Imperial College London

100 years of living science

Rare B Decays Ulrik Egede

Flavour Physics Forum 21 June 2007

Outline

Motivation for investigating Rare B Decays

- A brief history of Rare Decays
- Some selected examples from current analysis
- The prospect of Rare Decay analysis in the future

Rare decays

I will use the term Rare B Decays to mean

"FCNC penguin decays with electroweak Standard Model contributions".

Model	B_d Unitarity	Time-dep. CPV	Rare B decay	Other signals
mSUGRA(moderate $\tan \beta$)	-	-	-	-
mSUGRA(large $\tan \beta$)	B_d mixing	-	B ightarrow (D) au u	$B_s ightarrow \mu \mu$
			$b ightarrow s \ell^+ \ell^-$	B_s mixing
SUSY GUT with ν_R	-	$B ightarrow \phi K_S$	-	B_s mixing
		$B o K^* \gamma$		τ LFV, n EDM
Effective SUSY	B_d mixing	$B \to \phi K_S$	$A_{CP}^{b\to s\gamma}, b\to s\ell^+\ell^-$	B_s mixing
KK graviton exchange	-	-	$b ightarrow s \ell^+ \ell^-$	-
Split fermions	B_d mixing	-	$b \rightarrow s \ell^+ \ell^-$	$K^0\overline{K}{}^0$ mixing
in large extra dimensions				$D^0 \overline{D}^0$ mixing
Bulk fermions	B_d mixing	$B \rightarrow \phi K_S$	$b \rightarrow s \ell^+ \ell^-$	B_s mixing
in warped extra dimensions				$D^0 \overline{D}^0$ mixing
Universal extra dimensioins	-	-	$b ightarrow s \ell^+ \ell^-$	$K \to \pi \nu \overline{\nu}$
			$b ightarrow s \gamma$	

hep-ph/0503261

21 June 2007

Ulrik Egede

Introduction

An effective theory for New Physics

 $\mathscr{L}_{\text{eff}} = \mathscr{L}_{\text{gauge}}(A_i, \Psi_j; \mathbf{Y}, \mathbf{C}) + \mathscr{L}_{\text{Higgs}}(A_i, \Psi_j, \phi; \langle \phi \rangle) + \sum_{d>4} \frac{\mathbf{C}^n}{\Lambda^{d-4}} O_n^d$

 O_d^n : All possible operators with heavy d.o.f c^n : Parameters arising from New Physics Λ : Energy scale of New Physics

Separate terms for left and right handed currents

Some left handed (C⁷, C¹⁰) are present through loops in the SM

All right handed currents represent NP.

Introduction

SM processes in higher order operators

Rare decays "saw" the c quark

Look at $K^0_{\ L} \rightarrow \mu^+\mu^-$

Naive expectation is for $K^0_{\ L} \to \mu^+\mu^-$ and $K^0_{\ L} \to \gamma\gamma$ BR to be similar.

However, experimentally we observe

 $\Gamma(K_L^0 \to \mu^+ \mu^-) \approx 2 \cdot 10^{-5} \Gamma(K_L^0 \to \gamma \gamma)$

Rare decays "saw" the c quark

Add a (at the time) hypothetical c quark

The GIM mechanism is creating amplitudes of the opposite sign.

 $K^{0}_{\mu} \rightarrow \mu^{+}\mu^{-}$ heavily suppressed.

For $K_{L}^{0} \rightarrow \gamma \gamma$ the u and c mass difference becomes important and amplitude almost unaffected.

Rare decays "saw" the c quark

Current understanding is that $K^0_{\ L} \rightarrow \mu^+ \mu^-$ is dominated by the 2-photon exchange.

Phys Rev D10, 897 (1974)

Thus $K^0_{\ I} \rightarrow \mu^+ \mu^-$ suppressed at the α^2 level.

History

First penguin decay

Analysis strategy High energy photon $2.1 < E_{\gamma} < 2.9 \text{ GeV}$ Rejection of π^0 candidates Event shape criteria to reject non-B background. PRL 71,674

First penguin decay

Significance

- Evaluated from likelihood distributions of signal and background samples
- 0.11% probability to be a background fluctuation.

