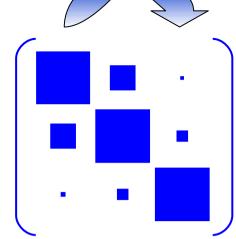
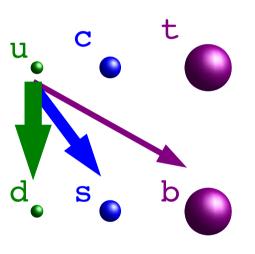
CKM fits: new physics and perspectives

Marcella Bona LAPP


http://www.utfit.org


Coseners Heavy Flavour Forum June 21st, 2007

ckm matrix and unitarity triangle

$$V_{CKM} = \begin{pmatrix} Vud & Vus & Vub \\ Vcd & Vcs & Vcb \\ Vtd & Vts & Vtb \end{pmatrix} \simeq \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\overline{\rho} - i\overline{\eta}) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \overline{\rho} - i\overline{\eta}) & -A\lambda^2 & 1 \end{pmatrix}$$

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

$$|lpha=\pi-eta-\gamma$$

normalized:

 $B^{\circ} \rightarrow \pi\pi, \rho\pi$

normalized:

 $\gamma = atan$

many observables functions of ρ ed η :

$$eta = atan\left(\frac{ar{\eta}}{(1-ar{a})}\right)$$

outline

- summary of the SM fit (very quickly)
- few words on the" tension" (also very quickly)
- new physics with the model independent analysis:
 - new new-physics-oriented constraints
 - ightharpoonup results in K, B_d , B_s sectors for NP parameters
- MFV scenario analysis and results
- perspective with the future machines

the method and the inputs:

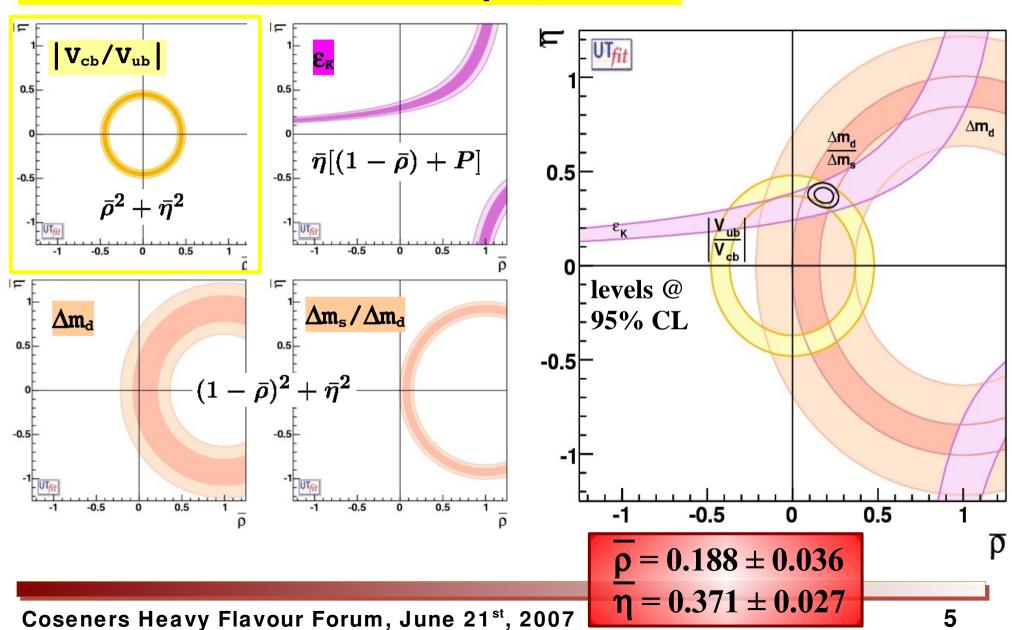
Bayes Theorem

$$egin{aligned} f(ar
ho,ar\eta,X|c_1,...,c_m) &\sim \prod_{j=1,m} f_j(\mathcal{C}|ar
ho,ar\eta,X) st \ X \equiv x_1,...,x_n = m_t,B_K,F_B,... \end{aligned} egin{aligned} \mathcal{C} \equiv c_1,...,c_m = \epsilon,\Delta m_d/\Delta m_s,A_{CP}(J/\psi K_S),... \end{aligned} egin{aligned} f_j(x_i)f_0(ar
ho,ar\eta) \end{aligned}$$

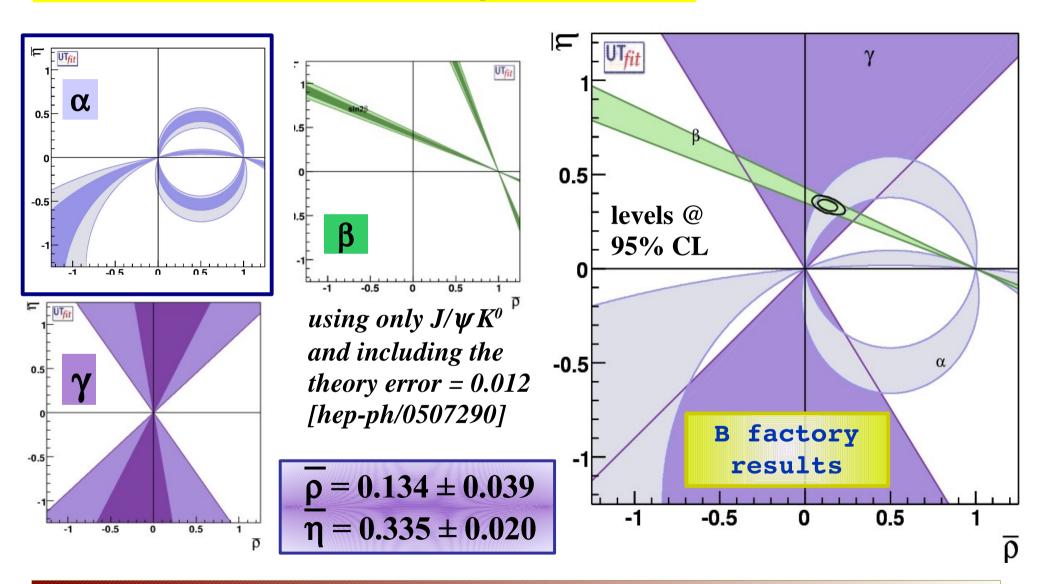
 $egin{array}{c|c} (b
ightarrow u)/(b
ightarrow c) & ar
ho^2+ar\eta^2 \ & ar\kappa & ar\eta[(1-ar
ho)+P] \ & \Delta m_d & (1-ar
ho)^2+ar\eta^2 \ & \Delta m_d/\Delta m_s & (1-ar
ho)^2+ar\eta^2 \ & A_{CP}(J/\psi K_S) & \sin 2eta \ \end{array}$

 $egin{aligned} ar{\Lambda}, \lambda_1, F(1), & ... \ B_K \ f_B^2 B_B \ ar{\xi} \ \end{array}$

