

Presicion Higgs-boson decays in the SM

Alexander Mück RWTH Aachen University

Higgs Couplings 2015 Lumley Castle, October 13, 2015

Higgs decays in the SM - Alexander Mück - p.1/22

• Standard Model Branching Ratios

- status and perspectives
- theory updates and input parameters
- rare exclusive decays
- Differential predictions for Higgs decays
 - $H \to b\overline{b}$

 $\Leftarrow | \longleftrightarrow | \Rightarrow$

• $H \rightarrow 4$ leptons at NLO electroweak and beyond

Branching ratios including error estimates:

 $\Leftarrow | \longleftrightarrow | \Rightarrow$

Higgs decays in the SM - Alexander Mück - p.3/ 22

RNNH Theory status

- Theory uncertainties for $H \rightarrow b\overline{b}$ partial width:
- QCD: $\sim 0.2\%$ uncertainty at NNNNLO (from usual scale variation) EW: $\sim 2\% \rightarrow \sim 0.5\%$ in YR4 at full NLO (now included in latest HDECAY)

New result: full $O(\alpha \alpha_s)$ corrections Mihaila, Schmidt, Steinhauser [arXiv:1509.02294]

- $\Delta^{(\text{weak},\alpha_s)} = -0.29\%$ ($\mu = M_H$) ($\Delta^{(\text{QED},\alpha_s)} = 0.01\%$ is negligible)
- compared to $\Delta^{(\alpha_s^3)} = 0.2\%$ ($\mu = M_H$)

 $\Leftarrow | \longleftrightarrow | \Rightarrow$

• factorization of QCD and EW corrections holds at $\mathcal{O}(30\%)$ $(\Delta^{(\text{weak})}\Delta^{(\alpha_s)} = -0.2\%)$

Higgs decays in the SM - Alexander Mück - p.4/22

Theory uncertainties:

• $H \to \tau^+ \tau^- / \mu^+ \mu^-$: ~ 0.5% at full NLO EW

(and unchanged with respect to YR3)

 $\Leftarrow | \longleftrightarrow | \Rightarrow$

- $H \rightarrow t \bar{t}$: ~ 5% at (NNN)NLO QCD
- H
 ightarrow gg: $\sim 3\%$ at NNNLO approx. QCD/NLO EW
- $H \to \gamma \gamma$: ~ 1% at NLO QCD/NLO EW
- $H \to Z \gamma$: ~ 5% at LO QCD/LO EW

(all included in HDECAY)

Higgs decays in the SM - Alexander Mück - p.5/22

Theory uncertainties for $H \rightarrow WW/ZZ \rightarrow 4f$ partial width:

- QCD: < 0.5% uncertainty at NLO
- EW: $\sim 0.5\%$ at NLO

 $\Leftarrow | \longleftrightarrow | \Rightarrow$

(using Prophecy4f)

New result: recalculation for $H \rightarrow WW/ZZ \rightarrow 4l$

Boselli et al. [arXiv:1503.07394]

• $H \rightarrow WW/ZZ \rightarrow 4l$ at NLOPS EW accuracy

(for differential decays \rightarrow more later)

• perfect agreement with Prophecy4f for partial widths

 $H \rightarrow ee\mu\mu$: 0.24151(8) vs. 0.24165(2) keV $H \rightarrow 4\mu$: 0.13324(2) vs. 0.13325(2) keV

for $M_H = 125 GeV$

Higgs decays in the SM - Alexander Mück - p.6/22

Branching ratios for 4f final states:

 $| \longleftrightarrow | \Rightarrow$

Higgs decays in the SM - Alexander Mück - p.7/ 22

$\begin{array}{ccc} \textbf{ATH} & \textbf{Partial widths} \rightarrow \textbf{BRs} \end{array}$

IOCHSCHULE

errors on partial widths induced by theory and parametric uncertainties :

