

Searches for mixing and *CP* violation in the $D^0 - \overline{D}^0$ system: finding the (small) crack in the Standard Model

Alan Schwartz University of Cincinnati

UK Heavy Flavour Physics Forum Cosener's House, Abingdon June 22nd, 2007

D⁰ meson mixing

- four new measurements
- summary of all measurements: no CPV allowing for CPV

Neutral meson mixing I:

$$\begin{array}{c|c} c & & u \\ \hline d,s,b & & u \\ \hline u & \hline d,\overline{s},\overline{b} & & \overline{c} \end{array}$$

Flavor eigenstates are not mass eigenstates:

$$irac{\partial}{\partial t}\left(egin{array}{c} |D^0
angle \ |\overline{D}{}^0
angle
ight) = \left(\mathrm{M} - rac{i}{2}\Gamma
ight) \left(egin{array}{c} |D^0
angle \ |\overline{D}{}^0
angle
ight)$$

$$\begin{split} |D_1\rangle &= p|D^0\rangle + q|\overline{D}{}^0\rangle & |D_1(t)\rangle &= |D_1\rangle e^{-(\Gamma_1/2 + im_1)t} \\ |D_2\rangle &= p|D^0\rangle - q|\overline{D}{}^0\rangle & |D_2(t)\rangle &= |D_2\rangle e^{-(\Gamma_2/2 + im_2)t} \\ |D^0\rangle &= \frac{1}{2p} \left(|D_1\rangle + |D_2\rangle\right) & |\overline{D}{}^0\rangle &= \frac{1}{2q} \left(|D_1\rangle - |D_2\rangle\right) \\ |D^0(t)\rangle &= e^{-(\overline{\Gamma}/2 + i\overline{m})t} \left\{ \cosh\left[(\Delta\gamma/4 + i\Delta m/2)t\right]|D^0\rangle + \left(\frac{q}{p}\right) \sinh\left[(\Delta\gamma/4 + i\Delta m/2)t\right]|\overline{D}{}^0\rangle \right\} \\ |\overline{D}{}^0(t)\rangle &= e^{-(\overline{\Gamma}/2 + i\overline{m})t} \left\{ \left(\frac{p}{q}\right) \sinh\left[(\Delta\gamma/4 + i\Delta m/2)t\right]|D^0\rangle + \cosh\left[(\Delta\gamma/4 + i\Delta m/2)t\right]|\overline{D}{}^0\rangle \right\} \\ \overline{m} &\equiv \frac{1}{2} \left(m_1 + m_2\right) \qquad \overline{\Gamma} \equiv \frac{1}{2} \left(\Gamma_1 + \Gamma_2\right) \qquad \Delta m \equiv m_2 - m_1 \qquad \Delta \gamma \equiv \Gamma_2 - \Gamma_1 \end{split}$$

A. J. Schwartz

For $\Delta m t \ll 1$ and $\Delta \gamma t \ll 1$:

$$\begin{split} |\langle f|H|D^{0}(t)\rangle|^{2} \propto e^{-\overline{\Gamma}t} \left\{ 1 + \left[y\operatorname{Re}(\lambda) - x\operatorname{Im}(\lambda) \right](\overline{\Gamma}t) + |\lambda|^{2}\frac{(x^{2} + y^{2})}{4}(\overline{\Gamma}t)^{2} \right\} \\ |\langle \bar{f}|H|\overline{D}^{0}(t)\rangle|^{2} \propto e^{-\overline{\Gamma}t} \left\{ 1 + \left[y\operatorname{Re}(\bar{\lambda}) - x\operatorname{Im}(\bar{\lambda}) \right](\overline{\Gamma}t) + |\bar{\lambda}|^{2}\frac{(x^{2} + y^{2})}{4}(\overline{\Gamma}t)^{2} \right\} \\ \underline{Direct} \qquad Interference \qquad \underline{Mixing} \\ x \equiv \frac{\Delta m}{\overline{\Gamma}} \quad y \equiv \frac{\Delta\Gamma}{2\overline{\Gamma}} \quad \lambda \equiv \left(\frac{q}{p}\right)\frac{\mathcal{A}(\overline{D}^{0} \to f)}{\mathcal{A}(D^{0} \to f)} \quad \bar{\lambda} \equiv \left(\frac{p}{q}\right)\frac{\mathcal{A}(D^{0} \to \bar{f})}{\mathcal{A}(\overline{D}^{0} \to \bar{f})} \end{split}$$

