	TeV			
$W(\rightarrow \ell \nu), \ (\ell = e, \mu, \tau)$	Alpgen [77]+Pythia8	36800	NNLO	[85, 86]		
$Z/\gamma^*(\to \ell\ell),$	$\Lambda_{\rm LDCEN} + {\rm Dytue} 8$	3010	NNI O	[85 86]		
$60 \text{ GeV} < m_{\ell\ell} < 2 \text{ TeV}$	ALFGENŢI IIHIAO	0910	ININLO	[00, 00]		
$Z/\gamma^*(\to \ell\ell),$	ALDCEN HEDWIG [87]	13000	NNI O	[85 86]		
$10 \text{ GeV} < m_{\ell\ell} < 60 \text{ GeV}$	ALFGENTILERWIG [07]	13000	ININLO	[00, 00]		
VBF $Z/\gamma^*(\to \ell\ell)$	Sherpa [88]	1.1	LO	[88]		
$t\bar{t}$	Powheg $+$ Pythia8	253^{\dagger}	NNLO+NNLL	[89-94]		
Single top : Wt	Powheg $+$ Pythia8	22^{\dagger}	NNLO	[95]		
Single top : s -channel	Powheg $+$ Pythia8	5.6^{\dagger}	NNLO	[96]		
Single top : t -channel	AcerMC [80]+Pythia6 [73]	87.8†	NNLO	[97]		
$q\bar{q} \rightarrow WW$	Alpgen+Herwig	54^{\dagger}	NLO	[98]		
$gg \rightarrow WW$	GG2WW [79]+Herwig	1.4 [†]	NLO	[79]		
WZ, ZZ	Herwig	30 [†]	NLO	[98]		
$H \to WW$	same as for $H \to \tau \tau$ signal	$ 4.7^{\dagger}$				

ττ Event Selection

Channel	Preselection cuts
	Exactly two isolated opposite-sign leptons
	Events with τ_{had} candidates are rejected
	30 GeV $< m_{\tau\tau}^{\rm vis} < 100$ (75) GeV for DF (SF) events
	$\Delta \phi_{\ell\ell} < 2.5$
$ au_{ m lep} au_{ m lep}$	$E_{\rm T}^{\rm miss} > 20 \ (40) \ {\rm GeV} \ {\rm for} \ {\rm DF} \ ({\rm SF}) \ {\rm events}$
	$E_{\rm T}^{\rm minst,m} > 40 \text{ GeV for SF}$ events
	$p_{\rm T}^{c_1} + p_{\rm T}^{c_2} > 35 \text{ GeV}$
	Events with a <i>b</i> -tagged jet with $p_{\rm T} > 25$ GeV are rejected
	$0.1 < x_{\tau_1}, x_{\tau_2} < 1$
	$m_{\tau\tau} > m_Z - 25 \text{ GeV}$
	Exactly one isolated lepton and one medium τ_{had} candidate with opposite charges $m_m < 70$ GeV
lep had	Events with a <i>b</i> -tagged jet with $p_{\rm T} > 30$ GeV are rejected
	One isolated medium and one isolated tight opposite-sign $\tau_{\rm had}$ -candidate
	Events with leptons are vetoed
	$E_{\rm T}^{\rm miss} > 20 \ {\rm GeV}$
	$E_{\rm T}^{\rm miss}$ points between the two visible taus in ϕ , or min $[\Delta \phi(\tau, E_{\rm T}^{\rm miss})] < \pi/4$
/had/had	$0.8 < \Delta R(\tau_{\text{had}_1}, \tau_{\text{had}_2}) < 2.4$
	$\Delta \eta(au_{ m had_1}, au_{ m had_2}) < 1.5$
Channel	VBF category selection cuts
	At least two jets with $p_{\rm T}^{j_1} > 40 \text{ GeV}$ and $p_{\rm T}^{j_2} > 30 \text{ GeV}$
$\tau_{ m lep} \tau_{ m lep}$	$\Delta \eta(j_1, j_2) > 2.2$
	At least two jets with $p_{\rm T}^{j_1} > 50 \text{ GeV}$ and $p_{\rm T}^{j_2} > 30 \text{ GeV}$
$ au_{ m lep} au_{ m had}$	$\Delta \eta(j_1, j_2) > 3.0$
	$m_{\tau\tau}^{\rm vis} > 40 {\rm GeV}$
	At least two jets with $p_{\rm T}^{j_1} > 50 \text{ GeV}$ and $p_{\rm T}^{j_2} > 30 \text{ GeV}$
$ au_{ m had} au_{ m had}$	$p_{\rm T}^{j_2} > 35 \text{ GeV}$ for jets with $ \eta > 2.4$
	$\Delta \eta(j_1, j_2) > 2.0$
Channel	Boosted category selection cuts
$ au_{ m lep} au_{ m lep}$	At least one jet with $p_{\rm T} > 40 \text{ GeV}$
Д11	Failing the VBF selection
1111	$p_{\rm T}^H > 100 { m ~GeV}$