Channel	$M_{\rm H}~[{\rm GeV}]$	Γ [MeV]	$\Delta \alpha_{\rm s}$	$\Delta m_{\rm b}$	$\Delta m_{ m c}$	$\Delta m_{ m t}$	THU
	122	2.30	-2.3% +2.3%	+3.2% -3.2%	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+2.0\%}_{-2.0\%}$
$\mathrm{H} \to \mathrm{b}\mathrm{b}$	126	2.36	-2.3% +2.3%	+3.3% -3.2%	+0.0% -0.0%	+0.0% -0.0%	+2.0% -2.0%
	130	2.42	+2.3% +2.3%	+3.2% -3.2%	+0.0% -0.0%	+0.0% -0.0%	+2.0% -2.0%
	122	$2.51 \cdot 10^{-1}$	+0.0% +0.0%	$^{+0.0\%}_{-0.0\%}$	$+0.0\% \\ -0.0\%$	$+0.0\% \\ -0.1\%$	+2.0% -2.0%
$\mathrm{H} \to \tau^+ \tau^-$	126	$2.59 \cdot 10^{-1}$	$^{+0.0\%}_{+0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.1\%}_{-0.1\%}$	$^{+2.0\%}_{-2.0\%}$
	130	$2.67 \cdot 10^{-1}$	$^{+0.0\%}_{+0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.0\%}_{-0.0\%}$	$^{+0.1\%}_{-0.1\%}$	$+2.0\% \\ -2.0\%$

YR3 [1307.1347]

- starting point to include error correlations for BRs
- HXSWG theory uncertainties based on existing tools (HDECAY, PROPHECY4F)
- new release of HDECAY \rightarrow reduced THU errors
- parametric uncertainties crucial

updated BRs in YR4

Higgs decays in the SM - Alexander Mück - p.8/22

Parametric uncertainties

Recommendation by HXSWG:

YR3 [1307.1347]: conservative assumptions

 $m_t = 172.5 \pm 2.5 \; \text{GeV}$

HOCHSCHULE

 $\alpha_s(M_Z) = 0.119 \pm 0.002$

$$m_b(m_b) = 4.16 \pm 0.06 \text{ GeV}$$

 $m_c(m_c) = 1.28 \pm 0.03 \text{ GeV}$

new recommendation

Denner, Dittmaier, Grazzini, Harlander, Thorne, Spira, Steinhauser [LHCHXSWG-INT-2015-00

 $m_t = 172.5 \pm 1.0 \; \text{GeV}$ $\alpha_s(M_Z) = 0.118 \pm 0.0015$ (use PDF4LHC recommendation in general) $m_b(m_b) = 4.18 \pm 0.03 \text{ GeV}$ $m_c(3 \text{GeV}) = 0.986 \pm 0.026 \text{ GeV}$ $\Leftarrow | \longleftrightarrow | \Rightarrow$

Higgs decays in the SM – Alexander Mück – p.9/22

more BR calculations

Almeida, Lee, Pokorski, Wells [arXiv:1311.6721]

- recalculation of partial width for $m_H = 125.7 \text{ GeV}$
- using predictions from the literature
- parametric dependence in terms of Taylor coefficients

$$\Gamma_{H \to X} = \Gamma_X^{(\text{ref})} \left(1 + \sum_i a_{\tau_i, X} \overline{\delta \tau_i} \right) \quad \text{with} \quad \overline{\delta \tau_i} = \frac{\tau_i - \tau_{i, ref}}{\tau_{i, ref}}$$