Mixing parameters

CPV enters here

Neutral meson mixing III:

$$C = \frac{d,s,b}{\overline{d},\overline{s},\overline{b}} \qquad U$$

$$\overline{u} = \frac{\overline{d},\overline{s},\overline{b}}{\overline{c}}$$

"box" diagram: Δm

• doubly-Cabibbo-suppressed w/r/t Γ_p

• GIM cancellation:
$$V_{cd}^* V_{ud} + V_{cs}^* V_{us} + V_{cb}^* V_{ub} = 0$$

but mixing dominated by long-distance contributions (both Δm and $\Delta \Gamma$)

Meson	flavors	$\Delta m/\Gamma$	$\Delta\Gamma/2\Gamma$	observed?
K ⁰	sd	0.474	0.997	1958
B^0	b d	0.77	< 1%	1987
B_{s}^{0}	\overline{bs}	27	$\textbf{0.15} \pm \textbf{0.07}$	2006
D^{0}	cū <	< 0.029	$0.011 {\pm} 0.005$	March 2007

$$x \lesssim y ~\sim ~~ {10^{-6} - 10^{-3} ~~ ({
m short ~distance}) \over 10^{-3} - 10^{-2} ~~ ({
m long ~distance})}$$

A. J. Schwartz

D⁰ mixing measurements

• Wrong-sign semileptonic $D^0(t) \rightarrow K^+ l^- v$ decays measures $x^2 + y^2$, no DCS contamination

Wrong-sign hadronic $D^{0}(t) \rightarrow K^{+}\pi^{-}$ decays measures $x' = x \cos \delta + y \sin \delta$, $y'=y \cos \delta -x \sin \delta$, where δ is a strong phase difference

• Decays to *CP* eigenstates: $D^0(t) \rightarrow K^+K^-, \pi^+\pi^$ measures $y \cos\phi$, where ϕ is a weak phase difference

- Dalitz plot analysis of $D^{0}(t) \rightarrow K^{0} \pi^{+} \pi^{-}$ decays measures *x*, *y*
- Wrong-sign hadronic $D^0 \rightarrow K^+ \pi^- \pi^+ \pi^-$, $K^+ \pi^- \pi^0$ decays measures $x^2 + y^2$
- Quantum correlations in $e^+e^- \rightarrow D^0 \overline{D^0}(n\pi^0)$, $D^0 \overline{D^0}\gamma(n\pi^0)$ measures y, $\cos\delta$

Experimental Method

- Initial flavor of $D^{0}(t)$ is determined from $D^{*+} \rightarrow D^{0}\pi^{+}$ or $D^{*-} \rightarrow D^{0}\pi^{-}$ This also greatly reduces background: $Q = m_{K\pi\pi}^{-} - m_{\pi}^{-} - m_{\pi}^{-}$ only 6 MeV/c (very near threshold)
- D^0 proper decay time $\Delta t = (l_{dec}/p) \times (m/c)$ measurement:

• $p(D^*) > 2.5$ GeV to eliminate D^0 's from *B* meson decay (at $e^+e^- \rightarrow Y(4S)$ resonance, $\sigma(bb)/\sigma(all) = 1/3$)

Belle (KEKB) and BaBar (PEPII) $e^+e^- \rightarrow Y(4S) \rightarrow BB$

Detectors:

- Silicon strip detectors for good vertex resolution
- Drift chamber for charged particle tracking and momentum measurement
- Cherenkov detector (aerogel, DIRC) for K/π identification
- Electromagnetic calorimeter for γ detection and electron ID
- **•** Solenoid flux return instrumented with RPCs, limited streamer tubes for μ detection