$\sqrt{s} = 7$ TeV								
	Trigger level		Analysis l	evel t	hresholds [[GeV]		
Trigger	thresholds, $p_{\rm T}$ [GeV]	$ au_{ m lep} au_{ m lep}$		$ au_{ m lep} au_{ m had}$		$ au_{ m had} au_{ m had}$		
Single electron	20-22	$e\mu$:	$p_{\rm T}^e > 22-24 \\ p_{\rm T}^\mu > 10$	$e\tau$:	$\begin{array}{l} p_{\mathrm{T}}^{e} > 25 \\ p_{\mathrm{T}}^{\tau} > 20 \end{array}$	-		
Single muon	18	$\mu\mu$: $e\mu$:	$p_{\rm T}^{\mu_1} > 20$ $p_{\rm T}^{\mu_2} > 10$ $p_{\rm T}^{\mu} > 20$ $p_{\rm T}^e > 15$	$\mu \tau$:	$p_{\rm T}^{\mu} > 22$ $p_{\rm T}^{\tau} > 20$	_		
Di-electron	12/12	ee:	$p_{\rm T}^{e_1} > 15$ $p_{\rm T}^{e_2} > 15$		_	_		
$\mathrm{Di}\text{-} au_\mathrm{had}$	29/20		_		_	$ \begin{array}{cc} & p_{\rm T}^{\tau_1} > 35 \\ \tau \tau : & p_{\rm T}^{\tau_2} > 25 \end{array} \end{array} $		
$\sqrt{s} = 8$ TeV								
Thismon	Trigger level		Analysis level thresholds [GeV]					
Ingger	thresholds, $p_{\rm T} \; [\text{GeV}]$		$ au_{ m lep} au_{ m lep}$	$ au_{ m lep} au_{ m had}$		$ au_{ m had} au_{ m had}$		
Single electron	24	еµ: ee:	$p_{\rm T}^e > 26$ $p_{\rm T}^\mu > 10$ $p_{\rm T}^{e_1} > 26$ $p_{\rm T}^{e_2} > 15$	eτ:	$\begin{array}{l} p_{\mathrm{T}}^{e} > 26 \\ p_{\mathrm{T}}^{\tau} > 20 \end{array}$	_		
Single muon	24		_	$\mu \tau$:	$p_{\rm T}^{\mu} > 26$ $p_{\rm T}^{\tau} > 20$	_		
Di-electron	12/12	ee:	$p_{\rm T}^{e_1} > 15$ $p_{\rm T}^{e_2} > 15$		_	_		
Di-muon	18/8	$\mu\mu$:	$p_{\rm T}^{\mu_1} > 20$ $p_{\rm T}^{\mu_2} > 10$		_	_		
Electron+muon	12/8	$e\mu$:	$p_{\rm T}^e > 15$ $p_{\rm T}^\mu > 10$		_	_		
$ ext{Di-} au_{ ext{had}}$	29/20		_		_	$\tau \tau: \begin{array}{c} p_{\rm T}^{\tau_1} > 35 \\ p_{\rm T}^{\tau_2} > 25 \end{array}$		