	$\Gamma_X^{(\mathrm{Ref})}/\mathrm{GeV}$	$a_{m_t,X}$	$a_{m_H,X}$	$a_{\alpha(M_Z),X}$	$a_{\alpha_S(M_Z),X}$	$a_{m_b,X}$	$a_{M_Z,X}$	$a_{m_c,X}$	$a_{m_{\tau},X}$	$a_{G_F,X}$
total	3.96×10^{-3}	-3.48×10^{-2}	4.53	8.77×10^{-1}	-1.35	1.4	-3.49	9.05×10^{-2}	1.3×10^{-1}	8.43×10^{-1}
gg	3.57×10^{-4}	-1.62×10^{-1}	2.89	0.	2.49	-7.1×10^{-2}	3.77×10^{-1}	0.	0.	1.
$\gamma\gamma$	1.08×10^{-5}	-2.73×10^{-2}	4.32	2.56	1.8×10^{-2}	9.01×10^{-3}	-1.85	0.	0.	7.24×10^{-1}
$b\bar{b}$	2.17×10^{-3}	8.11×10^{-3}	8.09×10^{-1}	3.76×10^{-2}	-2.46	2.57	-4.75×10^{-1}	0.	0.	9.53×10^{-1}
$c\bar{c}$	9.99×10^{-5}	-4.55×10^{-2}	7.99×10^{-1}	1.02×10^{-2}	-9.17	0.	-1.41	3.59	0.	9.7×10^{-1}
$\tau^+\tau^-$	2.58×10^{-4}	4.74×10^{-2}	9.95×10^{-1}	-2.09×10^{-2}	-2.15×10^{-3}	0.	-1.61×10^{-2}	0.	2.01	1.02
WW^*	9.43×10^{-4}	-1.13×10^{-1}	1.37×10^{1}	3.66	9.04×10^{-3}	0.	-1.21×10^{1}	0.	0.	2.49×10^{-1}
ZZ^*	1.17×10^{-4}	2.28×10^{-2}	1.53×10^{1}	-7.37×10^{-1}	-1.82×10^{-3}	0.	-1.12×10^{1}	0.	0.	2.53
$Z\gamma$	6.88×10^{-6}	-1.54×10^{-2}	1.11×10^{1}	8.46×10^{-1}	0.	-9.76×10^{-3}	-4.82	0.	0.	2.62
$\mu^+\mu^-$	8.93×10^{-7}	4.84×10^{-2}	9.92×10^{-1}	-4.31×10^{-2}	-2.2×10^{-3}	0.	-1.62×10^{-2}	0.	0.	1.02

different way to give complete information m_H treated as input parameter

RNTH more BR calculations

Almeida, Lee, Pokorski, Wells [arXiv:1311.6721]

- BRs and their ratios derived from partial width (as in HXSWG)
- assumptions on parametric errors differ (0.7% for α_s ; 0.7% for m_b ($\overline{\text{MS}}$ mass)) (more optimistic estimates than HXSWG)
- theory uncertainty from scale variation only

 $\Leftarrow | \longleftrightarrow | \Rightarrow$

- pole or $\overline{\text{MS}}$ masses can be used as input for m_b and m_c (HXSWG uses $\overline{\text{MS}}$ masses internally, pole mass input only as bookkeeping device to minimize correlation with α_s)
- complete comparison with HXSWG results not done

Higgs decays in the SM - Alexander Mück - p.11/22

WITH Parametric uncertainties

Different approach to input parameters:

IOCHSCHULF

 $\Leftarrow | \longleftrightarrow | \Rightarrow$

Petrov, Pokorski, Wells, Zhang [arXiv:1501.02803] [arXiv:1509.04173]

• use low-energy observables in global fit

$$\begin{cases}
\widehat{O}_{1}^{\text{low}}(m_{c}, m_{b}, \alpha_{s}, \dots) \\
\widehat{O}_{2}^{\text{low}}(m_{c}, m_{b}, \alpha_{s}, \dots) \\
\widehat{O}_{3}^{\text{low}}(m_{c}, m_{b}, \alpha_{s}, \dots) \\
\vdots
\end{cases}
\end{cases} \Leftarrow \begin{cases}
\frac{\text{Inputs}}{m_{c}} \\
m_{b} \\
\alpha_{s} \\
\vdots
\end{cases}
\Rightarrow \begin{cases}
\widehat{O}_{1}^{\text{Higgs}}(m_{c}, m_{b}, \alpha_{s}, \dots) \\
\widehat{O}_{2}^{\text{Higgs}}(m_{c}, m_{b}, \alpha_{s}, \dots) \\
\widehat{O}_{3}^{\text{Higgs}}(m_{c}, m_{b}, \alpha_{s}, \dots) \\
\vdots
\end{cases}$$

- better understanding of uncertainties
- exemplaric calculation performed

(using moments of $e^+e^- \rightarrow Q\overline{Q}$ inclusive cross sections)

long-time goal for precision Higgs physics

Higgs decays in the SM - Alexander Mück - p.12/22

Parametric uncertainties

HOCHSCHULE

 $\Leftarrow | \longleftarrow | \Rightarrow$

Lepage, Mackenzie, Peskin [arXiv:1404.0319]

