Higgs Bosons at Future Lepton Colliders

Markus Klute (MIT) October 15th, 2015 Higgs Couplings 2015 - Lumley Castle, UK

Outline

Introduction

- Case for precision Higgs physics
- Future lepton collider projects in a nutshell
- Higgs Production at Lepton Colliders
 - Processes
 - Energy
 - Luminosity

Higgs studies at lepton collider

- Couplings
- Mass
- Total width
- BSM Higgs

Case for precision Higgs physics

- ➡ How large are potential deviations from BSM physics?
- ➡ How well do we need to measure Higgs couplings?
 - To be sensitive to a deviation δ , the measurement needs a precision of at least $\delta/3$, better $\delta/5$
 - Implications of new physics scale on couplings from heavy states or through mixing

$$g=g_{
m SM} \; [1+\Delta] \;\;:\;\; \Delta={\cal O}(v^2/\Lambda^2)$$

$\frac{\Gamma_{\rm 2HDM}[h^0 \to X]}{\Gamma_{\rm SM}[h \to X]}$	type I	type II	lepton-spec.	flipped
VV^*	$\sin^2(\beta - \alpha)$	$\sin^2(eta-lpha)$	$\sin^2(eta-lpha)$	$\sin^2(eta-lpha)$
$\overline{u}u$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$
$ar{d}d$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	$\frac{\sin^2 \alpha}{\cos^2 \beta}$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	$\frac{\sin^2 \alpha}{\cos^2 \beta}$
$\ell^+\ell^-$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$	$\frac{\sin^2 \alpha}{\cos^2 \beta}$	$\frac{\sin^2 \alpha}{\cos^2 \beta}$	$\frac{\cos^2 \alpha}{\sin^2 \beta}$
			ar¥iv•1'	210 2261

- Percent-level precision needed to test TeV scale
- There is no strict limit to the precision needed!

Why Lepton Colliders?

		1 1							_						_
	Parameter	ATLAS+CMS	ATL	AS+	CMS	ATLAS	CN	4S							
		Measured	Expecte	ed un	certainty	Measured	Meas	ure	d						
-		Parameter	isation as	ssumi	ing BR _{BSN}	A = 0	-1								
	Ka	$1.03^{+0.11}$		+0.10		$1.00^{+0.14}$	1.07	$1.07^{+0.17}$							
	κ <u>Z</u>	$0.01^{+0.10}$		+0.11+0.10		$0.02^{+0.13}$	0.00	-0.18 +0.15	5						
	ĸw	$0.91_{-0.10}$		-0.11		$0.92_{-0.13}$	0.90	-0.15	5	antas	tic n	erfor	man	ce	
	K _t	$1.43^{+0.23}_{-0.22}$		+0.26 -0.32		$1.31_{-0.32}^{+0.30}$	1.56	+0.34 -0.32	4 2	alr	ead	v tod	av		
	K _T	$0.88^{+0.13}_{-0.12}$		+0.16		$0.97^{+0.19}_{-0.17}$	0.82	+0.19	9	C		j 10 0.			
	, KL	$0.60^{+0.12}$		+0.25		$0.61^{+0.26}$	0.61	+0.27	7						
	n p	0.100 -0.18		-0.24		-0.26	0.01	-0.20	5						
	κ _g	$0.81_{-0.10}^{+0.11}$		-0.14		$0.94_{-0.15}^{+0.16}$	0.70	-0.13	3						
	K	$0.92^{+0.11}_{-0.10}$		+0.12		$0.88^{+0.15}_{-0.14}$	0.96	+0.17	7						
					15_0//			5_00	<u>,</u>						
1S Projecti	ion	AILA		F-2 0	13-044	CIVIS-FAS-		5-01	JZ						
Evactor					Sci	enario	Status	Dev	duced siz	e of uncert	ainty t	o increa	se total	uncerta	inty
Expected t	uncertainties on	3000 fb ⁻¹ at (s = 14 T	eV Scenario 1 eV Scenario 2				2014	by s	$\times < 10\%$ for 300 fb ⁻¹ by $< 10\%$ for 3000 fl					00 fb ⁻¹	may
111990 0000	on oodplingo				Theory uncer	tainty (%)	[10-12]	K _{gZ}	λ_{gZ}	$\lambda_{\gamma Z}$	KgZ	λ _{yZ}	λ_{gZ}	$\lambda_{\tau Z}$	A to
κ	I				$gg \rightarrow H$										T
~		Percent level (2	10%)		PDF		8	2	-	-	1.3	-	-	-	-
∼ w		precision in re	each		incl. QCD	scale (MHOU)	7	2		-	1.1		-	-	-
κ _z					p_T shape a	nd $0j \rightarrow 1j$ mig.	10-20	-	3.3-1	65.14	-	1.5-5	-	-	-
κ _g					$1j \rightarrow 2j$ III $1i \rightarrow VBF$	2i mig.	13-28			-		5.5-7	6-19	-	1.
κ.		4			VBF $2j \rightarrow$	VBF 3j mig.	12-38	-	-	-	-	-	-	6-19	
r					VBF										
∿t		•1			PDF		3.3	-	-	-	-	-	2.8	-	-
κ _τ						tīH PDF			ł	Key que	estio	n is th	ie		2
						scale (MHOU)	8	е	evolution systematic uncertainty					nty	2