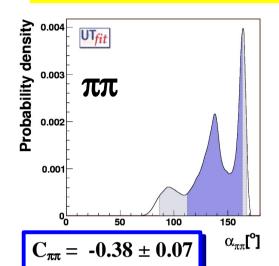
Standard Model +
OPE/HQET/
Lattice QCD
to go


from quarks
to hadrons

M. Bona et al. (UTfit Collaboration) JHEP 0507:028,2005 hep-ph/0501199


M. Bona et al. (UTfit Collaboration)

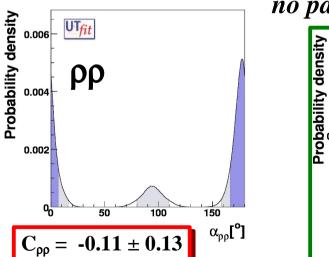
June JHEP 0603:080,2006 hep-ph/0509219

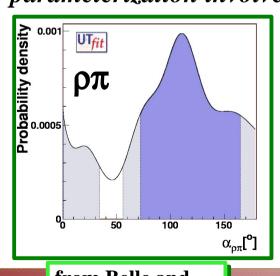

LEP-style analysis in the ρ - η plane:

angle constraints in the $\overline{\rho}$ - $\overline{\eta}$ plane:

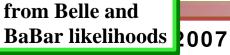
extraction of α:

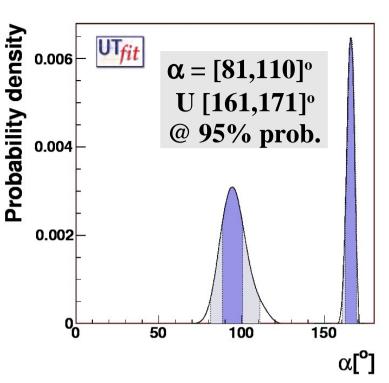
 $S_{\pi\pi} = -0.61 \pm 0.08$

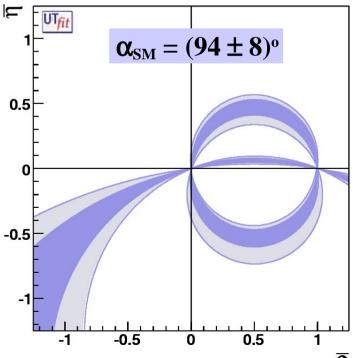

 $S_{pp} = -0.06 \pm 0.18$

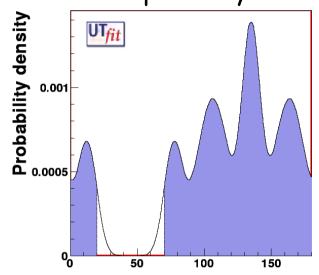

$$(\rho\pi)^0$$
 case:

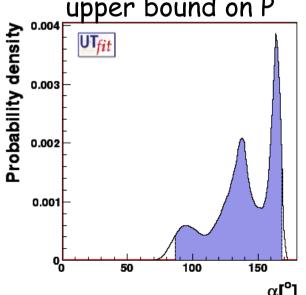
- any dependence on hadronic matrix elements is eliminated •
- \Rightarrow the value of α is obtained directly from data


$$\begin{split} A &= A(\rho^{+}\pi^{-}) + A(\rho^{-}\pi^{+}) + 2A(\rho^{0}\pi^{0}) \\ &= (T^{+-} + T^{-+} + 2T^{00}) \ e^{2i\alpha} \\ &\rightarrow R = \overline{A}/A = e^{2i\alpha} \end{split}$$


no parameterization involved





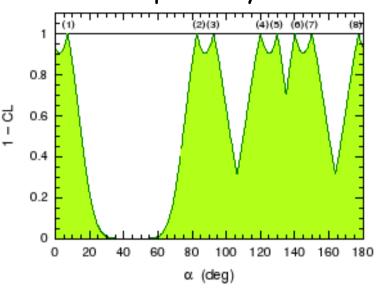


Bayesian probability isospin analysis

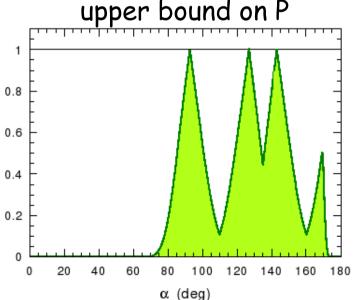
isospin analysis + upper bound on P

A popular mistake: α from ππ

- can CP be violated with $\alpha = 0$? Remember that $C_{+} \neq 0$ at $> 5\sigma$

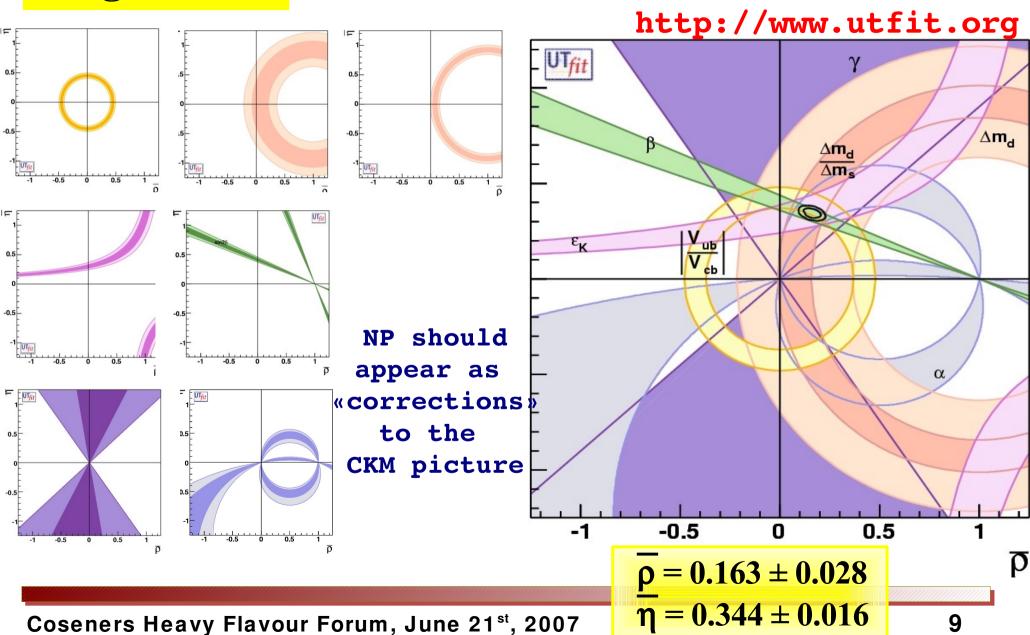

- is the isospin analysis reliable if SU(3) violation is > 3000%? $\alpha < 2$ implies P > 30 $BR(B_s->K^+K^-)$ requires $P \sim 1$ using SU(3) + 1 reasonable breaking

hep-ph/0701204

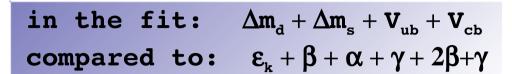

to appear in PRD

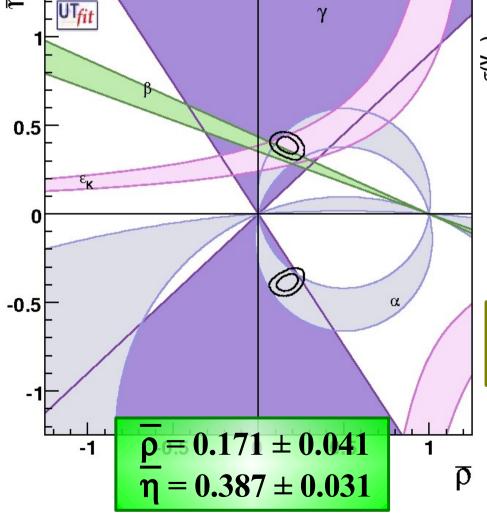
Frequentist C.L.