Channel	Preselection cuts
	Exactly two isolated opposite-sign leptons
	Events with τ_{had} candidates are rejected
	30 GeV $< m_{\tau\tau}^{\rm vis} < 100$ (75) GeV for DF (SF) events
	$\Delta \phi_{\ell\ell} < 2.5$
	$E_{\rm T}^{\rm miss} > 20 \ (40) \ {\rm GeV} \ {\rm for} \ {\rm DF} \ ({\rm SF}) \ {\rm events}$
' lep ' lep	$E_{\rm T}^{\rm miss, HPTO} > 40 {\rm GeV}$ for SF events
	$p_{\rm T}^{\ell_1} + p_{\rm T}^{\ell_2} > 35 {\rm GeV}$
	Events with a <i>b</i> -tagged jet with $p_{\rm T} > 25$ GeV are rejected
	$0.1 < x_{\tau_1}, x_{\tau_2} < 1$
	$m_{\tau\tau}^{\rm coll} > m_Z - 25 {\rm GeV}$
	Exactly one isolated lepton and one medium τ_{had} candidate with opposite charges
$\tau_{\rm lep} \tau_{\rm had}$	$m_{\rm T} < 70 {\rm ~GeV}$
	Events with a <i>b</i> -tagged jet with $p_{\rm T} > 30$ GeV are rejected
	One isolated medium and one isolated tight opposite-sign τ_{had} -candidate
	Events with leptons are vetoed
	$E_{\rm T}^{\rm miss} > 20 {\rm GeV}$
$T_{\rm had}T_{\rm had}$	$E_{\rm T}^{\rm miss}$ points between the two visible taus in ϕ , or min $[\Delta \phi(\tau, E_{\rm T}^{\rm miss})] < \pi/4$
' nau ' nau	$0.8 < \Delta R(\tau_{ m had_1}, \tau_{ m had_2}) < 2.4$
	$\Delta \eta(\tau_{\rm had_1}, \tau_{\rm had_2}) < 1.5$
Channel	VBF category selection cuts
$\tau_{lon}\tau_{lon}$	At least two jets with $p_{\rm T}^{j_1} > 40$ GeV and $p_{\rm T}^{j_2} > 30$ GeV
, ieb , ieb	$\Delta \eta(j_1, j_2) > 2.2$
	At least two jets with $p_{\rm T}^{j_1} > 50$ GeV and $p_{\rm T}^{j_2} > 30$ GeV
$\tau_{\rm lep}\tau_{\rm had}$	$\Delta \eta(j_1, j_2) > 3.0$
	$m_{\tau\tau}^{\rm vis} > 40 \text{ GeV}$
	At least two jets with $p_{\rm T}^{j_1} > 50$ GeV and $p_{\rm T}^{j_2} > 30$ GeV
$\tau_{\rm had} \tau_{\rm had}$	$p_{\rm T}^{\prime 2} > 35$ GeV for jets with $ \eta > 2.4$
	$\Delta \eta(j_1, j_2) > 2.0$
Channel	Boosted category selection cuts
$ au_{ m lep} au_{ m lep}$	At least one jet with $p_{\rm T} > 40 \text{ GeV}$
A11	Failing the VBF selection
	$p_{\rm T}^H > 100 { m ~GeV}$