A. J. Schwartz

CP eigenstates: $D^{0}(t) \rightarrow K^{+}K^{-}, \pi^{+}\pi^{-}$

Master formula:
$$R_{D^0(t) \to f} \propto e^{-\overline{\Gamma}t} \left\{ 1 + \left[y \operatorname{Re}(\lambda) - x \operatorname{Im}(\lambda) \right] (\overline{\Gamma}t) \right\}$$
 $\lambda = \left(\frac{q}{p} \right) \frac{\mathcal{A}(\overline{D}{}^0 \to f)}{\mathcal{A}(D^0 \to f)}$

$$ig| oldsymbol{D}^{m{0}}(t) o oldsymbol{K}^{\!-} \, \pi^{\!+} ig| \qquad |oldsymbol{\lambda}| \ll 1 \Rightarrow R \propto e^{-\overline{\Gamma} \, t}$$

$$D^{0}(t) \to K^{+}K^{-} \text{ (or } \pi^{+}\pi^{-})$$

E791, PRL 83, 32 (1999) FOCUS, PLB 485, 62 (2000) CLEO, PRD 65, 092001 (2002) Belle, PRL 88, 162001 (2002) Babar, PRL 91, 121801 (2003)

y_{CP} = (1.09 ± 0.46)% (world average)

$$|\lambda| pprox 1 \ \Rightarrow \ R \ \propto \ e^{-\overline{\Gamma} t} \ (1 - y \cos \phi \, \overline{\Gamma} t)$$

$$\approx e^{-\overline{\Gamma}t} e^{-y\cos\phi\,\overline{\Gamma}t} \\ = e^{-\overline{\Gamma}(1+y\cos\phi)\,t}$$

$$\Rightarrow \quad \frac{\tau(K^-\pi^+)}{\tau(K^+K^-)} = 1 + y \cos \phi$$

So $y \cos \phi \equiv y_{CP} = \frac{\tau(K^-\pi^+)}{\tau(K^+K^-)} - 1$

A. J. Schwartz

Belle: $D^{0}(t) \rightarrow K^{+}K^{-}, \pi^{+}\pi^{-}$ with 540 fb⁻¹ PRL 98, 211803 (2007)

$$D^{+*} \to D^{0} \pi^{+} \qquad \qquad m(D^{0}) = 1865 \text{ MeV} \\ \longrightarrow K^{+}K^{-}, \pi^{+}\pi \qquad \qquad m(D^{*+}) = 139 \\ m(D^{*+}) = 2010 \end{cases}$$
 2004 MeV

Select candidate events: require $q = m(KK\pi) - m(D^0) - m(\pi)$ to be very small:

Belle: $D^{0}(t) \rightarrow K^{+}K^{-}, \pi^{+}\pi^{-}$ with 540 fb⁻¹

Maximum likelihood fit to decay time spectrum:

UK Forum – Cosener's House, Abingdon

10

t (fs)

Belle: $D^{\theta}(t) \rightarrow K^+K^-, \pi^+\pi^-$ with 540 fb⁻¹

A cross-check: divide the data into sub-samples

A. J. Schwartz

Belle: $D^{0}(t) \rightarrow K^{+}K^{-}, \pi^{+}\pi^{-}$ with 540 fb⁻¹

Systematic errors:	У _{сР}	A
acceptance	0.12%	0.07%
equal t_0 assumption	0.14%	0.08%
mass window position	0.04%	0.003%
difference btw background and sidebands	0.09%	0.06%
difference btw final states opening angles	0.02%	
background parameterization	0.07%	0.07%
resolution function	0.01%	0.01%
analysis cuts	0.11%	0.05%
binning	0.01%	0.01%
TOTAL	0.25%	0.15%

Final result:

$$y_{CP} = 1.31 \pm 0.32 \pm 0.25$$
 %

> 3 σ above zero
(first evidence for D°-D° mixing)

Search for CP violation:
$$A_{\Gamma} = \frac{\Gamma(D^0 \to K^+ K^-) - \Gamma(\overline{D}{}^0 \to K^+ K^-)}{\Gamma(D^0 \to K^+ K^-) + \Gamma(\overline{D}{}^0 \to K^+ K^-)}$$

$$A_{r} = 0.01 \pm 0.30 \pm 0.15$$
 %

no evidence for CP violation

A. J. Schwartz

Dalitz plot analysis of $D^{0}(t) \rightarrow K^{0} \pi^{+} \pi^{-}$

$$\begin{array}{lll} \langle K^0_S \, \pi^+ \pi^- | H | D^0(t) \rangle &=& \displaystyle \frac{1}{2p} \left(\langle K^0_S \, \pi^+ \pi^- | H | D_1(t) \rangle \ + \ \langle K^0_S \, \pi^+ \pi^- | H | D_2(t) \rangle \right) \\ & \equiv & \displaystyle A_1 \, e^{-(\Gamma_1/2 + i m_1) \, t} \ + \ A_2 \, e^{-(\Gamma_2/2 + i m_2) \, t} \end{array}$$