CMS

0.00

arXiv:1307.7135

0.05

0.10

0.15

expected uncertainty

ATL-PHYS-PUB-2014-016

 λ_{tg}

-

3

2

International Linear Collider (ILC)

- Compact Linear Collider (CLIC)
- Circular Electron Positron Collider (CEPC)
- Future Circular Collider (FCC-ee)
- ➡ Muon Collider

arXiv:1506.05992

International Linear Collider (ILC)

Compact Linear Collider (CLIC)

➡ Circular Electron Positron Collider (CEPC)

Future Circular Collider (FCC-ee)

➡ Muon Collider

		-					-		
		St	tage		500		5	00 LumiUl	P
	Scenario	\sqrt{s}	[GeV]	500	350	250	500	350	250
	G-20	∫£d	t [fb ⁻¹]	1000	200	500	4000	-	-
		time	[years]	5.5	1.3	3.1	8.3	-	-
	H-20	∫£d	t [fb ⁻¹]	500	200	500	3500	-	1500
		time	[years]	3.7	1.3	3.1	7.5	-	3.1
	I-20	∫£d	$t [{\rm fb}^{-1}]$	500	200	500	3500	1500	-
		time	[years]	3.7	1.3	3.1	7.5	3.4	-
	Stage				500		5	00 LumiUl	Р
	Scenario	\sqrt{s}	[GeV]	250	500	350	250	350	500
	Snow	∫£d	t [fb ⁻¹]	250	500	200	900	-	1100
		time	[years]	4.1	1.8	1.3	3.3	-	1.9
	Baseline -								
				10	nroar	om			
				TOy	progr	ann			Machine
/ere	d							com	missioning
DR		Y							starts
	 Negotiations among governments Prepare for international lab Accelerator detailed design R&D for cost-effective production Site studies 			al • Constru nt" n	uction				
	2013	2	2016	2018					2027

as proposed by LC Collaboration

7

International Linear Collider (ILC)

- Compact Linear Collider (CLIC)
- Circular Electron Positron Collider (CEPC)
- Future Circular Collider (FCC-ee)
- Muon Collider

Baseline ILC Lumi Upgrade **Collision rate** 10 5 [Hz] **Electron linac** 10 10 rate [Hz] Number of 1312 2625 **bunches Estimated** 129 200 power [MW] Luminosity 0.75 3.0 [x10³⁴cm⁻²s⁻¹]

Integrated Luminosities [fb]

International Linear Collider (ILC)

Compact Linear Collider (CLIC)

- Circular Electron Positron Collider (CEPC)
- Future Circular Collider (FCC-ee)
- Muon Collider

CDR Vol 2: Physics and Detectors - arXiv:1203.5940 CDR Vol 3: The CLIC Programme - arXiv: 1209.2543 CLIC Snowmass White Paper - arXiv: 1307.5288 CLIC 50km, 100V/m 3000 GeV

- Normal conducting accelerator structures operated at room temperature
- Two beam acceleration technique provides 100MV/m gradient
- Implementation in energy stages, driven by physics and technical considerations
- Each stage correspond to 4-5 years of data taking

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Center-of-mass energy	\sqrt{s}	GeV	350	1400	3000
Integrated luminosity	\mathscr{L}_{int}	ab ⁻¹	0.5	1.5	2.0

- International Linear Collider (ILC)
- Compact Linear Collider (CLIC)
- Circular Electron Positron Collider (CEPC)