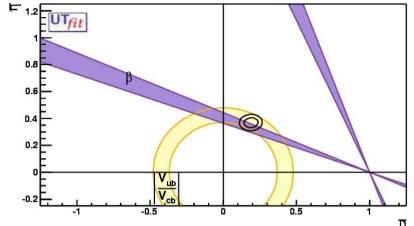
isospin analysis

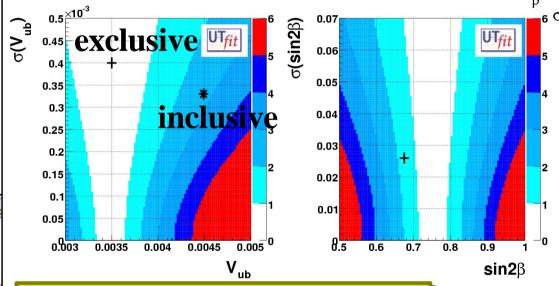


isospin analysis + upper bound on P

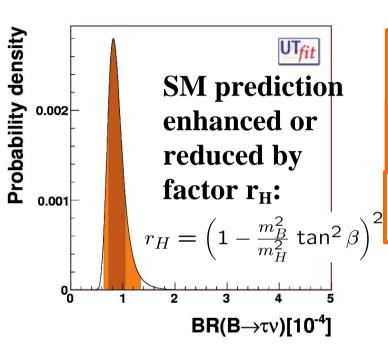



the global fit:


M. Bona *et al.* (UTfit Collaboration) JHEP 0507:028,2005 hep-ph/0501199



tension in the current results:


from indirect determination $V_{ub} = (3.48 \pm 0.20) \ 10^{-3}$

 $sin2\beta = 0.752 \pm 0.038$ from indirect determination

007 10

indirect measurement exploiting V_{ub}

(Best SM prediction)

SM prediction enhanced or reduced by factor
$$\mathbf{r}_{H}$$
:
$$r_{H} = \left(1 - \frac{m_{B}^{2}}{m_{H}^{2}} \tan^{2} \beta\right)^{2}$$

$$\mathbf{f}_{B} = (190 \pm 14) \, \text{MeV} \quad [\text{UTA}] \quad BR(B \Rightarrow \tau v_{\tau}) \quad (0.89 \pm 0.16) \quad 10^{-4}$$

$$V_{ub} = (36.7 \pm 1.5) \, 10^{-4} \, [\text{UTA}] \quad BR(B \Rightarrow \tau v_{\tau}) \quad (0.84 \pm 0.30) \quad 10^{-4}$$

$$V_{ub} = (35.0 \pm 4.0) \, 10^{-4} \, [\text{Exclusive}] \quad BR(B \Rightarrow \tau v_{\tau}) \quad (0.84 \pm 0.30) \quad 10^{-4}$$

$$V_{ub} = (189 \pm 27) \, \text{MeV} \quad [\text{LQCD}] \quad BR(B \Rightarrow \tau v_{\tau}) \quad (1.39 \pm 0.44) \quad 10^{-4}$$

$$V_{ub} = (189 \pm 27) \, \text{MeV} \quad [\text{LQCD}] \quad BR(B \Rightarrow \tau v_{\tau}) \quad (1.39 \pm 0.44) \quad 10^{-4}$$

From BR(B $\rightarrow \tau v_{\tau}$) and V_{ub}(UTA): $f_B = (237 \pm 37)$ MeV

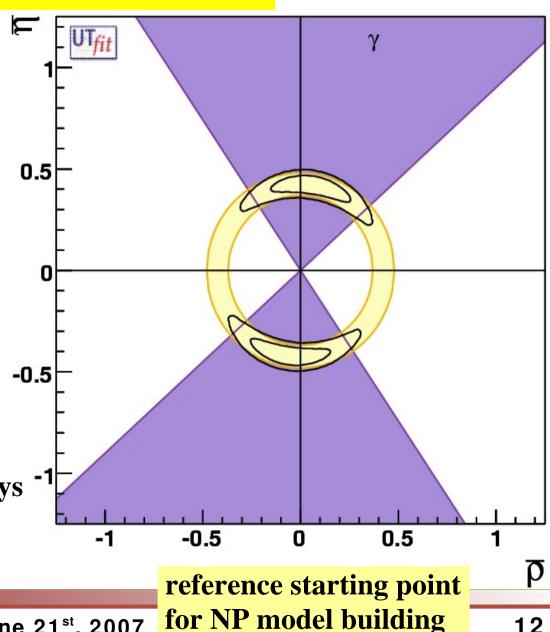
Same game with Δm_s : ICHEP06 values

$$egin{array}{lll} \Delta m_{sAll} & (19.4 \pm 2.5) p s^{-1} \ \Delta m_{sV_{ub(incl)}} & (20.3 \pm 2.5) p s^{-1} \ \Delta m_{sV_{cb(expl)}} & (18.3 \pm 2.0) p s^{-1} \end{array}$$

Current updated post-ICHEP06 value $\Delta m_s = (18.7 \pm 2.3) \text{ ps}^{-1}$ $\Delta m_s[ps^{-1}]$

M. Bona *et al.* (UTfit Collaboration) JHEP 0610:081,2006 hep-ph/0606167

fit with NP-independent constraints


using Tree-level processes assumed to be NP free

*the effect of the $\overline{D^0}$ - D^0 mixing is negligible wrt the actual error and it will be possible to take it into account [hep-ph/9807364, hep-ph/9807320, hep-ph/9912242].

$$\overline{\rho} = \pm 0.00 \pm 0.15$$
 $\overline{\eta} = \pm 0.41 \pm 0.04$

very important to improve:

- **♣** V_{ub}/V_{cb} from semileptoic decays

model independent analysis

New Physics in $\Delta F=2$ amplitudes can be parameterized in a simple general form:

$$C_{B_{q}} e^{2i\phi_{B_{d}}} = \frac{\langle B_{q}^{0}|H_{eff}^{full}|\overline{B}_{q}^{0}\rangle}{\langle B_{q}^{0}|H_{eff}^{SM}|\overline{B}_{q}^{0}\rangle}, \quad (q=d,s)$$