Variable		VBF		Boosted			
Variable	$ au_{ m lep} au_{ m lep}$	$\tau_{\rm lep} \tau_{\rm had}$	$\tau_{\rm had} \tau_{\rm had}$	$ au_{ m lep} au_{ m lep}$	$\tau_{\rm lep} \tau_{\rm had}$	$ au_{\mathrm{had}} au_{\mathrm{had}}$	
$m_{ au au}^{ m MMC}$	•	•	•	•	•	•	
$\Delta R(\tau_1, \tau_2)$	•	•	٠		•	•	
$\Delta \eta(j_1, j_2)$	•	•	•				
m_{j_1,j_2}	•	•	•				
$\eta_{j_1} \times \eta_{j_2}$		•	•				
$p_{\mathrm{T}}^{\mathrm{Total}}$		•	•				
Sum $p_{\rm T}$					•	•	
$p_{\rm T}^{ au_1}/p_{\rm T}^{ au_2}$					•	•	
$E_{\rm T}^{\rm miss}\phi$ centrality		•	•	•	•	•	
m_{ℓ,ℓ,j_1}				•			
m_{ℓ_1,ℓ_2}				•			
$\Delta \phi(\ell_1, \ell_2)$				•			
Sphericity				•			
$p_{\mathrm{T}}^{\ell_1}$				●			
$p_{\mathrm{T}}^{j_{1}}$				•			
$E_{\mathrm{T}}^{\mathrm{miss}}/p_{\mathrm{T}}^{\ell_2}$				•			
$m_{\rm T}$		•			•		
$\min(\Delta \eta_{\ell_1 \ell_2, \text{jets}})$	•						
$C_{\eta_1,\eta_2}(\eta_{\ell_1}) \cdot C_{\eta_1,\eta_2}(\eta_{\ell_2})$	•						
$C_{\eta_1,\eta_2}(\eta_\ell)$		•					
$C_{\eta_1,\eta_2}(\eta_{j_3})$	•						
$C_{\eta_1,\eta_2}(\eta_{\tau_1})$			•				
$C_{\eta_1,\eta_2}(\eta_{ au_2})$			•				

BDT Variable Definition

- $\Delta R(\tau_1, \tau_2)$: the distance ΔR between the two leptons, between the lepton and τ_{had} , or between the two τ_{had} candidates, depending on the decay mode.
- $p_{\rm T}^{\rm Total}$: magnitude of the vector sum of the transverse momenta of the visible tau decay products, the two leading jets, and $E_{\rm T}^{\rm miss}$.

- Sum $p_{\rm T}$: scalar sum of the $p_{\rm T}$ of the visible components of the tau decay products and of the jets.
- $E_{\rm T}^{\rm miss}\phi$ centrality: a variable that quantifies the relative angular position of the missing transverse momentum with respect to the visible tau decay products in the transverse plane. The transverse plane is transformed such that the direction of the tau decay products are orthogonal, and that the smaller ϕ angle between the tau decay products defines the positive quadrant of the transformed plane. The $E_{\rm T}^{\rm miss}\phi$ centrality is defined as the sum of the x- and y-components of the $E_{\rm T}^{\rm miss}$ unit vector in this transformed plane.
- Sphericity: a variable that describes the isotropy of the energy flow in the event [101]. It is based on the quadratic momentum tensor

$$S^{\alpha\beta} = \frac{\sum_{i} p_i^{\alpha} p_i^{\beta}}{\sum_{i} |\vec{p_i}^2|}.$$
(5.1)

In this equation, α and β are the indices of the tensor. The summation is performed over the momenta of the selected leptons and jets in the event. The sphericity of the event (S) is then defined in terms of the two smallest eigenvalues of this tensor, λ_2 and λ_3 ,

$$S = \frac{3}{2}(\lambda_2 + \lambda_3). \tag{5.2}$$

- $\min(\Delta \eta_{\ell_1 \ell_2, \text{jets}})$: the minimum $\Delta \eta$ between the dilepton system and either of the two jets.
- Object η centrality: a variable that quantifies the η position of an object (an isolated lepton, a τ_{had} candidate or a jet) with respect to the two leading jets in the event. It is defined as

$$C_{\eta_1,\eta_2}(\eta) = \exp\left[\frac{-4}{(\eta_1 - \eta_2)^2} \left(\eta - \frac{\eta_1 + \eta_2}{2}\right)^2\right],$$
(5.3)

