Flavour Physics at the IPPP

Alexander Lenz

IPPP Durham

Outline

Motivation for Flavour Physics

- Search for the Origin of Matter in the Universe
- Identify New Physics (NP) Effects
- Constrain Models for New Physics

Status Quo

- The SM rules
- Test of our theoretical Tools
- Still Space for sizable New Physics Effects
- Several interesting Deviations are still there
- Some Roads to follow
 - Higher Precision necessary
 - New Observables in the Search for New Physics
- FP@IPPP

Flavour Physics

There are (at least) six kinds (=flavours) of quarks

$$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix} \begin{pmatrix} q = +2/3 \\ q = -1/3 \end{pmatrix}$$

• Proton $p = |uud\rangle$

■ (Heavy) Flavour Physics describes hadrons with a charm- or a bottom-quark

	$D^0 = (\bar{u}c)$	$D^+ = (\bar{d}c)$	$D_s^+ = (\bar{s}c)$	$\Lambda_c = (udc)$
Mass (GeV)	1.86486	1.86962	1.96850	2.28646
Lifetime (ps)	0.4101	1.040	0.500	0.200

	$B_d = (\bar{b}d)$	$B^+ = (\bar{b}u)$	$B_s = (\bar{b}s)$	$B_c^+ = (\bar{b}c)$	$\Lambda_b = (udb)$
Mass (GeV)	5.27958	5.27926	5.3667	6.2745	5.6194
Lifetime(ps)	1.519	1.638	1.512	0.500	1.451

Why Flavour Physics?

CP violation till now only found in quark flavour physics

- Theoretically clean: $\alpha_s(m_b) \approx 0.2 \approx \Lambda/m_b$
- many processes strongly suppressed in the SM due to quantum corrections:
 - $B_s \rightarrow \mu\mu$ or $b \rightarrow s\gamma$: Flavour Changing Neutral Currents

Strong constraints on many NP models

■ Many experiments, e.g. LHCb, ATLAS, CMS; Super-Belle, Panda, LINAC, TLEP,...

Status Quo: The SM rules

- Huge # of flavour observables are SM-like, e.g. lifetimes, hadronic decays,...
- Unitarity triangle is SM like HFAG, CKMfitter (at CKM 2014), UTfit

 $\sin 2\beta^{direct} = 0.679 \pm 0.020 \qquad \gamma^{direct} = \left(73.2^{+6.3}_{-7.0}\right)^{\circ}$ $\sin 2\beta^{indirect} = 0.774^{+0.017}_{-0.036} \qquad \gamma^{indirect} = \left(66.4^{+1.3}_{-2.5}\right)^{\circ}$

There is still space for sizable NP effects

- Even very rare processes are SM-like, e.g.
 - $B_s \to \mu \mu$
 - $\blacklozenge \ b \to s\gamma$
 - B-mixing: ΔM_q , $\Delta \Gamma_s$, a^q_{sl}

٠.

There is still space for sizable NP effects

Status Quo: Deviations

- 1. Huge # of flavour observables are **SM-like**
- 2. Still some sizable space for NP effects
- 3. There are several interesting deviations in the present data

Tree-level observables

- V_{ub} and V_{cb} about 3 σ
- $B \rightarrow \tau \nu$ about 2 σ
- Lepton universality: $R(D^{(*)})$ 3.4 σ
- direct/indirect determination of the CKM angle γ

Loop-induced observables

- direct/indirect determination of the CKM angle β ; about 2 σ
- The dimuon asymmetry about 3 σ
- $\bullet ~B \rightarrow K^{(*)} ll$ Br, P_5' up to 4 σ
- $B_s \rightarrow \phi ll$ Br
- Lepton universality: $Br(B^+ \to K^+ \mu \mu)/Br(B^+ \to K^+ ee)$ deviates by 2.6 σ
- $Br(B_d \rightarrow \mu\mu)/Br(B_s \rightarrow \mu\mu)$ deviates by 2.3 σ 1411.4413

Observables in the Charm-sector

CPV in D-decays?