- How well can the Higgs BRs be predicted in the far future?
- use lattice gauge theory to improve α_s , m_b , and m_c (e.g. using current-current correlators) (stated errors already now quite small)
- optimistic projection for lattice improvements:

current errors [10] 0.70 0.63 0.61 0.77 0.89 0.78 + PT 0.69 0.40 0.34 0.74 0.57 0.49 + LS 0.30 0.53 0.53 0.38 0.74 0.65 + LS ² 0.14 0.35 0.53 0.20 0.65 0.43 + PT + LS 0.28 0.17 0.21 0.30 0.27 0.21 + PT + LS ² 0.12 0.14 0.20 0.13 0.24 0.17 + PT + LS ² + ST 0.09 0.08 0.20 0.10 0.22 0.09		$\delta m_b(10)$	$\delta \alpha_s(m_Z)$	$\delta m_c(3)$	δ_b	δ_c	δ_g
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	current errors [10]	0.70	0.63	0.61	0.77	0.89	0.78
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ PT	0.69	0.40	0.34	0.74	0.57	0.49
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ LS	0.30	0.53	0.53	0.38	0.74	0.65
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$+ LS^2$	0.14	0.35	0.53	0.20	0.65	0.43
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	+ PT + LS	0.28	0.17	0.21	0.30	0.27	0.21
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$+ PT + LS^2$	0.12	0.14	0.20	0.13	0.24	0.17
ILC goal 0.30 0.70 0.60	$+ PT + LS^2 + ST$	0.09	0.08	0.20	0.10	0.22	0.09
[LC goal] = 0.30 - 0.70 - 0.60							
	ILC goal				0.30	0.70	0.60

time-scale: 10-15 years

in %)

Higgs decays in the SM - Alexander Mück - p.13/22

Exclusive decays: $H \rightarrow J/\Psi \gamma$ and $H \rightarrow \Upsilon \gamma$ Bodwin, Petriello, Stoynev, Velasco [arXiv:1306.5770]

Bodwin, Pétriello, Stoynev, Velasco [arXiv:1306.5770] Kagan, Perez, Petriello, Soreq, Stoynev, Zupan [arXiv:1406.1722] Bodwin, Chung, Ee, Lee, Petriello [arXiv:1407.6695] König, Neubert [arXiv:1505.03870]

- Use rare decays to measure $Hc\overline{c}$ and $Hb\overline{b}$ couplings
- destructive interference of direct and indirect contributions

(calculated using QCD factorization) Higgs decays in the SM – Alexander Mück – p.14/22

RNTH Rare decays

ISCHULE

Exclusive decays: $H \to J/\Psi \gamma$ and $H \to \Upsilon \gamma$

• SM results: König et al. (arXiv:1505.03870)

 $\begin{aligned} &\mathsf{Br}(h \to J/\psi \,\gamma) = (2.95 \pm 0.07_{f_{J/\psi}} \pm 0.06_{\text{direct}} \pm 0.14_{h \to \gamma\gamma}) \cdot 10^{-6} \,, \\ &\mathsf{Br}(h \to \Upsilon(1S) \,\gamma) = (4.61 \pm 0.06_{f_{\Upsilon(1S)}} \stackrel{+1.75}{_{-1.21}}_{\text{direct}} \pm 0.22_{h \to \gamma\gamma}) \cdot 10^{-9} \,, \\ &\mathsf{Br}(h \to \Upsilon(2S) \,\gamma) = (2.34 \pm 0.04_{f_{\Upsilon(2S)}} \stackrel{+0.75}{_{-0.99}}_{\text{direct}} \pm 0.11_{h \to \gamma\gamma}) \cdot 10^{-9} \,, \\ &\mathsf{Br}(h \to \Upsilon(3S) \,\gamma) = (2.13 \pm 0.04_{f_{\Upsilon(3S)}} \stackrel{+0.75}{_{-1.12}}_{\text{direct}} \pm 0.10_{h \to \gamma\gamma}) \cdot 10^{-9} \,. \end{aligned}$