Muon Collider

(China's 13th Five-Year Plan 2016-2020)

- International Linear Collider (ILC)
- Compact Linear Collider (CLIC)
- Circular Electron Positron Collider (CEPC)
- Future Circular Collider (FCC-ee)
- Muon Collider

TLEP (FCC-ee) Physics case - arXiv:1308.6176 CDR in preparation for 2018 FCC-ee 100km, 200MV 350 GeV

\sqrt{s} (GeV)	90	160	240	350	350+
$\mathscr{L}(ab^{-1}/year)$	86.0	15.2	3.5	1.0	1.0
Events/year	3.6×10^{12}	6.1×10^{7}	$7.0 imes 10^5$	4.2×10^{5}	$2.5 imes 10^4$
Event type	Z	WW	HZ	tī	$WW \rightarrow H$
Years	0.3 (2.5)	1	3	0.5	3

crab-waist configuration with four interaction points

OKLUTE

International Linear Collider (ILC)

- Compact Linear
 Collider (CLIC)
- Circular Electron Positron Collider (CEPC)
- Future Circular Collider (FCC-ee)

Muon Collider

- Luminosity and energy are limited by the power budget, i.e. amount of synchrotron radiation (50MW per beam)
- One finds that ideally, all charge should be in a few single bunches at max energy
- Lifetime of beams very limited
- Solution: top-up injection scheme

International Linear Collider (ILC)

- Compact Linear
 Collider (CLIC)
- Circular Electron Positron Collider (CEPC)
- Future Circular Collider (FCC-ee)

➡ Muon Collider

- International Linear Collider (ILC)
- Compact Linear Collider (CLIC)
- Circular Electron Positron Collider (CEPC)
- Future Circular Collider (FCC-ee)
- ➡ Muon Collider

KLUTE

Physics at Lepton Colliders

Electroweak production

- cross sections are predicted with (sub)percent precision
- Lepton here really means electrons and muons
- ➡ Relative low rate
 - trigger on every event
- ➡ Well defined collision rate
 - missing mass reconstruction

Clean events, smaller backgrounds

comparing to pp machine

Higgs Production at Lepton Collider

➡ e+e-→ZH production maximal at 240-260 GeV

Cross section (fb) $e^+e^- \rightarrow HZ$ 250 HZ, $Z \rightarrow \nu \nu$ - WW → H $ZZ \rightarrow H$ 200 Total Z* N^XZ 150 Н e 100 $\bar{
u}_{\mathrm{e}}/\mathrm{e}^{+}$ 50 $\nu_{\rm e}/{\rm e}^{1}$ 200 220 360 240 260 280 300 320 340 √s (GeV)

Unpolarized cross sections

Higgs Production at Lepton Collider

- ➡ e⁺e⁻→ZH production maximal at 240-250 GeV
- Beam polarization increases Higgs cross sections

Higgs Production at Lepton Collider

- ➡ e⁺e⁻→ZH production maximal at 240-250 GeV
- Multi-TeV collider Higgs production

OKLUTE

Higgs Production at Lepton Colliders

s-channel production

- very small cross section
- reduced by ISR and beam spread
- $\sigma^{\text{born}}(\mu^+\mu^- \rightarrow H) \approx 40.000 \ \sigma^{\text{born}}(e^+e^- \rightarrow H)$
- $\sigma(e^+e^- \rightarrow H) = 50ab \text{ (nominal } \delta E/E)$
- $\sigma(\mu^+\mu^- \rightarrow H) = 15 \text{pb} \text{ (nominal } \delta E/E)$

Beam-spread improvements

- FCC-ee via monochromators
- Muon collider via improved cooling
- Feasibility and impact on luminosity need study

Polarization

Energy and Luminosity

- ➡International Linear Collider (ILC)
- ➡ Compact Linear Collider (CLIC)
- ➡ Circular Electron Positron Collider (CEPC)
- ➡ Future Circular Collider (FCC-ee)
- ➡ Muon Collider

Multi-TeV Lepton Collider Figure of Merit

OKLUTE

20

√s [GeV]	√s	Measurements (incomplete list)
90	mz	$m_Z,\Gamma_Z,\alpha_s,\alpha_{QED}$
125	m _H	s-channel Higgs production
160	2mw	m_W, α_s
240-250	m _H +m _Z +	тн, Гн, Ј ^{рс} , днхх, BSM decays
340-355	2*m _{top}	днww, Гн, indirect днtt, mtop
500	2*m _{top} +m _H +	gннн, ghtt
> 500	M NP	gнtt, gннн, BSM Higgs