Roads to follow

- 1. Huge # of flavour observables are SM-like
- 2. Still some sizable space for NP effects
- 3. There are several interesting deviations in the present data

Prepare for detecting smaller (i.e. not huge) deviations from the SM

- 1. Higher precision in theory and experiment NNLO-QCD, Lattice
- 2. Challenge some text-book wisdom, e.g.
 - Penguins are negligible
 - NP effects in tree-level decays are negligible
- 3. Investigate quantities that are difficult to measure, e.g.:
 - $B_q \rightarrow \tau \tau$, inclusive non-leptonic decays, $\Delta \Gamma_d$,
- 4. Look at the charm sector
- 5. Find NP in flavour observables

- NP effects in penguins are quite well studied many fits for C_7 , C_9 , C_{10} ,...
- No NP effects in tree-level decays, i.e. C_1 and C_2 was a reasonable approximation some years ago, but should be challenged in view of the current experimental precision
- First systematic studies of NP effects in C_1 and C_2 in 2014:
 - Effects on $\Delta \Gamma_d$: Bobeth, Haisch, AL, Pecjak, Tetlalmatzi-Xolocotzi, 1404.2531
 - $B \rightarrow K\pi$ -puzzle: Bobeth, Gorbahn, Vickers, 1409.3252
 - Effects on CKM-angle γ : Brod, AL, Tetlalmatzi-Xolocotzi, Wiebusch, 1412.1446
- Look at observables that
 - depend strongly on C_1 and C_2
 - can be reliably predicted
 - are precisely measured
 - \Rightarrow take bounds from

 $B \to D\pi, b \to s\gamma, b \to d\gamma$, lifetimes, $\sin \beta, B \to \pi\pi, \Delta \Gamma_s$ and $a_{sl}^{d,s}$

Roads to follow - NP in tree-level decays

Bobeth, Haisch, AL, Pecjak, Tetlalmatzi-Xolocotzi, 1404.2531

Is Im $\Delta C_1 = \pm 0.1$ large or small?

Roads to follow - NP in tree-level decays

Effects on the determination of the CKM angle γ : aim < 1°! NP effects in C_1 and C_2 induce a shift $\delta\gamma$ in the determination of γ

$$\delta\gamma = (r_A - r_{A'})\frac{\mathrm{Im}\Delta C_1}{C_2}$$

with the ratios of hadronic matrix elements (different topologies!)

$$r_{A'} = \frac{\langle \bar{D}^0 K^- | Q_1^{\bar{u}cs} | B^- \rangle}{\langle \bar{D}^0 K^- | Q_2^{\bar{u}cs} | B^- \rangle} \qquad r_A = \frac{\langle D^0 K^- | Q_1^{\bar{c}us} | B^- \rangle}{\langle D^0 K^- | Q_2^{\bar{c}us} | B^- \rangle}$$

with naive estimates for r_A and $r_{A'}$ we obtain

$$\mathrm{Im}\Delta C_1 = \pm 0.1 \Rightarrow \delta \gamma = \pm 4^{\circ}$$

This is huge!

Roads to follow - NP in tree-level decays

How to improve the bounds on C_1 and C_2 ?

- Include more observables
- NNLO-QCD to lifetimes and $\Delta \Gamma_s$
- smaller experimental error of $a_{sl}^{q,d}$
- Do a real fit till now only scan
- Investigate more effects of NP in C_1 and C_2 , e.g. $\Delta \Gamma_d$
- Identify NP models with effects in C_1 and C_2
- Include NP effects in penguin coefficients

How to improve the bounds on $\gamma \mathbf{?}$

Improved estimates on r_A and $r_{A'}$

work in progress

FP@IPPP I: Staff

- '01 '10 Patricia Ball Heavy Flavour (now retired)
- '11 Thorsten Feldmann Heavy Flavour (now University of Siegen)

- since '05 Silvia Pascoli Lepton Flavour not covered here
- since 1.10.'12 Ben Pecjak representing top physics
- since 1.10.'12 Alexander Lenz representing beauty and charm
- since '01 Valery Khoze Part-time Flavour: exclusive physics

FP@IPPP II: People doing the real work

- Post-Docs
 - Since 10/13 Martin Wiebusch
 - Since 10/14 Rhorry Gauld

- PhD-students
 - Since 10/12 Gilberto Tetlalmatzi-Xolocotzi
 - Since 10/13 Darren Scott
 - Since 10/14 Matthew Kirk