$$\begin{split} R(D^0(t) \to K^0_S \pi^+ \pi^-) &= & |A_1|^2 \, e^{-\overline{\Gamma}(1+\pmb{y})t} \ + \ |A_2|^2 \, e^{-\overline{\Gamma}(1-\pmb{y})t} \ + \\ & 2e^{-\overline{\Gamma}t} \left[\, \operatorname{Re}(A_1 \, A_2^*) \cos \pmb{x}t - \operatorname{Im}(A_1 \, A_2^*) \sin \pmb{x}t \right] \end{split}$$

$oldsymbol{A}_n$ ($\mathbf{x} \sum_{j}$	$a_{j}^{}e^{i\delta_{j}}\mathcal{A}^{j}$
--------------------	------------------------	--

NOTE: sign of *x* is determined

The amplitudes A^j are functions of $m^2(K_s \pi^+)$ and $m^2(K_s \pi^-)$ and account for various intermediate states:

Each amplitude has a magnitude (a_i) and phase (δ_i)

 \Rightarrow must include these parameters (36 of them) in the fit

 $D^{0} \frac{\overline{u}}{c} \frac{\overline{u}}{s} \frac{\overline{k}}{\kappa} \frac{\kappa_{s}}{\pi}$ $= \frac{u}{\overline{d}} \pi^{+}$

A. J. Schwartz

Belle: $D^{0}(t) \to K_{S}^{0} \pi^{+} \pi^{-}$ with 540 fb⁻¹

$$egin{array}{lll} m{D}^{+*} & m{ o} \ m{D}^{m{0}} \ \pi^+ \ igsqcup & igsqve & igsqcup & igsqcup & igsqcup & ig$$

Select candidate events based on $m(K\pi\pi)$, $q = m(K\pi\pi\pi) - m(D^0) - m(\pi)$:

95% pure

Belle: $D^{0}(t) \to K_{S}^{0} \pi^{+} \pi^{-}$ with 540 fb⁻¹

3 2.5 2 1.5 1.5 0.5	0.5 1 1.5 2 2.5 m ² (GeV ² /c ⁴)	$m^{2}(K_{S}\pi^{+})$ $m^{2}(K_{S}\pi^{+})$ $m^{2}(K_{S}\pi^{+})$ $m^{2}(K_{S}\pi^{+})$ $m^{2}(K_{S}\pi^{+})$ $m^{2}(K_{S}\pi^{+})$ $m^{2}(K_{S}\pi^{+})$ $m^{2}(K_{S}\pi^{+})$ $m^{2}(K_{S}\pi^{+})$ $m^{2}(K_{S}\pi^{+})$
5000 Exertis (0.05 Gev 25000 20000 15000 10000 0 0	$m^{2}(K_{S}\pi^{-})$	$m^{2}(\pi^{+}\pi^{-})$

Resonance	Amplitude	Phase (deg)	Fit fraction
K*(892)-	1.629 ± 0.005	134.3 ± 0.3	0.6227
$K_0^*(1430)^-$	2.12 ± 0.02	-0.9 ± 0.5	0.0724
$K_2^*(1430)^-$	0.87 ± 0.01	-47.3 ± 0.7	0.0133
$K^{*}(1410)^{-}$	0.65 ± 0.02	111 ± 2	0.0048
$K^{*}(1680)^{-}$	0.60 ± 0.05	147 ± 5	0.0002
K*(892)+	0.152 ± 0.003	-37.5 ± 1.1	0.0054
$K_0^*(1430)^+$	0.541 ± 0.013	91.8 ± 1.5	0.0047
$K_2^*(1430)^+$	0.276 ± 0.010	-106 ± 3	0.0013
$K^{*}(1410)^{+}$	0.333 ± 0.016	-102 ± 2	0.0013
$K^*(1680)^+$	0.73 ± 0.10	103 ± 6	0.0004
p(770)	1 (fixed)	0 (fixed)	0.2111
v(782)	0.0380 ± 0.0006	115.1 ± 0.9	0.0063
f ₀ (980)	0.380 ± 0.002	-147.1 ± 0.9	0.0452
$f_0(1370)$	1.46 ± 0.04	98.6 ± 1.4	0.0162
$f_2(1270)$	1.43 ± 0.02	-13.6 ± 1.1	0.0180
p(1450)	0.72 ± 0.02	40.9 ± 1.9	0.0024
7 1	1.387 ± 0.018	-147 ± 1	0.0914
\overline{r}_2	0.267 ± 0.009	-157 ± 3	0.0088
NR	2.36 ± 0.05	155 ± 2	0.0615