Higgs Precision Measurements

- Recoil method unique to lepton collider
- Tag Higgs event independent of decay mode
- Provides precision and model independent measurements of
 - $\sigma(ee \rightarrow ZH) \propto g_{HZZ}^2$
 - m_H
- Key input to Γ_H

Precision Higgs Couplings

Z -> II with H -> bb

Signal

ZZ ww

Zvv

All backgrounds

500

450

400

350

300

250

200

150

8

2

Events /

- Measure $\sigma(ee \rightarrow ZH) * BR (H \rightarrow X)$ by identifying X
- Example: $\sigma(ee \rightarrow ZH) * BR (H \rightarrow ZZ) \propto g_{HZZ} 4/\Gamma_{H}$
- Total width from combination of measurements or fit $-\delta\Gamma_{H} = 0.04 \text{ MeV} (FCC-ee)$
- Hadronic and invisible Z decays increase precision
- Branching fraction to invisible tested directly to 0.19% @ 95% CL

	Mo	Model-independent fit								
Coupling	FCC-ee -240	FCC-ee								
$g_{ m HZZ}$	0.16%	0.15%	(0.18%)							
$g_{ m HWW}$	0.85%	0.19%	(0.23%)							
$g_{ m Hbb}$	0.88%	0.42%	(0.52%)							
$g_{ m Hcc}$	1.0%	0.71%	(0.87%)							
$g_{ m Hgg}$	1.1%	0.80%	(0.98%)							
$g_{\mathrm{H} au au}$	0.94%	0.54%	(0.66%)							
$g_{{ m H}\mu\mu}$	6.4%	6.2%	(7.6%)							
$g_{{ m H}\gamma\gamma}$	1.7%	1.5%	(1.8%)							
BR_{exo}	0.48%	0.45%	(0.55%)							
LUTE	stat. uncertainties 23									

100 50 50 120 130 140 15 Higgs mass (GeV) 80 90 100 110 60 70 $H \rightarrow \tau \tau$ with $Z \rightarrow q \overline{q}$ CMS Simulation 400 80 500 fb⁻¹, s=240 GeV FCC-ee Signal N 350 All backgrounds Stents 200 zz ww qqbar 250 200 150 100 50 60 80 100 120 140 Higgs mass (GeV)

CMS Simulation

150

FCC-ee . 500 fb⁻¹, fs=240 GeV

Precision Higgs Couplings

Measurements will built on, complement, and supersede LHC results

Precision Higgs couplings

Higgs self-coupling through loop corrections

- Very large datasets at high energy allow extreme precision g_{ZH} measurements
- Indirect and model-dependent probe of Higgs self-coupling

Expected Precision on Higgs Parameters

Uncertainties	μ-Collider	CLIC	ILC	CEPC	FCC-ee
m _н [MeV]	0.06		30	5.5	8
Гн [MeV]	0.17	8.5	0.16	0.12	0.04
g нzz [%]	-	2.1	0.6	0.25	0.15
9 нww [%]	2.2	2.1	0.8	1.2	0.2
Эн ьь [%]	2.3	2.2	1.5	1.3	0.4
ਉ н <i>тт</i> [%]	5	2.5	1.9	1.4	0.5
Э нүү [%]	10	5.9	7.8	4.7	1.5
9 нсс [%]	-	2.4	2.7	1.7	0.7
G нgg [%]	-	2.3	2.3	1.5	0.8
д нtt [%]	-	4.5	18	-	-
Ө нµµ [%]	2.1	11	20	8.6	6.2
дннн [%]	-	24	-	-	-

for ~10y operation lots of "!,*,?" in this table

First generation couplings

s-channel Higgs production

- Unique opportunity for measurement close to SM sensitivity
- Highly challenging; $\sigma(ee \rightarrow H) = 1.6$ fb; $\sigma(e^+e^- \rightarrow H) = 50$ ab (nominal $\delta E/E$)
- various Higgs decay channels studied

- Can monochromators yields energy spread of Higgs width or smaller? At what luminosity cost?
- Energy scan O(10MeV) around mH will be needed to locate exact sqrt(s)
- Polarization increases cross section (e.g. by x2 at P=70%). At what luminosity cost?