• SM results: Bodwin et al. (arXiv:1407.6695) $Br(h \to J/\psi \gamma) = (2.79 + 0.15) \cdot 10^{-6}$ $Br(h \to \Upsilon(1S) \gamma) = (0.61 + 1.74) \cdot 10^{-9}$ $Br(h \to \Upsilon(2S) \gamma) = (2.02 + 1.86) \cdot 10^{-9}$ $Br(h \to \Upsilon(3S) \gamma) = (2.44 + 1.75) \cdot 10^{-9}$

 $\Leftarrow | \longleftrightarrow | \Rightarrow$

Higgs decays in the SM – Alexander Mück – p.15/22

Exclusive decays: $H \to J/\Psi \gamma$ and $H \to \Upsilon \gamma$

König, Neubert [arXiv:1505.03870]

Higgs decays in the SM - Alexander Mück - p.16/22

RNH Dalitz Decay

RHEINISCH-WESTFÄLISCHE

• $H \rightarrow e^+ e^- \gamma$ not Yukawa suppressed at 1-loop

• $H \rightarrow e^+ e^- \gamma$ to be defined by suitable cuts

Abbasabadi, Bowser-Chao, Dicus, Repko [hep-ph/9611209] Chen, Qiao, Zhu [arXiv:1211.6058] Dicus, Repko [arXiv:1302.2159] Passarino [arXiv:1308.0422]

• use invariant masses $m_{e^+e^-}$, $m_{e^\pm\gamma}$ as identification cuts Dicus, Repko [arXiv:1302.2159] Passarino [arXiv:1308.0422]

• use proper definition of pseudo-observable $H \rightarrow Z\gamma$ Passarino [arXiv:1308.0422]

Higgs decays in the SM - Alexander Mück - p.17/22

now two calculations available

Anastasiou, Herzog, Lazopoulos [arXiv:1110.2368] Del Duca, Duhr, Somogyi, Tramontanoe, Trocsany [arXiv:1501.07226]

 $\Leftarrow | \longleftrightarrow | \Rightarrow$

Higgs decays in the SM - Alexander Mück - p.18/22

now two calculations available

Anastasiou, Herzog, Lazopoulos [arXiv:1110.2368] Del Duca, Duhr, Somogyi, Tramontanoe, Trocsany [arXiv:1501.07226]

 $\Leftarrow | \longleftrightarrow | \Rightarrow$

Higgs decays in the SM - Alexander Mück - p.18/22

Fully differential $H \rightarrow 4l$

Now two event generators available:

Prophecy4f at NLO EW for all 4I final states

Bredenstein, Denner, Dittmaier, Weber [0708.4123]

Denner, Dittmaier, AM

http://omnibus.uni-freiburg.de/~sd565/programs/prophecy4f/prophecy4f.html

Hto4I at NLOPS EW for 4 charged leptons

Boselli, Carloni Calame, Montagna, Nicrosini, Piccinini [1503.07394] http://www.pv.infn.it/hepcomplex/hto41.html

interface using LHE format

 $\Leftarrow | \longleftarrow | \Rightarrow$

complete agreement at NLO EW

complete agreement at NLO EW

 $\Leftarrow | \longleftrightarrow | \Rightarrow$

Higgs decays in the SM - Alexander Mück - p.20/22

complete agreement at NLO EW

 $\Leftarrow | \longleftrightarrow | \Rightarrow$

Higgs decays in the SM - Alexander Mück - p.20/22

Fully differential $H \rightarrow 4l$

beyond NLO EW

 \longrightarrow $\mid \Rightarrow$

RHEINISCH-WESTFÄLISCHE TECHNISCHE

Higgs decays in the SM - Alexander Mück - p.21/22

Fully differential $H \rightarrow 4l$

• beyond NLO EW

RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN

Higgs decays in the SM - Alexander Mück - p.21/22

- **Branching ratios**
 - no big news

 $\Leftarrow | \leftarrow \rightarrow | \Rightarrow$

- HXSWG update due to improved TUs and PUs
- quest for precise input ongoing
- rare exclusive decays for high-luminosity LHC
- **Differential Higgs decays**
 - Hto4I as new tool at NLOPS EW