1.19

Fit fraction

$$ext{tion} \; \equiv \; rac{\int |a_r \, \mathcal{A}_r(m_-^2\,,m_+^2)|^2 \, dm_-^2 \, dm_+^2}{\int |\sum\limits_{r=1}^n a_r \, e^{i \phi_r} \mathcal{A}_r(m_-^2\,,m_+^2)|^2 \, dm_-^2 \, dm_+^2}$$

Belle:
$$D^{0}(t) \to K_{S}^{0} \pi^{+} \pi^{-}$$
 with 540 fb⁻¹

Time fit (in projection):

x = (0.80 ± 0.29)% positive y = (0.33 ± 0.24)%

 $t_{D} = (409.9 \pm 0.9) \text{ fs}$ consistent with PDG (in fact better precision)

Largest systematic errors:	∆ X (x 10⁻²)	Δ y (x 10 ⁻²)
<i>p</i> (<i>D</i> *) cut	+0.076	-0.078
t dependence of Dalitz background	-0.056	-0.057
background timing parameters decay model (form factors, variation of fixed masses & widths, K-matrix,	±0.037	±0.063
no non-resonant comp., others)	+0.13	+0.051
TOTAL	_0.11 (+0.17, _0.15)	–0.066 (+0.10, –0.15)

A. J. Schwartz

Belle: $D^{0}(t) \to K_{s}^{0} \pi^{+} \pi^{-}$ with 540 fb⁻¹

Preliminary result:

systematics: scale by sqrt(1+ r^2) (1/r)² = (cos $\theta/\Delta x$)² + (sin $\theta/\Delta y$)²

rise of the likelihood function at (0,0) which corresponds to no mixing:

 $-2 \triangle ln \pounds = 7.33 \implies CL = only 2.6\%$

Allow for CPV:

$$CL = only 2.6\% \qquad -1 -1$$
$$= e^{-i(m_{(1,2)} - i\Gamma_{(1,2)}/2)t}$$

$$e_{(1,2)}~\equiv~e^{-i(m_{(1,2)}-i\Gamma_{(1)})}$$

$$\mathcal{M}(m_{-}^{2}, m_{+}^{2}, t) = \mathcal{A}(m_{-}^{2}, m_{+}^{2}) \frac{e_{1}(t) + e_{2}(t)}{2} + \left(\frac{q}{p}\right) \overline{\mathcal{A}}(m_{-}^{2}, m_{+}^{2}) \frac{e_{1}(t) - e_{2}(t)}{2}$$
$$\overline{\mathcal{M}}(m_{-}^{2}, m_{+}^{2}, t) = \overline{\mathcal{A}}(m_{-}^{2}, m_{+}^{2}) \frac{e_{1}(t) + e_{2}(t)}{2} + \left(\frac{p}{q}\right) \mathcal{A}(m_{-}^{2}, m_{+}^{2}) \frac{e_{1}(t) - e_{2}(t)}{2}$$

CPV result: (preliminary)

2

A. J. Schwartz

UK Forum – Cosener's House, Abingdon

Wrong-sign $D^0(t) \rightarrow K^+\pi^-$ decays

Master formula:

$$\begin{split} R(D^{0}(t) \to f) \propto e^{-\overline{\Gamma}t} \left\{ 1 \ + \ \left[y \operatorname{Re}(\lambda) - x \operatorname{Im}(\lambda) \right] (\overline{\Gamma}t) + |\lambda|^{2} \frac{x^{2} + y^{2}}{4} (\overline{\Gamma}t)^{2} \right\} \\ \text{for } f = K^{+} \pi^{-} \colon \lambda \ \equiv \ \frac{q}{p} \frac{\overline{\mathcal{A}}_{f}}{\mathcal{A}_{f}} \ = \ \left| \frac{q}{p} \right| \sqrt{R_{D}} e^{i(\phi + \delta)} \qquad \left\{ \begin{array}{l} \delta & \text{strong phase} \\ \phi & \text{weak phase} \end{array} \right. \end{split}$$