First penguin decay

Huge increase in statistics for decay

Experiment	Year	Pub	Events	BR (×10 ⁻⁶)
CLEO	1993	PRL 71,674	8	$45.5 \pm 7.0 \pm 3.4$
BELLE	2004	PR D69, 112001	474	$40.1 \pm 2.1 \pm 1.7$
BaBar	2004	PR D70, 112006	645	$39.2 \pm 2.0 \pm 2.4$
LHCb	2009?		68000	

Theoretical prediction of BR cannot match experimental precision

Look at inclusive decays

Look at at other observables like CP violation and polarisation

Results from running experiments

At the moment results are dominated by the B-factories Results from the Tevatron are also starting to arrive Far too many results so will only highlight a few The inclusive $b \rightarrow s \gamma$ for measurement of absolute BR Time dependent CP violation measurement in $B_d \rightarrow K^{*0} \gamma$ Search for the decay $B_s \rightarrow \mu^+\mu^-$

The $B \to K^* \, \gamma$ inclusive analysis

Phys.Rev.Lett.93:061803,2004 (BELLE, 140 fb⁻¹)

Challenge of analysis is the very large background from light quark events

Strategy

Subtract light quark background with off resonance sample Use event shape for further rejection

Apply veto on γ 's compatible with π^0 and η

Current results

The $B \to K^* \, \gamma$ inclusive analysis

Composition of background after off resonance subtraction

Signal Decays of π^0 Decays of η e and Hadrons Bremsstrahlung Beam-gas Decays of ω (783) Decays of J/ψ Other decays

Current results

The $B \to K^* \, \gamma$ inclusive analysis

Final spectra for $1.8 < E_v < 2.8 \text{ GeV}$

 $BR = (3.55 \pm 0.32 \pm 0.30 \pm 0.10) \times 10^{-4}$

Energy interval contains 95% of spectra Spectra compatible with zero above 2.8 GeV

Moments of distribution measured as well

The $B \to K^* \, \gamma$ inclusive analysis

Many new physics models are heavily constrained by the inclusive BR.

The minimal Universal Extra Dimension (mUED) predicts a lower BR

Limits can be set on the compactification radius

CP violation in $B \to K^{*0} \, \gamma$

In the SM there is limited interference between $B_d \rightarrow K^{*0} \gamma$ and $\overline{B}_d \rightarrow \overline{K}^{*0} \gamma$

First dominated by left handed photon, second by right Only $O(m_s/m_b)$ effects, S_{th}=-0.022±0.015

Phys.Lett.B642:478-486,2006 (Ball & Zwicky)

Time dependent CP violation probes for right handed currents from new physics

Need to look at $K^{*0}/\overline{K}^{*0} \rightarrow K_s^0 \pi^0$ to have CP eigenstate Challenge of analysis is the reconstruction of the signal vertex

Intersect the reconstructed K^0_{s} with the Interaction Point Use $B^0 \rightarrow J/\psi K^0_{s}$ as control sample after removing J/ψ . Current results

CP violation in $B \to K^{*0} \, \gamma$

$$A_{\rm CP}(t) = \frac{\Gamma(\overline{B}^0 \to K^0_s \pi^0 \gamma) - \Gamma(B^0 \to K^0_s \pi^0 \gamma)}{\Gamma(\overline{B}^0 \to K^0_s \pi^0 \gamma) + \Gamma(B^0 \to K^0_s \pi^0 \gamma)} = S\sin(\Delta m \Delta t) - C\cos(\Delta m \Delta t)$$

PR D74,111104(R) (BELLE)

$$S_{K^{*0}\gamma} = -0.32 \pm 0.35 \pm 0.05$$
$$C_{K^{*0}\gamma} = 0.20 \pm 0.20 \pm 0.06$$

Would still like factor 10 better resolution Super B-factory will eventually provide this.

21 June 2007

Ulrik Eaede

Ulrik Eaede

The b \rightarrow d penguin

Rate suppressed by factor 25 relative to $b \rightarrow s$ penguin

Assuming Unitarity give us

 $|V_{ts}/V_{td}|^2$

CKM angle γ Phys.Rev.D75:054004,2007, Ball, Jones Zwicky

Small annihilation diagram for B⁺ as well

Might give larger direct CP violation (~ 10%)

The $b \rightarrow d$ penguin

BaBar observation PRL 98, 151802 (2007)

Experimental challenges similar to $b \rightarrow s \gamma$

But in addition need to reject $B \rightarrow X_s \gamma$ by using PID

91 events (6.4 σ significance).

BR (B $\rightarrow \rho/\omega \gamma$) = (1.25±0.25±0.09) × 10⁻⁶

$B_s \rightarrow \mu^+ \mu^-$

Cross sections for Higgs mediated processes in SUSY enhanced by factor tan⁶β.

$$B(B_s \to \mu\mu) \\ \sim 5 \times 10^{-7} \left(\frac{\tan\beta}{50}\right)^6 \left(\frac{300GeV}{M_A}\right)^4$$

Turns the decay into sensitive SUSY probe.

At the same time SM prediction has very low uncertainty.