where η , η_1 and η_2 are the pseudorapidities of the object and the two leading jets respectively. This variable has a value of 1 when the object is halfway in η between the two jets, 1/e when the object is aligned with one of the jets, and < 1/e when the object is not between the jets in η . In the $\tau_{\text{lep}}\tau_{\text{lep}}$ channel the η centrality of a third jet in the event, $C_{\eta_1,\eta_2}(\eta_{j_3})$, and the product of the η centralities of the two leptons are used as BDT input variables, while in the $\tau_{\text{lep}}\tau_{\text{had}}$ channel the η centrality of the lepton, $C_{\eta_1,\eta_2}(\eta_\ell)$, is used, and in the $\tau_{\text{had}}\tau_{\text{had}}$ channel the η centrality of each τ , $C_{\eta_1,\eta_2}(\eta_{\tau_1})$ and $C_{\eta_1,\eta_2}(\eta_{\tau_2})$, is used. Events with only two jets are assigned a dummy value of -0.5 for $C_{\eta_1,\eta_2}(\eta_{j_3})$.

Process	$ au_{ m lep} au_{ m lep}$	$ au_{ m lep} au_{ m had}$	$ au_{ m had} au_{ m had}$
$Z \to \ell\ell$ -enriched	$80 < m_{ au au}^{ m vis} < 100~{ m GeV}$		
	(same-flavour)		
Top control region	Invert <i>b</i> -jet veto	Invert <i>b</i> -jet veto and $m_{\rm T} > 40$ GeV	
Rest category			Pass preselection,
			Fail VBF and Boosted selections
$Z \to \tau \tau$ -enriched	$m_{ au au}^{ m HPTO} < 100~{ m GeV}$	$m_{\rm T} < 40$ GeV and $m_{\tau\tau}^{\rm MMC} < 110$ GeV	
Fake-enriched	Same sign τ decay products	Same sign $ au$ decay products	
W-enriched		$m_{\rm T} > 70~{ m GeV}$	
Mass sideband			$m_{\tau\tau}^{\rm MMC} < 110 \text{ GeV or } m_{\tau\tau}^{\rm MMC} > 150 \text{ GeV}$

Table 6. Summary and definition of the control regions used in the analysis. The requirements shown represent modifications to the signal region requirements. All other selections are applied as for the corresponding signal regions. The variable $m_{\tau\tau}^{\text{HPTO}}$ is the invariant mass of the $\tau\tau$ -system obtained using the collinear approximation and the same objects as used in $E_{\text{T}}^{\text{miss,HPTO}}$. Each control region listed is actually two control regions, corresponding to the VBF or boosted categories, with the exception of the rest category. The first three control regions listed are used in the global fit defined in section 8.

Iep-Iep Control Regions

Channel	Background	Scale fact VBF	tors (CR) Boosted
$ au_{ m lep} au_{ m lep}$	Тор	0.99 ± 0.07	1.01 ± 0.05
	$Z \to ee$	0.91 ± 0.16	0.98 ± 0.10
	$Z o \mu \mu$	0.97 ± 0.13	0.96 ± 0.08
$ au_{ m lep} au_{ m had}$	Тор	0.84 ± 0.08	0.96 ± 0.04