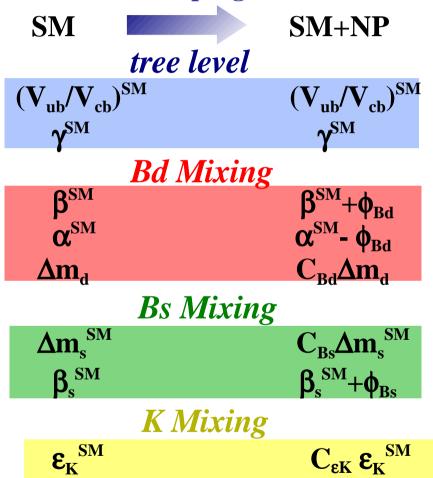
$$C_{\epsilon_{K}} = \frac{\Im[\langle K^{0}|H_{eff}^{full}|\overline{K}^{0}\rangle]}{\Im[\langle K^{0}|H_{eff}^{SM}|\overline{K}^{0}\rangle]}$$

model indepentent assumptions

J. M. Soares and L. Wolfenstein, Phys. Rev. D 47 (1993) 1021;

N. G. Deshpande, B. Dutta and S. Oh, Phys.

Rev. Lett. 77 (1996) 4499

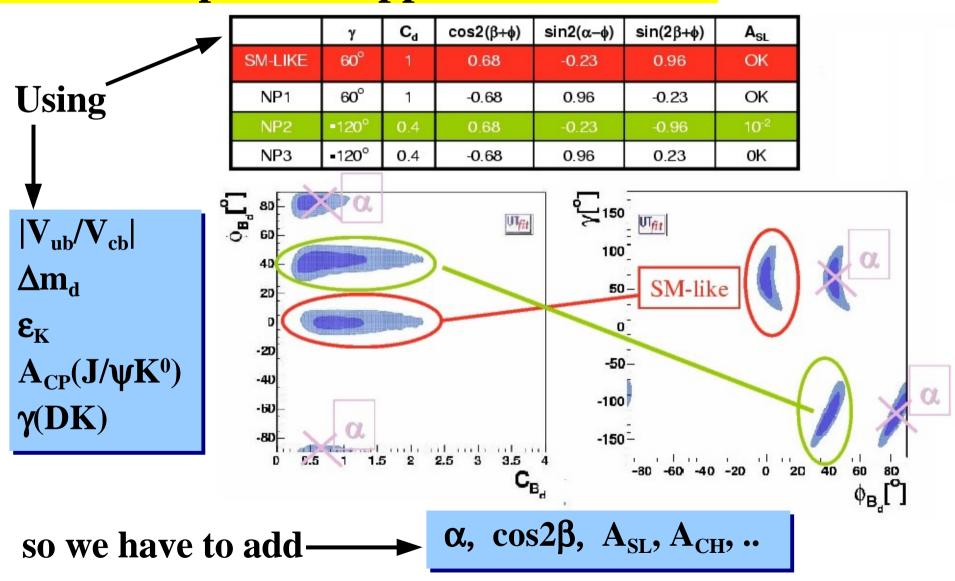

[arXiv:hep-ph/9608231]

J. P. Silva and L. Wolfenstein, Phys. Rev. D 55 (1997) 5331 [arXiv:hep-ph/9610208]

55 (1997) 5331 [arXiv:hep-ph/9610208]

A. G. Cohen *et al.*, Phys. Rev. Lett. 78 (1997) 2300 [arXiv:hep-ph/9610252]

Y. Grossman, Y. Nir and M. P. Worah, Phys. Rev. Lett. B 407 (1997) 307 [arXiv:hep-ph/9704287]

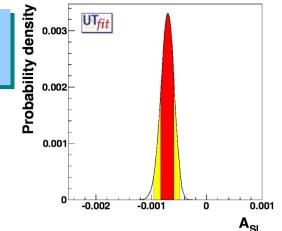


M. Bona *et al.* (UTfit Collaboration) JHEP 0603:080,2006 hep-ph/0509219

07

13

model independent approach in the fit



SM prediction (-1.06±0.09)10⁻³

A_{SL} in B_d decays

This is the only observable that is sensitive to NP effect on both size and phase of B mixing

$$A_{\rm SL} \equiv \frac{\Gamma(\bar{B}^0 \to \ell^+ X) - \Gamma(B^0 \to \ell^- X)}{\Gamma(\bar{B}^0 \to \ell^+ X) + \Gamma(B^0 \to \ell^- X)}$$
$$= -\text{Re} \left(\frac{\Gamma_{12}}{M_{12}}\right)^{\rm SM} \frac{\sin 2\phi_{B_d}}{C_{B_d}} + \text{Im} \left(\frac{\Gamma_{12}}{M_{12}}\right)^{\rm SM} \frac{\cos 2\phi_{B_d}}{C_{B_d}}$$

Direct measurement

new average = (0.8±5.6)10⁻³

(large values in case

of new physics)

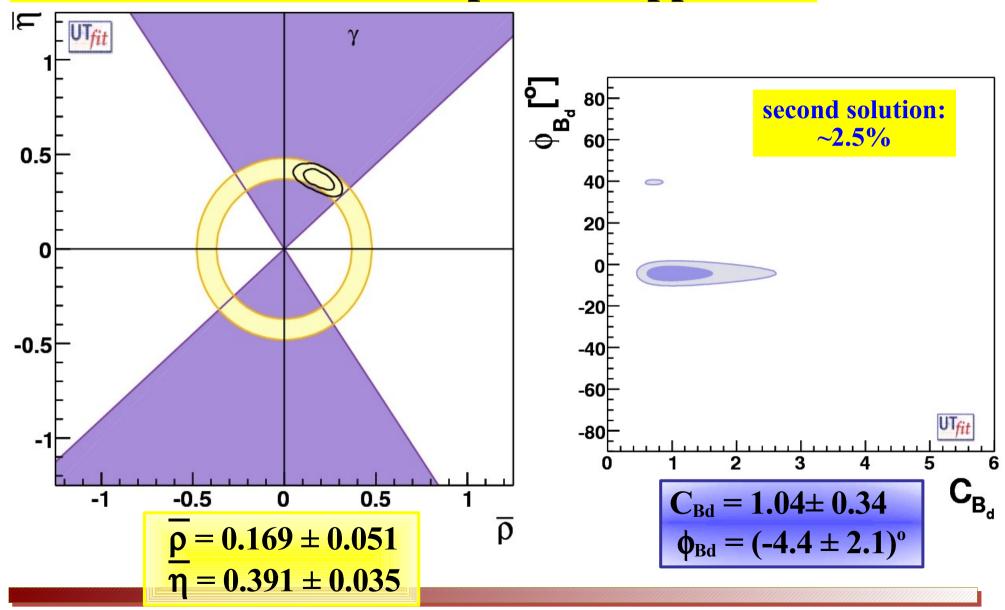
A_{CH} in B_{d,s} decays

First available bound on Bs-Bs mixing phase

$$z_{q} = |q/p|_{q}^{2}$$

$$\chi_{q}^{(-)} = \frac{\frac{\Delta\Gamma_{q}}{\Gamma_{q}}^{2} + 4\frac{\Delta m_{q}}{\Gamma_{q}}^{2}}{\frac{\Delta\Gamma_{q}}{\Gamma_{q}}^{2}(z_{q}^{(-)} - 1) + 4(2z_{q}^{(-)} + \frac{\Delta m_{q}}{\Gamma_{q}}^{2}(1 + z_{q}^{(-)}))}$$

from D0

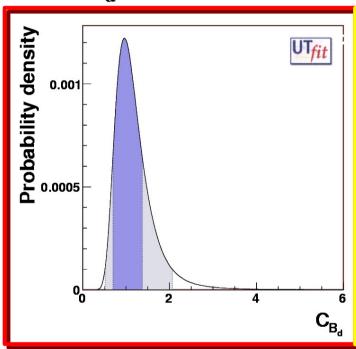

admixture of \underline{B}_d and \underline{B}_s dependent on ρ and η and on NP effects $(C_{Bd}, \phi_{Bd}, C_{Bs}, \phi_{Bs})$