d'Enterria-Wojcik-Aleksan

Exclusive Higgs boson decays

- First and second generation couplings accessible
 - Sensitivity to u/d quark Yukawa coupling
 - Sensitivity due to interference

$$\frac{\mathrm{BR}_{h \to \rho \gamma}}{\mathrm{BR}_{h \to b\bar{b}}} = \frac{\kappa_{\gamma} \left[(1.9 \pm 0.15) \kappa_{\gamma} - 0.24 \bar{\kappa}_u - 0.12 \bar{\kappa}_d \right]}{0.57 \bar{\kappa}_b^2} \times 10^{-5}$$

- Also interesting to FCC-hh program
- Alternative H→MV decays should be studied (V= γ, W, and Z)

Vs

Yu, Yd

 $H \rightarrow \phi \gamma$

Η **→** ρ γ

 $\rightarrow \omega \nu$

CP Measurements

- CP violation can be studied by searching for CP-odd contributions; CP-even already established
- → Snowmass Higgs paper http://arxiv.org/abs/
- ➡ Higgs to Tau decays of interest
- Studies consider intermediated resonances (ρ,a1)

 $\mathcal{L}_{hff} \propto h \bar{f} (\cos \Delta + \mathrm{i} \gamma_5 \sin \Delta) f$

Colliders	LHC	HL-LHC	FCCee (1 ab^{-1})	FCCee (5 ab^{-1})	FCCee (10 ab^{-1})
Accuracy (1σ)	25°	8.0°	5.5°	2.5°	1.7°

http://arxiv.org/abs/1308.1094

Rare and Exotics Higgs Bosons

- → Largely unexplored!
- ZH events allow for detailed studies of rare and exotic decays
 - improved with hadronic and invisible Z decays
 - set requirements for lepton collider detector
- Coupling measurements have sensitivity to BSM decays
- Dedicated studies using specific final states improve sensitivity
- Example: Higgs to invisible, flavor violating Higgs, and many more
- Modes with of limited LHC sensitivity are of particular importance to lepton collider program
 - ourrently under study
- Detailed discussion of exotic Higgs decays at <u>Phys. Rev.</u> <u>D 90, 075004 (2014)</u>

```
h \rightarrow \mathcal{K}_{T}
 h \rightarrow 4b
h \rightarrow 2b2\tau
h \rightarrow 2b2\mu
h \rightarrow 4\tau, 2\tau 2\mu
h \rightarrow 4i
h \rightarrow 2\gamma 2j
h \rightarrow 4\gamma
h \rightarrow ZZ_{D}, Za \rightarrow 4\ell
h \rightarrow Z_D Z_D \rightarrow 4\ell
h \rightarrow \gamma + \mathcal{K}_{T}
h \rightarrow 2\gamma + \varkappa_{T}
h \rightarrow 4 ISOLATED LEPTONS + \mathcal{X}_{T}
h \rightarrow 2\ell + \mathcal{K}_{T}
h \rightarrow \text{ONE LEPTON-JET} + X
h \rightarrow TWO \ LEPTON-JETS + X
h \rightarrow b\bar{b} + K_T
h \rightarrow \tau^+ \tau^- + \varkappa_{T}
```


Muon Collider as Higgs Factory

A muon collider at \sqrt{s} = mH is a *charming* Higgs factory

- but not competitive with other e⁺e⁻ collider options
- Higgs width better measured at e⁺e⁻ colliders
- Precision on $g_{H\mu\mu}$ compatible with HL-LHC performance

Case for muon collider

- if H(125) has nearby (a few to a few hundred MeV) peaks
- allows study of heavy H and A (also a case for CLIC), but masses have to be known
- Muon collider may be the best way to achieve multi-TeV lepton collider
 - substantial R&D remains

Complementarity to Hadron Collider Program

setup for Tilman's talk

gΗ _{XY}	ZZ	WW	ΥΥ	Ζγ	tt	bb	au au	СС	SS	μμ	uu,dd	ee	Гн	нн	BR _{exo}
FCC- ee	0.15	0.19	1.5			0.42	0.54	0.71	H→Vγ	6.2	H→Vγ	ee→H	0.9		0.45
HL- LHC	2	2	2	~10	~5	4	2	-	-	~5	-	-	-	~30	< 5%
FCC- hh			< 1?	1?	1					2 ?				5 ?	?