		Relative signal and background variations [%]										
Source	$ au_{ m lep}$	$ au_{ m lep}$	$ au_{ m lep}$	$ au_{ m lep}$	$ au_{ m lep}$	$ au_{ m had}$	$ au_{ m lep}$	$ au_{ m had}$	$ au_{ m had}$	$ au_{ m had}$	$ au_{ m had}$	$t au_{ m had}$
	VI	3F	Boo	sted	VI VI	BF	Boo	osted	VI VI	BF	Boo	osted
	S	В	S	В	S	B	S	B	S	B	S	B
Experimental												
Luminosity	± 2.8	± 0.1	± 2.8	± 0.1	± 2.8	± 0.1	± 2.8	± 0.1	± 2.8	± 0.1	± 2.8	± 0.1
Tau trigger*	_	_	_	_	_	_	_	_	$ +7.7 \\ -8.8$	< 0.1	$ +7.8 \\ -8.9$	< 0.1
Tau identification	_	—	_	—	± 3.3	± 1.2	± 3.3	± 1.8	± 6.6	± 3.8	± 6.6	± 5.1
Lepton ident. and trigger [*]	$+1.4 \\ -2.1$	$+1.3 \\ -1.7$	+1.4 -2.1	$+1.1 \\ -1.5$	± 1.8	± 0.5	± 1.8	± 0.8	_	-	—	—
b-tagging	± 1.3	± 1.6	± 1.6	± 1.6	< 0.1	± 0.2	± 0.4	± 0.2	_	-	—	—
au energy scale [†]	_	_	_	—	± 2.4	± 1.3	± 2.4	± 0.9	± 2.9	± 2.5	± 2.9	± 2.5
Jet energy scale and resolution [†]	+8.5 -9.1	± 9.2	$+4.7 \\ -4.9$	$+3.7 \\ -3.0$	$+9.5 \\ -8.7$	± 1.0	± 3.9	± 0.4	$ +10.1 \\ -8.0$	± 0.3	$+5.1 \\ -6.2$	± 0.2
$E_{\rm T}^{\rm miss}$ soft scale & resolution	$+0.0 \\ -0.2$	$^{+0.0}_{-1.2}$	$+0.0 \\ -0.1$	$^{+0.0}_{-1.2}$	$+0.8 \\ -0.3$	± 0.2	± 0.4	< 0.1	± 0.5	± 0.2	± 0.1	< 0.1
Background Model							•					
Modelling of fake backgrounds*†	_	± 1.2	_	± 1.2	_	± 2.6	_	± 2.6	_	± 5.2	_	± 0.6
Embedding [†]	_	$+3.8 \\ -4.3$	_	$^{+6.0}_{-6.5}$	—	± 1.5	_	± 1.2	_	± 2.2	—	± 3.3
$Z \to \ell \ell$ normalisation [*]	_	± 2.1	_	± 0.7	_	_	_	_	_	_	_	_
Theoretical										•	•	
Higher-order QCD corrections †	+11.3 -9.1	± 0.2	$+19.8 \\ -15.3$	± 0.2	$+9.7 \\ -7.6$	± 0.2	$+19.3 \\ -14.7$	± 0.2	$+10.7 \\ -8.2$	< 0.1	$+20.3 \\ -15.4$	< 0.1
UE/PS	± 1.8	< 0.1	± 5.9	< 0.1	± 3.8	< 0.1	± 2.9	< 0.1	± 4.6	< 0.1	± 3.8	< 0.1
Generator modelling	± 2.3	< 0.1	± 1.2	< 0.1	± 2.7	< 0.1	± 1.3	< 0.1	± 2.4	< 0.1	± 1.2	< 0.1
EW corrections	±1.1	< 0.1	± 0.4	< 0.1	± 1.3	< 0.1	± 0.4	< 0.1	± 1.1	< 0.1	± 0.4	< 0.1
PDF †	$ +4.5 \\ -5.8$	± 0.3	$+6.2 \\ -8.0$	± 0.2	$ +3.9 \\ -3.6$	± 0.2	$+6.6 \\ -6.1$	± 0.2	+4.3 -4.0	± 0.2	$+6.3 \\ -5.8$	± 0.1
BR $(H \to \tau \tau)$	± 5.7	_	± 5.7	_	± 5.7	_	± 5.7	_	± 5.7		± 5.7	—