FP@IPPP III: Recent Projects

1412.1446 Brod, AL, Gilberto, Martin NP in tree-level 1409.6963 AL CKM conference 1408.0222 AL + 12/13 students Testing QM with B-mixing 1405.3601 AL HQE and lifetimes - book contribution 1404.6197 AL Selected topics in HF physics - award 1404.2531 Bobeth, Haisch, AL, Gilberto, Ben NP in $\Delta\Gamma_d$ 1311.6447 AL Charm conference 1308.6176 AL... TLEP 1305.5390 Krinner, AL, Rauh NLO-QCD to $b \rightarrow c \bar{c} s$ 1305.3588 AL, Rauh τ_D in HQE AHEP 2013 AL SM4 review 1209.1101 Eberhardt, Herbert, Lacker, AL, Nierste, Martin - Kill SM4 1503.00859 Frings, Nierste, Martin Penguin pollution 1412.6102 Martin HEP Math 1411.2029 Ghosh, Martin Dim 6 triple gluon operator 1403.1264 Baglio, Eberhardt, Nierste, Martin Higgs pair production in 2HDM 1501.01938 Gilberto Conference - Freudenstadt

FP@IPPP IV: Recent Projects

1409.5294 Broggio, Ferroglia, Ben, Zhang NNLO 1409.3989 Ferroglia, Marzani, Ben, Yang Conference - top pair in SCET 1404.2531 Bobeth, Haisch, AL, Gilberto, Ben NP in $\Delta\Gamma_d$ 1310.3836 Ferroglia, Marzani, Ben, Yang Boosted top 1306.1537 Ferroglia, Ben, Yang Top quark pair production, NNLO 1212.5859 Ahrens, Ferroglia, Neubert, Ben, Yang Conference - FB and A_{charge}

1409.4785 Harland-Lang, Valery, Ryskin Exclusive double J/ψ 1405.0018 Harland-Lang, Valery, Ryskin, Stirling Durham model 1312.4553 Harland-Lang, Valery, Ryskin Exclusive meson pair 1304.4262 Harland-Lang, Valery, Ryskin, Stirling Perturbative ... 1302.2004 Harland-Lang, Valery, Ryskin, Stirling Exclusive production vs $\eta(')$ 1204.4803 Harland-Lang, Valery, Ryskin, Stirling Phenomenology ... 1204.4803 Harland-Lang, Valery, Ryskin, Stirling Phenomenology ... CMS note Installation forward shower counter, also LHCb, ALICE

FP@IPPP V: Workshops

Organisation

- UK Flavour Physics in Durham 2013
- LHCb Associateship-workshop in the Lake District 2013
- Kick-off workshop for Senior Experimental Fellowship in Durham 2014
- YETI Flavour in Durham 2014
- LHCb-UK meeting in Durham 2014
- $B \rightarrow Kll$ workshop in London 2014
- D0/ATLAS Associateship-workshop in the Lancaster 2014
- Co-organisation with financial contributions
 - CHARM 2013 in Manchester
 - UK HEP Forum 2013 Quarks and Leptons in Abingdon
 - BEAUTY 2014 in Edinburgh
 - BEACH 2014 in Birmingham
- Many co-organisation without financial contributions, e.g.
 - LHCb-UK meeting 2014 in Bristol

FP@IPPP VI: Associates, Fellows,...

- IPPP Associateship
 - 2012/2013: Chris Parkes, Marco Gersabeck, Silvia Borghi (LHCb -Manchester)
 - 2013/2014: Guennadi Borissov (D0, ATLAS Lancaster)
- Senior experimental fellowships
 - 2013/14: Ulrik Egede et al. (LHCb Imperial London) International Workshop at Imperial with 32 participants

FP@IPPP VII: Flavour seminars in the UK

- Manchester 2012
- Lancaster 2013
- Edinburgh 2013
- Cambridge, Cavendish 2013
- Cambridge, DAMTP 2013
- Southampton 2013
- Birmingham 2013
- Warwick 2013
- Trinity College, Dublin 2014
- Plymouth 2014
- Bristol 2014
- Glasgow 2015

- Liverpool 2014
- Southampton 2013
- Lancaster 2014
- Edinburgh 2015
- Liverpool 2015
- Sussex 2015
- Cambridge, Cavendish 2013
- Imperial, London 2014

FP@IPPP: What's next?

Charm, Beauty and Top within the IPPP - current cooperations:

- **Celine Boehm:** DM vs Flavour constraints
- Valya Khoze: 2HDM vs flavour
- **Frank Krauss**: MC studies of inclusive decays and update of Monte Carlo Input
- Michael Spannowsky: Higgs/EW vs flavour

Conferences:

- Contribution to Lattice 2016, Southampton
- Programme Advisory Committee CKM 2016, India
- Contribution to KAON 2016, Birmingham
- Heavy Flavour 20xx on Islay
- Application for FPCP 2017 in Durham