- ➡ Uncertainty in %.
- Almost perfect complementarity between lepton and hadron collider Higgs program
- In some cases the complementarity is obvious, in others more subtle

Conclusion

Exploration of Higgs Physics at the LHC on its way

- We have seen impressive Run-I results this week
- HL-LHC will set a high bar for Higgs physics

Lepton Colliders offer impressive precision Higgs program

Output Complementarity to hadron collider program

➡ FCC-ee promises largest Higgs dataset

- and path to next generation hadron collider (FCC-hh)
- Muon collider is not a competitive Higgs factory

Colliders of the 21st Century

References / Input from

- s-channel Higgs production: D.d'Enterria, R.Aleksan, G.Wojcik
- CMS: Snowmass report, ECFA report
- ATLAS: ATL-CONF-15-007, ATL-PHYS-PUB-2014-016, 019
- TLEP/FCC-ee: TLEP Case Study <u>http://arxiv.org/abs/1308.6176</u> JHEP 01 (2014) 164
- Prospective Studies for LEP3 with the CMS detector http://arxiv.org/abs/1208.1662
- CP measurement: http://arxiv.org/abs/1308.1094, Felix Xu's meeting in the meeting
- Implications of new physics scales: <u>http://arxiv.org/abs/1403.7191</u>
- Luminosity needs for FCC-hh and Higgs @ 100 TeV: M.Mangano, Plehn, et al
- Exclusive Higgs decays: Y. Soreq

Higgs prospects for the HL-LHC

Coupling precision 2-10 % factor 2-3 improvement from HL-LHC

CMS Projection

Key question is the evolution systematic uncertainty

Snowmass Whitepaper for CMS - http://arxiv.org/abs/1307.7135

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt=300 \text{ fb}^{-1}; \int Ldt=3000 \text{ fb}^{-1}$

Higgs prospects for the HL-LHC

Di-Higgs production: exciting prospects of the HL-LHC

- Gluon fusion cross section is only 40.2fb [NNLO] at 14 TeV
- Vector boson fusion cross section is 2fb

Most interesting final states

- bbγγ [320 expected events in 3ab-1]
- $bb\tau\tau$ [9000 expected]
- bbbb [40k expected (2k in VBF)]
- bbWW [30000 exp. events]
- Goal is to reach minimum sensitivity of 3σ for SM production and with that to BSM scenarios

Process / Selection Stage	HH	ZH	t₹H	bbH	$\gamma\gamma$ +jets	γ +jets	jets	tī
Object Selection & Fit Mass Window	22.8	29.6	178	6.3	2891	1616	292	113
Kinematic Selection	14.6	14.6	3.3	2.0	128	96.9	20	20
Mass Windows	9.9	3.3	1.5	0.8	8.5	6.3	1.1	1.1

m_{γγ} [GeV]

Higgs Physics at the FCC-ee

- Precision Higgs coupling studies and total width
- Higgs self coupling through loop corrections
- ➡ 1st and 2nd fermion generation couplings
- Rare and exotic decays (e.g. DM decays)
- ➡ Extra Higgs bosons
- ➡ Tensor structure

	L
Total Integrated Luminosity (ab ⁻¹)	10
Number of Higgs bosons from $e^+e^- \rightarrow HZ$	2,000,000
Number of Higgs bosons from boson fusion	50,000

FCC-ee 0.4% $\sigma_{\rm HZ}$ $\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm b}\bar{\rm b})$ 0.2% 1.2% $\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm c}\bar{\rm c})$ $\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to {\rm gg})$ 1.4% $\sigma_{\rm HZ} \times {\rm BR}({\rm H} \rightarrow {\rm WW})$ 0.9% 0.7% $\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to \tau \tau)$ 3.1% $\sigma_{\rm HZ} \times {\rm BR}({\rm H} \rightarrow {\rm ZZ})$ $\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to \gamma \gamma)$ 3.0% 13% $\sigma_{\rm HZ} \times {\rm BR}({\rm H} \to \mu \mu)$

stat. uncertainties

FCC-ee

ILC Timeline

as proposed by LC Collaboration

CERN (FCC) Timelines

- LHC and HL-LHC operation until ~2035
- Must start now developing FCC concepts to be ready in time

CEPC-SppC Timelines

SppC

20 22	20	20	
20 3	30	40	
R&D	Engineering Design	Construction	Data taking
(2014-2030)	(2030-2035)	(3035-2042)	(2042-2055)