Signal Region BDTs

54

Signal Region Yields

Process/Category		VBF		Boosted			
BDT output bin	All bins	Second to last bin	Last bin	All bins	Second to last bin	Last bin	
$Z \to \tau \tau$	589 ± 24	9.7 ± 1.0	1.99 ± 0.34	2190 ± 80	33.7 ± 2.3	11.3 ± 1.3	
Fake background	57 ± 12	1.2 ± 0.6	0.55 ± 0.35	100 ± 40	2.9 ± 1.3	0.6 ± 0.4	
Тор	131 ± 19	0.9 ± 0.4	0.89 ± 0.33	380 ± 50	9.8 ± 2.1	4.3 ± 1.0	
Others	196 ± 17	3.0 ± 0.4	1.7 ± 0.6	400 ± 40	8.3 ± 1.6	2.6 ± 0.7	
ggF: $H \to WW (m_H = 125 \text{ GeV})$	2.9 ± 0.8	0.12 ± 0.04	0.11 ± 0.04	7.7 ± 2.3	0.43 ± 0.13	0.24 ± 0.08	
VBF: $H \to WW$	3.4 ± 0.4	0.40 ± 0.06	0.38 ± 0.08	1.65 ± 0.18	0.102 ± 0.017	< 0.1	
$WH: H \to WW$	< 0.1	< 0.1	< 0.1	0.90 ± 0.10	< 0.1	< 0.1	
$ZH: H \to WW$	< 0.1	< 0.1	< 0.1	0.59 ± 0.07	< 0.1	< 0.1	
ggF: $H \to \tau \tau ~(m_H = 125 \text{GeV})$	9.8 ± 3.4	0.73 ± 0.26	0.35 ± 0.14	21 ± 8	2.4 ± 0.9	1.3 ± 0.5	
VBF: $H \to \tau \tau$	13.3 ± 4.0	2.7 ± 0.7	3.3 ± 0.9	5.5 ± 1.5	0.95 ± 0.26	0.49 ± 0.13	
$WH: H \to \tau \tau$	0.25 ± 0.07	< 0.1	< 0.1	3.8 ± 1.0	0.44 ± 0.12	0.22 ± 0.06	
$ZH: H \to \tau \tau$	0.14 ± 0.04	< 0.1	< 0.1	2.0 ± 0.5	0.21 ± 0.06	0.113 ± 0.031	
Total background	980 ± 22	15.4 ± 1.8	5.6 ± 1.4	3080 ± 50	55 ± 4	19.2 ± 2.1	
Total signal	24 ± 6	3.5 ± 0.9	3.6 ± 1.0	33 ± 10	4.0 ± 1.2	2.1 ± 0.6	
Data	1014	16	11	3095	61	20	

Signal Region Yields

Process/Category		VBF		Boosted				
BDT output bin	All bins	Second to last bin	Last bin	All bins	Second to last bin	Last bin		
Fake background	1680 ± 50	8.2 ± 0.9	5.2 ± 0.7	5640 ± 160	51.0 ± 2.5	22.3 ± 1.8		
$Z \to \tau \tau$	877 ± 29	7.6 ± 0.9	4.2 ± 0.7	6210 ± 170	57.5 ± 2.8	41.1 ± 3.2		
Тор	82 ± 15	0.3 ± 0.4	0.5 ± 0.4	380 ± 50	12 ± 4	4.8 ± 1.5		
$Z \to \ell \ell (\ell \to \tau_{\rm had})$	54 ± 26	1.0 ± 0.7	0.30 ± 0.28	200 ± 50	13 ± 4	8.6 ± 3.5		
Diboson	63 ± 11	1.0 ± 0.4	0.48 ± 0.20	430 ± 40	9.7 ± 2.2	4.7 ± 1.6		
ggF: $H \to \tau \tau \ (m_H = 125 \text{GeV})$	16 ± 6	1.0 ± 0.4	1.2 ± 0.6	60 ± 20	9.2 ± 3.2	10.1 ± 3.4		
VBF: $H \to \tau \tau$	31 ± 8	4.5 ± 1.1	9.1 ± 2.2	16 ± 4	2.5 ± 0.6	2.9 ± 0.7		
$WH: H \to \tau \tau$	0.6 ± 0.4	< 0.1	< 0.1	9.1 ± 2.3	1.3 ± 0.4	1.9 ± 0.5		
$ZH: H \to \tau \tau$	0.16 ± 0.07	< 0.1	< 0.1	4.6 ± 1.2	0.77 ± 0.20	0.93 ± 0.24		
Total background	2760 ± 40	18.1 ± 2.3	10.7 ± 2.7	12860 ± 110	143 ± 6	82 ± 6		
Total signal	48 ± 12	5.5 ± 1.3	10.3 ± 2.5	89 ± 26	14 ± 4	16 ± 4		
Data	2830	22	21	12952	170	92		