SM BR is ~ 3.5 10⁻⁹

Current results

Experimental limit on BR(B_s \rightarrow µ⁺µ⁻)

Normalise decay to $B^{\scriptscriptstyle +} \to J/\psi \; K^{\scriptscriptstyle +}$

$$BR(B_s \to \mu^+ \mu^-) = \frac{N_{Bs}}{N_{B+}} \frac{\alpha_{B+} \cdot \varepsilon_{B+}^{total}}{\alpha_{Bs} \cdot \varepsilon_{Bs}^{total}} \frac{f_{b \to B+}}{f_{b \to Bs}} BR(B^+ \to J/\psi K^+) BR(J/\psi \to \mu^+ \mu^-)$$

Select on same data and apply identical identification criteria Results @ 90% CL

CDF (0.8 fb⁻¹) BR < 8.0×10^{-8} D0 (2 fb⁻¹) BR < 7.5×10^{-8} Limits about a factor 20 above SM prediction

D0 : Expect 1.5±0.3, observe 2

LHCb performance on BR($B_s \rightarrow \mu^+ \mu^-$)

Will bring discovery and eventually precision measurement.

BR(x10⁻⁹)

Rare decay searches

Comparison of current search limits and SM predictions

The strength of LHCb

Many measurements from $B_{d}^{} \rightarrow K^{*0} \mu^{+} \mu^{-}$

- Look at decay in terms of transversity amplitudes $A_{\perp}, A_{\parallel}, A_{0}$ for left and right handed currents.
- Good variables with small theoretical error in the Standard Model are:
 - Forward backward asymmetry A_{FB} (small error on zero point)

$$A_T^{(1)}(s) = \frac{-2\text{Re}(A_{\parallel}A_{\perp}^*)}{|A_{\perp}|^2 + |A_{\parallel}|^2}, \quad A_T^{(2)}(s) = \frac{|A_{\perp}|^2 - |A_{\parallel}|^2}{|A_{\perp}|^2 + |A_{\parallel}|^2}.$$

Transverse asymmetries (insignificant error at $q^2 < 6 \text{ GeV}^2$):

$$F_L(s) = \frac{|A_0|^2}{|A_0|^2 + |A_{\perp}|^2 + |A_{\perp}|^2}$$

Fraction of K* polarization (small error):

$\boldsymbol{B}_{d} \to \boldsymbol{K^{*0}} \boldsymbol{\mu^{\text{+}}} \boldsymbol{\mu^{\text{-}}} \text{ in LHCb}$

Overall efficiency is 1.1% with a B/S~0.5 Yield in 2 fb⁻¹ of above 7000 events expected Background dominated by semi-leptonic B decays

Resolution of 0.53 GeV² in zero point

$\boldsymbol{B}_{d} \to \boldsymbol{K^{*0}} \boldsymbol{\mu^{\scriptscriptstyle +}} \boldsymbol{\mu^{\scriptscriptstyle -}} \text{ in LHCb}$

The transversity asymmetries are sensitive to new right handed currents.

As an example explore a set of MSSM models that all satisfy current experimental constraints

21 June 2007

$\boldsymbol{B}_{d} \to \boldsymbol{K^{*0}} \boldsymbol{\mu^{\scriptscriptstyle +}} \boldsymbol{\mu^{\scriptscriptstyle -}} \text{ in LHCb}$

Central q² region is favoured by theory

q^2 region	$A_{\rm FB}$		$A_{T}^{(2)}$		F_L	
$(\mathrm{GeV}^2\!/c^4)$	$2\mathrm{fb}^{-1}$	$10{\rm fb}^{-1}$	$2\mathrm{fb}^{-1}$	$10{\rm fb}^{-1}$	$2\mathrm{fb}^{-1}$	$10{\rm fb}^{-1}$
0.05 - 1.00	0.034	0.017	0.14	0.07	0.027	0.011
1.00 - 6.00	0.020	0.008	0.42	0.16	0.016	0.007
6.00 - 8.95	0.022	0.010	0.28	0.13	0.017	0.008

Result from 2 fb⁻¹ toy MC

21 June 2007

Use of B-beam in a Super B-factory

Take advantage of Y(4S) production

- Reconstruct very large sample of fully or partially B decays
- Then look in remainder of event for signature of signal decay.
- Search for invisible decays like $B \rightarrow vv$ possible.
- Strategy currently used in BaBar and BELLE to set limit for $B \rightarrow K vv$ at 4 10⁻⁵ level.
 - A Super B-factory should be able to see signal

Summary

- Rare decays has a long history of providing hints for new physics
- With current results strictest limits come from
 - Inclusive $b \rightarrow s \gamma$
 - Searches for $B_{_{S}} \rightarrow \mu^{\scriptscriptstyle +} \, \mu^{\scriptscriptstyle -}$
- Future will bring
 - Long range of measurement for $B_d \to K^{*0} \ \mu^+ \ \mu^-$
 - CP violation and polarisation results for $B_{_d} \rightarrow K^{\star _0} \, \gamma$
 - Observation and precise BR measurement of $B_s \rightarrow \mu^+ \mu^-$
 - And much more ...
- Combination of all Rare Decay results will provide similar constraints to current CKM fits.