$$\begin{split} R(D^{0} \to K^{+}\pi^{-}) &\propto e^{-\overline{\Gamma} t} \left\{ R_{D} + \left| \frac{q}{p} \right| \sqrt{R_{D}} \left[y \cos(\phi + \delta) - x \sin(\phi + \delta) \right] (\overline{\Gamma} t) + \left| \frac{q}{p} \right|^{2} \frac{(x^{2} + y^{2})}{4} (\overline{\Gamma} t)^{2} \right\} \\ &= e^{-\overline{\Gamma} t} \left\{ R_{D} + \sqrt{R_{D}} (y \cos \delta - x \sin \delta) (\overline{\Gamma} t) + \frac{(x^{2} + y^{2})}{4} (\overline{\Gamma} t)^{2} \right\} \\ &= \left[e^{-\overline{\Gamma} t} \left\{ R_{D} + \sqrt{R_{D}} y' (\overline{\Gamma} t) + \frac{(x'^{2} + y'^{2})}{4} (\overline{\Gamma} t)^{2} \right\} \right] \\ &= \left[e^{-\overline{\Gamma} t} \left\{ R_{D} + \sqrt{R_{D}} y' (\overline{\Gamma} t) + \frac{(x'^{2} + y'^{2})}{4} (\overline{\Gamma} t)^{2} \right\} \right] \\ &(x' \equiv x \cos \delta + y \sin \delta \qquad y' \equiv y \cos \delta - x \sin \delta) \\ &\xrightarrow{D^{0} \qquad K^{+}\pi^{-}} \\ &\xrightarrow{D^{0} \qquad CF} \end{split}$$

A. J. Schwartz

Belle $D^0(t) \rightarrow K^+\pi^-$ with 400 fb⁻¹

R.Barate *et al.* (ALEPH), PLB 436, 211 (1998)
E.M.Aitala *et al.* (E791), PRD 57, 13 (1998)
R.Godang *et al.* (CLEO), PRL 84, 5038 (2000)
J.M.Link *et al.* (FOCUS), PRL 86, 2955 (2001); PLB 618, 23 (2005)
B. Aubert *et al.* (Babar), PRL 91, 171801 (2003)
L.Zhang *et al.* (Belle), PRL 96, 151801 (2006)
B. Aubert *et al.* (Babar), PRL 98, 211802 (2007)

new

$D^{0}(t) \rightarrow K^{+}\pi^{-}$ (Belle and BaBar)

PRL 96, 151801 (2006) PRL 98, 211802 (2007)

A. J. Schwartz

Belle $D^0(t) \rightarrow K^+\pi^-$ allowing for CPV

$$\begin{split} \lambda &= \left(\frac{q}{p}\right) \frac{\overline{\mathcal{A}}_{f}}{\mathcal{A}_{f}} = \left|\frac{q}{p}\right| \sqrt{R_{D}} e^{i(\phi+\delta)} & \bar{\lambda} &= \left(\frac{p}{q}\right) \frac{\mathcal{A}_{\bar{f}}}{\overline{\mathcal{A}}_{\bar{f}}} = \left|\frac{p}{q}\right| \sqrt{\overline{R}_{D}} e^{i(-\phi+\delta)} \\ R_{D^{0} \to f} &\propto e^{-\overline{\Gamma} t} \left\{ R_{D} + \sqrt{R_{D}} \left|\frac{q}{p}\right| (y'\cos\phi - x'\sin\phi)(\overline{\Gamma} t) + \left|\frac{q}{p}\right|^{2} \frac{(x'^{2} + y'^{2})}{4} (\overline{\Gamma} t)^{2} \right\} \\ R_{\overline{D}^{0} \to \bar{f}} &\propto e^{-\overline{\Gamma} t} \left\{ \overline{R}_{D} + \sqrt{\overline{R}_{D}} \left|\frac{p}{q}\right| (y'\cos\phi + x'\sin\phi)(\overline{\Gamma} t) + \left|\frac{p}{q}\right|^{2} \frac{(x'^{2} + y'^{2})}{4} (\overline{\Gamma} t)^{2} \right\} \end{split}$$