Signal Region Yields

Process/Category	VBF			Boosted		
BDT output bin	All bins	Second to last bin	Last bin	All bins	Second to last bin	Last bin
Fake background	370 ± 18	2.3 ± 0.9	0.57 ± 0.29	645 ± 26	35 ± 4	0.65 ± 0.33
Others	37 ± 5	0.67 ± 0.22	< 0.1	89 ± 11	15.9 ± 2.0	0.92 ± 0.22
$Z \to \tau \tau$	475 ± 16	0.6 ± 0.7	0.6 ± 0.4	2230 ± 70	93 ± 4	5.4 ± 1.6
ggF: $H \to \tau \tau \ (m_H = 125 \text{GeV})$	8.0 ± 2.7	0.67 ± 0.23	0.53 ± 0.20	21 ± 8	9.1 ± 3.3	1.6 ± 0.6
VBF: $H \to \tau \tau$	12.0 ± 3.1	1.8 ± 0.5	3.4 ± 0.9	6.3 ± 1.6	2.8 ± 0.7	0.52 ± 0.13
$WH: H \to \tau \tau$	0.25 ± 0.07	< 0.1	< 0.1	4.0 ± 1.1	1.9 ± 0.5	0.41 ± 0.11
$ZH: H \to \tau \tau$	0.16 ± 0.04	< 0.1	< 0.1	2.4 ± 0.6	1.13 ± 0.30	0.23 ± 0.06
Total background	883 ± 18	3.6 ± 1.3	1.2 ± 1.0	2960 ± 50	143 ± 6	7.0 ± 1.8
Total signal	20 ± 5	2.5 ± 0.6	3.9 ± 1.0	34 ± 10	15 ± 4	2.7 ± 0.8
Data	892	5	6	3020	161	10

ggF vs VBF/VH

58

	Measured $\sigma \times BR$ [pb]	Predicted $\sigma \times BR$ [pb]	
7 TeV	$1.0 {+0.9 \atop -0.8} (stat.) {+0.9 \atop -0.8} (syst.)$	1.09 ± 0.11	
8 TeV	$2.1 \pm 0.4 (\text{stat.})^{+0.5}_{-0.4} (\text{syst.})$	1.39 ± 0.14	
Gluon fusion, 8 TeV	$1.7 \pm 1.1 (\text{stat.})^{+1.5}_{-1.1} (\text{syst.})$	1.22 ± 0.14	
VBF+VH, 8 TeV	$0.26 \pm 0.09 (\text{stat.})^{+0.06}_{-0.05} (\text{syst.})$	0.17 ± 0.01	

	Fitted μ values				
	\sqrt{s}	Multivariate analysis	Cut-based analysis		
$ au_{ m lep} au_{ m lep}$	8 TeV	$1.9^{+1.0}_{-0.9}$	$3.2^{+1.4}_{-1.3}$		
$ au_{ m lep} au_{ m had}$	8 TeV	$1.1^{+0.6}_{-0.5}$	$0.7^{+0.7}_{-0.6}$		
$ au_{ m had} au_{ m had}$	8 TeV	$1.8^{+0.9}_{-0.7}$	$1.6^{+0.9}_{-0.7}$		
All channels	8 TeV	$1.53_{-0.41}^{+0.47}$	$1.43_{-0.49}^{+0.55}$		