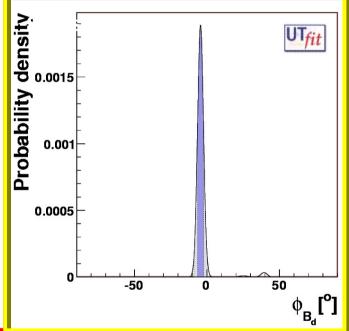
M. Bona et al. (UTfit Collaboration)

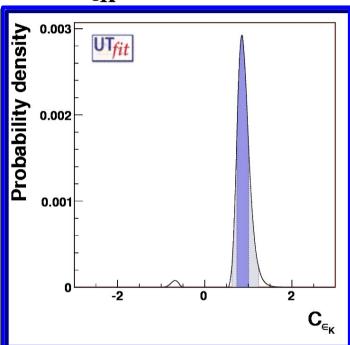
Coseners Heavy Flavour Forum, June 21 Phys.Rev.Lett.97:151803,2006 hep-ph/0605213

 $\frac{1}{4} \left(A_{\rm SL}^d + \frac{f_s \chi_{s0}}{f_d \chi_{d0}} A_{\rm SL}^s \right) = 0.0023 \pm 0.0011 \pm 0.0008$

results of the model independent approach




results in the B_d and K sectors:


$$C_{Bd} = 1.04 \pm 0.34$$

$$\phi_{\rm Bd} = -(4.4 \pm 2.1)^{\rm o}$$

$$\mathbf{C_{\epsilon K}} = \mathbf{0.87} \pm \mathbf{0.14}$$

NP in $\Delta B=2$ and $\Delta S=2$ could be up to 50% with respect to the SM only if it has the same phase of the SM

exploring new physics in the B_s sector:

- $\rightarrow \Delta m_s$: same as usual
- ACH: already illustrated
- $\Delta \Gamma_{\rm S}/\Gamma_{\rm S}$: only from CDF
- # flavour-specific B_S lifetime: only from CDF
- \rightarrow TD(B_S \rightarrow J/ ψ ϕ): time dependent 3-dimensional angular analysis from D0

 C_{Pen} and ϕ_{Pen} to include $\Delta F = 1$ **NP** contributions

$$\Delta\Gamma_{\rm S}/\Gamma_{\rm S}$$

$$\frac{\Delta\Gamma_{\mathbf{S}}/\Gamma_{\mathbf{S}}}{\Delta m_{q}} = -\frac{\kappa}{C_{B_{q}}} \left\{ \cos\left(2\phi_{B_{q}}\right) \left(n_{1} + \frac{n_{6}B_{2} + n_{11}}{B_{1}}\right) - \frac{\cos\left(\phi_{q}^{\text{SM}} + 2\phi_{B_{q}}\right)}{R_{t}^{q}} \left(n_{2} + \frac{n_{7}B_{2} + n_{12}}{B_{1}}\right) + \frac{\cos\left(2(\phi_{q}^{\text{SM}} + \phi_{B_{q}})\right)}{R_{t}^{q^{2}}} \left(n_{3} + \frac{n_{8}B_{2} + n_{13}}{B_{1}}\right) + \cos\left(\phi_{q}^{\text{Pen}} + 2\phi_{B_{q}}\right) C_{q}^{\text{Pen}} \left(n_{4} + n_{9}\frac{B_{2}}{B_{1}}\right) - \cos\left(\phi_{q}^{\text{SM}} - \phi_{q}^{\text{Pen}} + 2\phi_{B_{q}}\right) \frac{C_{q}^{\text{Pen}}}{R_{t}^{q}} \left(n_{5} + n_{10}\frac{B_{2}}{B_{1}}\right) \right\} (7)$$

from angular analysis of $B_S \rightarrow J/\psi \phi$

in presence of new physics, the experimental measurement is actually a measurement of $\Delta\Gamma_q \cos 2(\phi_{B_q} - \beta_q)$

we use the CDF-only result

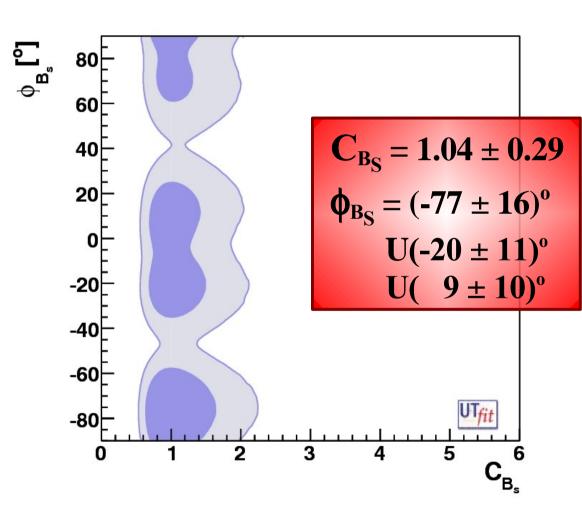
additional constraints the NP in the B_S sector:

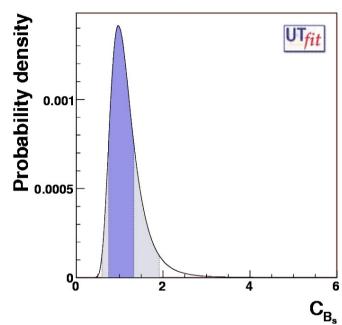
flavour specific B_S lifetime

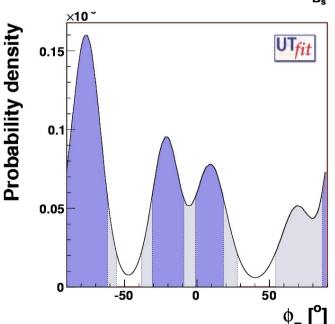
we use the CDF-only result

we now use τ_{B_S} only from the study of B_S decays to CP eigenstates

which is connected to the values of $\Gamma_{\rm S}$ and $\Delta\Gamma_{\rm S}$ by this relation

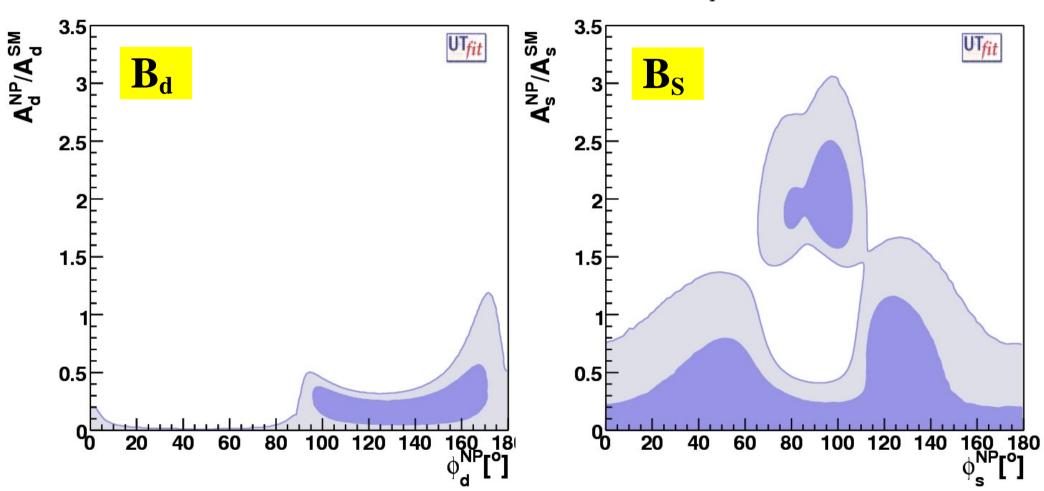

$$au_{B_s}^{FS} = rac{1}{\Gamma_s} rac{1 - \left(rac{\Delta\Gamma_s}{2\Gamma_s}
ight)^2}{1 + \left(rac{\Delta\Gamma_s}{2\Gamma_s}
ight)^2}$$


time-dipendent angular analysis in $B_S \rightarrow J/\psi \phi$


D0 provided simultaneous bounds on β_S , $\Delta\Gamma$ and Γ : we use the experimental likelihood including the 3x3 correlation matrix and we don't use D0 values in the other constraints (in order not to double count the measurements)

D0 result ICHEP06

results in the B_S sector:



or if you prefer:

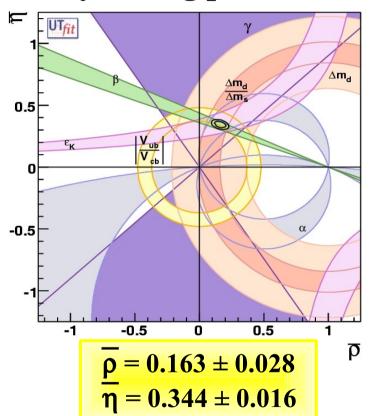
$$C_{B_q}e^{2i\phi_{B_q}}=rac{A_q^{ ext{SM}}e^{2ieta_q}+A_q^{ ext{NP}}e^{2i(eta_q+\phi_q^{ ext{NP}})}}{A_q^{ ext{SM}}e^{2ieta_q}}$$

Are there new sources of CPV?

- New sources of CPV in s \rightarrow d and/or b \rightarrow d transitions are
 - strongly constrained by the UT fit

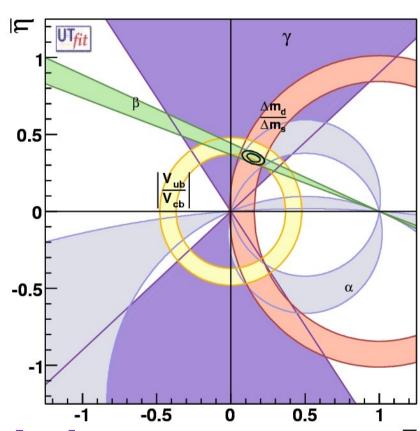
- L. Silvestrini LP05
- "unnecessary", given the great success and consistency of the fit
- ightharpoonup New sources of CPV in b ightharpoonup s transitions are
 - much less (un-) constrained by the UT fit
 - natural in many flavour models, given the strong breaking of family SU(3)

Pomarol, Tommasini; Barbieri, Dvali, Hall; Barbieri, Hall; Barbieri, Hall, Romanino; Berezhiani, Rossi; Masiero et al; ...


- hinted at by v's in SUSY-GUTs

Baek et al.; Moroi; Akama et al.; Chang, Masiero, Murayama; Hisano, Shimizu; Goto et al.; ...

exploring MFV scenario: starting from UUT


MFV = no additional flavour mixing only mixing processes are sensitive to NP

Universal Unitarity Triangle Buras et al. hep-ph/0007085

For UUT we do not use ε_K and Δm_d in the fit

comparable precision between UUT and global fit

Determines ρ and η independently on the presence of MFV NP

$$\frac{\overline{\rho}}{\eta} = 0.153 \pm 0.030$$
 $\eta = 0.347 \pm 0.018$

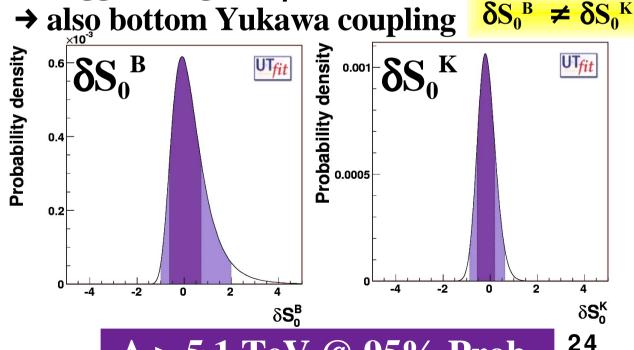
CKM fits

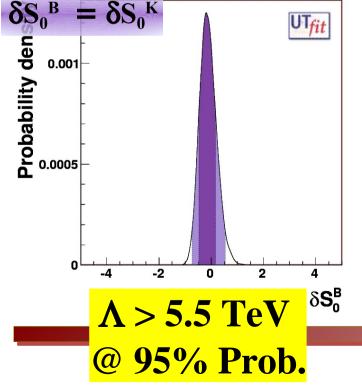
MFV analysis

Scale of NP can be indirectly tested

remaining constraints $_{b}$ — $(\epsilon_{\kappa}, \Delta m_{d}, \text{ and } \Delta m_{s})$ probe NP in mixing $_{\overline{d}}$ —

 $S_0(x_t)
ightarrow S_0(x_t) + \delta S_0^{^{\chi}}(x_t)$


$$\delta S_0(x_t) = 4a \left(rac{\Lambda_0}{\Lambda}
ight)^2$$


a = 1 (as a reference) $\Lambda_0 = 2.4 \text{ TeV}$

 Λ_0 is the equivalent SM scale

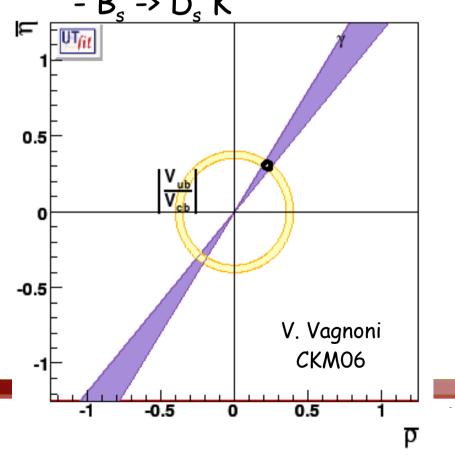
In models with one Higgs doublet or low/moderate tanß
NP enters as additional contribution to the top box diagram

 $\Lambda > 5.1 \text{ TeV } @ 95\% \text{ Prob.}$

Marcella Bona

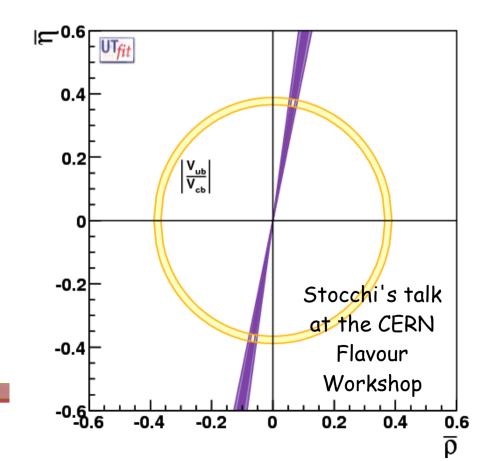
CKM fits

Perspectives: y


WG2, preliminary

		•	•		
BF (Now)	BF(End '08)	LHCb	LHCb	SBF	ITE
$\sim 1~{\rm ab}^{-1}$	2 ab^{-1}	2 fb^{-1}	10 fb^{-1}	50 ab^{-1}	
30° (46%)	15° (23%)	4.6° (7%)	2.6° (4%)	2° (3%)	O(0.1%)

LHCb (5 years)


- GLW, ADS, Dalitz

- B_s -> D_s K

SuperB (5 years)

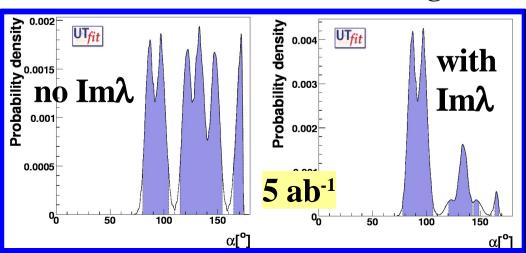
- GLW, ADS, Dalitz

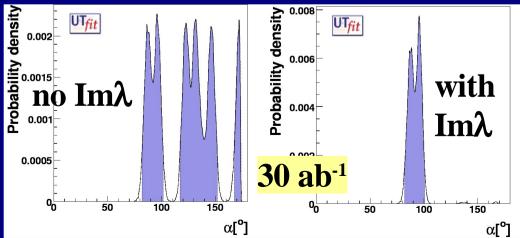
Perspectives: α

WG2, preliminary BF (Now) BF(End '08) LHCb LHCb SBF ITE $\sim 1 \text{ ab}^{-1}$ 2 ab^{-1} 2 fb^{-1} 10 fb^{-1} 50 ab^{-1} 10° (11%) 7° (8%) 8.1° (9%) 4.6° (5%) 1.5° (1.6%) O(few %)

- Theoretical error from "isospin breaking"
 - ElectroWeak Penguins dominant LxL EWP's calculable: $\Delta\alpha$ ~ few degrees
 - η-η'- π^0 mixing Gronau, Zupan, hep-ph/0502139 model-dependent estimate: $\Delta \alpha \sim 1$ degree
 - $(m_d\text{-}m_u)/\Lambda_{QCD}$ and α_e effects in matrix elements order-of-magnitude estimate: $\Delta\alpha$ small
- Sensitivity to New Physics
 - potentially sensitive to NP in penguins isospin analysis sensitive to EWP-like contributions only QCD-penguin-like NP just redefine hadronic amplitudes

Improvements for α extraction:


- imagine a SBF running at the Y(5S) resonance:
 - **♦** it will produce 58% of B*B* and BB events: CP=-1
 - \Rightarrow and 26% of B*B events: CP=+1
- with the B*B events:
 - different time dependence wrt the BB pairs.
 - look at the integrated asymmetry:


$$A_{CP}^{f} = \left(\frac{1-y^{2}}{1+x^{2}}\right)^{2} \frac{(1-x^{2})(1-|\lambda_{CP}^{f}|^{2}) + 4x\mathcal{I}m(\lambda_{CP}^{f})}{(1+y^{2})(1+|\lambda_{CP}^{f}|^{2}) - 4y\mathcal{R}e(\lambda_{CP}^{f})} \qquad \qquad \lambda_{CP}^{f} = \frac{q}{p}\frac{\bar{A}_{f}}{A_{f}} \\ x = \Delta m/\Gamma, \ y = \Delta \Gamma/2\Gamma_{f}$$

hep-ph/0703258 to appear in JHEP

$$\lambda_{CP}^{f} = \frac{q}{p} \frac{\bar{A}_{f}}{A_{f}}$$
 $x = \Delta m/\Gamma, \ y = \Delta \Gamma/2\Gamma$

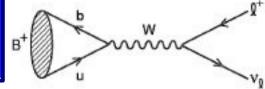
- new perspective in channels with difficult TD analyses:
 - \Rightarrow an example is the $B_d \to \pi^0 \pi^0$ case: a contraint on $Im(\lambda)$ can be obtained and the ambiguities on \alpha reduced

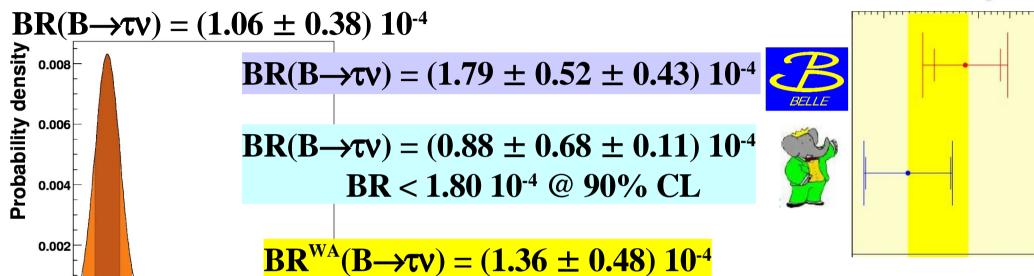


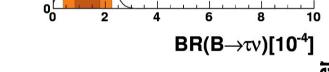
Perspectives: sin2\beta

^a : statistical e	naranly	WG2, preliminary				
BF (Now)	BF(End '08)	LHCb	LHCb	SBF	ITE	
$\sim 1~{\rm ab}^{-1}$	2 ab^{-1}	2 fb^{-1}	10 fb^{-1}	50 ab^{-1}		
0.026 (4%)	0.023 (3.3%)	$0.017~(2.4\%)^{-a}$	$0.008~(1\%)^{\ a}$	0.013 (2%)	$\lesssim 1\%$	

- the measurement is systematic-dominated at SBF
- theoretical error is likely not a problem scaling the B->J/ $\psi \pi^0$ analysis:

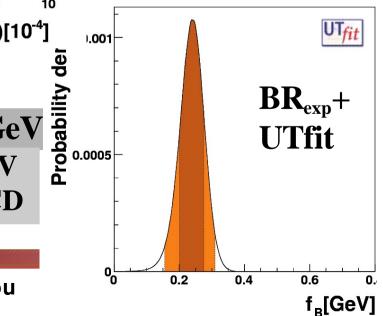

summary and conclusion

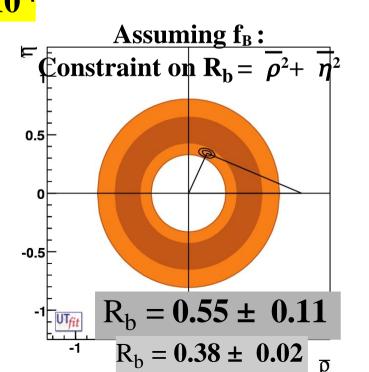

- b → d transition: given the enormous quantity of results the B factories have already achieved, the generalization of the UT analysis beyond the SM is already strongly effective in limiting the NP parameter space.
 - it gives serious constraints on model building
 - it points to MFV
- → b → s transitions are starting to have constraints, thanks to new measurements from the Tevatron:
 - \rightarrow from CDF: $\Delta\Gamma_{\rm S}/\Gamma_{\rm S}$, flavour specific $\tau_{\rm B_S}$
 - \rightarrow from D0: 3-dimensional $β_s$, ΔΓ and Γ bound
- in the MFV scenario it is possible to turn UT analysis into a probe for NP scale
- future scenarios:
 - \clubsuit very promising for γ and new ideas for α


back-up slides

$$B \rightarrow \tau \nu$$

$$\mathcal{B}(B \to \ell \nu) = \frac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 - \frac{m_\ell^2}{m_B^2} \right)^2 f_B^2 |V_{ub}|^2 \tau_B$$




Assuming V_{ub} :

$$f_{Bd} = 0.237 \pm 0.037 \text{ GeV}$$

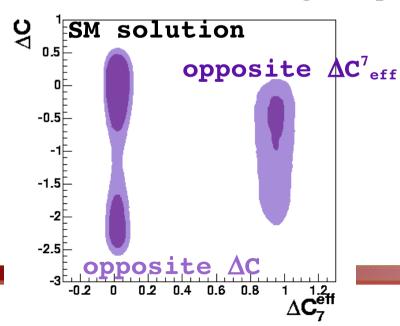
 $f_{Bd} = 0.189 \pm 0.027 \text{ GeV}$

from lattice QCD

Coseners Heavy Flavou

Relevant contributions in

rare leptonic and radiative decays


MFV bound from radiative decays

NP in MFV scenarios can be parameterized with few real parameters, shifts of the master functions in

- **→** Z vertex
- cromomagnetic penguin
- **box diagrams**
- gluonic penguin

Once CKM is known, we can bound NP with rare decays. At small/moderate $tan\beta$, all the effects on leptonic/radiative modes from two parameters:

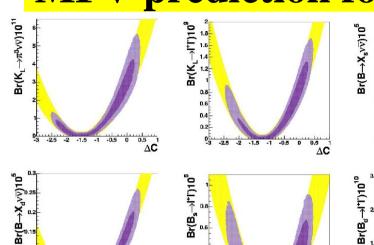
- ♣ ΔC: NP in Z vertex (bound from b \rightarrow s γ)
- → ΔC⁷_{eff}: NP in cromomagnetic penguin (bound from b→sll)

Predictions on rare decays can be obtained from this. This peculiar correlation can be tested with new measurements

C. Bobeth *et al*.
Nucl.Phys.B726:252-274,2005
hep-ph/0505110

MFV prediction for rare decays

low/moderate tanß


2010 1.4 2010 Scena 2010

scenario

-2.5 -2 -1.5 -1 -0.5

K physics

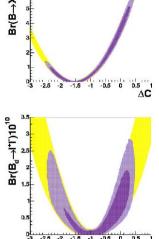
B_{d,s} physics

Branching fractions

 $Br(K^+ \rightarrow \pi^+ \nu \nu) \times 10^{11}$

 $Br(K_1 \rightarrow \pi^0 \nu \nu) \times 10^{11}$

 $Br(K_1 \rightarrow \mu\mu) \times 10^9$


 $Br(B \rightarrow X_{c} \nu \nu) \times 10^{5}$

 $Br(B \rightarrow X_4 \nu \nu) \times 10^6$

 $Br(B_{\circ} \rightarrow \mu\mu) \times 10^9$

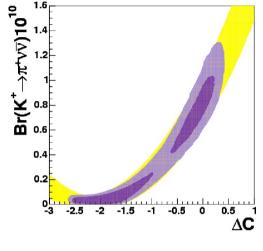
 $Br(B_d \rightarrow \mu\mu) \times 10^{10}$

		3 -2			-0.5		0.5
r.	<u>.</u>						T
	<u>-</u> 1.8		A				
		T				- 4	
	e" .	- 1					V.
	B 0.6	- 1					
	9 0.6 0.4						

MFV(95%)

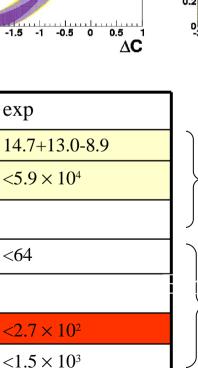
<11.9

<4.59


<1.36

< 5.17

<2.17


<7.42

<2.20

exp

<64

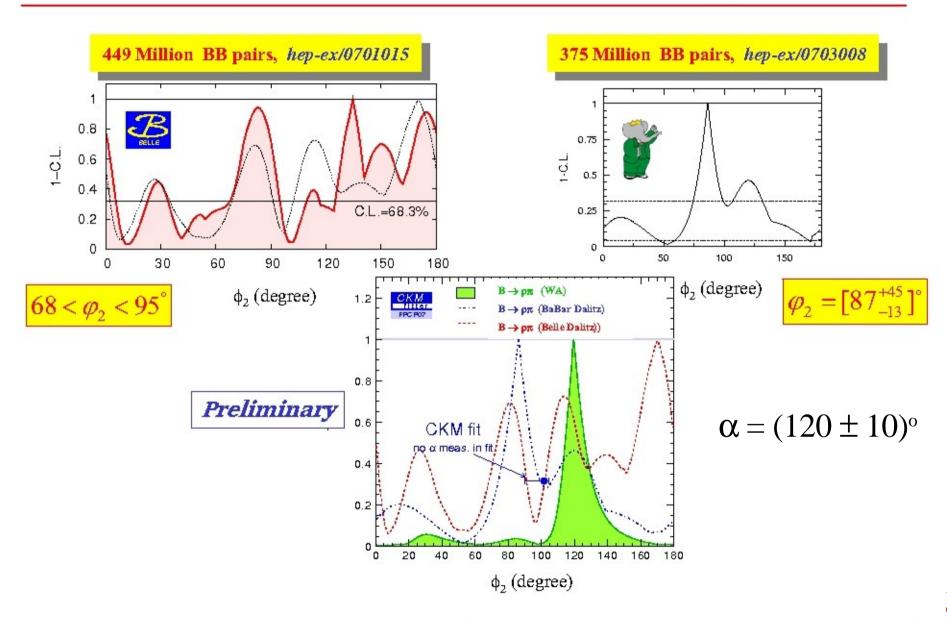
Very interesting the A_{FB} asymmetry of $B \rightarrow K*ll$

SM (95%)

[6.1-10.9]

[2.03-4.26]

[0.63-1.15]


[3.25-4.09]

[1.12-1.91]

[1.91-5.91]

[0.47-1.81]

$B^0 \to \pi^+ \pi^- \pi^0$: Constrain on ϕ_2/α