 $\begin{array}{ll} A_D \equiv (R_D - \overline{R}_D)/(R_D + \overline{R}_D) \neq 0 & CPV \text{ in the decay amplitude (direct } CPV) \\ A_M \equiv (|q|^4 - |p|^4)/(|q|^4 + |p|^4) \neq 0 & CPV \text{ in mixing} \\ \phi \neq 0 & CPV \text{ in mixed/direct interference} \end{array}$

6 total parameters; in practice, we fit for R_{D} , R_{D} and

$$\begin{aligned} x'^{\pm} &= \left(\frac{1\pm A_M}{1\mp A_M}\right)^{1/4} (x'\cos\phi\pm y'\sin\phi) \\ y'^{\pm} &= \left(\frac{1\pm A_M}{1\mp A_M}\right)^{1/4} (y'\cos\phi\mp x'\sin\phi) \end{aligned}$$

from these we calculate A_{D} , A_{M} , ϕ , x' and y'

(note sign ambiguity for x' $^{\pm}$)

A. J. Schwartz

Belle $D^0(t) \rightarrow K^+\pi^-$ allowing for CPV, BaBar

A. J. Schwartz

What have we learned?

(http://www.slac.stanford.edu/xorg/hfag/charm/index.html)

A. J. Schwartz

Combining all measurements – no CPV

In $\mathcal{L}(\mathsf{R}_{D'}, \mathsf{x'}^{2}, \mathsf{y'})$ for $D^{0}(t) \rightarrow K^{+}\pi^{-}$ measurements:

- project onto (x'², y') plane by allowing R_D to always take its preferred value
- map likelihood values to (x,y,δ) volume
- project onto (x,y) plane by allowing δ to always take its preferred value:

Adding –2In \angle functions from $K^{+}\pi^{-}$, semileptonic decays, $K_{s}\pi^{+}\pi^{-}$, y_{CP} , $K^{+}\pi^{-}\pi^{0}$, $K^{+}\pi^{-}\pi^{+}\pi^{-}$, ψ (3770):

–**2 In** ⊥

A. J. Schwartz

UK Forum – Cosener's House, Abingdon

Summary (no CPV)

All data [semileptonic decays, $K^+\pi^-$, $K_s\pi\pi$, y_{cP} , $K^+\pi^-\pi^0$, $K^+\pi^-\pi^+\pi^-$, ψ (3770)]:

Combining all measurements – allowing for CPV

A. J. Schwartz

Combining all measurements – allowing CPV (cont'd)

MINUIT preliminary:

FCN= EDM=	16.25622 0.11E-04	2 FROM MINC STRATEGY=	DS STATUS=S 1 ERROR M	SUCCESSFUL	1302 CALLS	1649 TOTAL
EXT PARAMETER			ARABOLIC	MINOS E	RRORS	
NO.	NAME	VALUE	ERROR	NEGATIVE	POSITIVE	
1	Х	0.84868%	0.34165	-0.33549	0.32270	tiny change
2	у	0.69453%	0.16558	-0.21093	0.20730	uny change
3	delta	0.39985	0.21088	-0.28525	0.26413	
4	Rd	0.33499%	0.13034E-01	-0.13035E-01	0.13035E-	01
5	Ad	0.40591	3.5452	-3.5477	3.5428	
6	q/p	0.87321	0.19001	-0.19976	0.23345	no CPV (vet)
7	phi	-0.82871E-01	0.15484	-0.19215	0.16715	

 χ^2 /dof = 16.2/18 = 0.90; largest contributions are from Belle/BaBar R_D difference and small "tension" between y_{CP} and y(K_S $\pi\pi$)

Wrong-sign $D^{\theta}(t) \rightarrow K^{(*)+}l^- v$ decays

E.M.Aitala *et al.* (E791), PRL 77, 2384 (1996): 2504 RS events
B. Aubert *et al.* (Babar), PRD 70, 091102 (2004): 49620 RS events
U. Bitenc *et al.* (Belle), PRD 72, 071101 (2005): 229452 RS events *new* → B. Aubert *et al.* (Babar), arXiv:0705.0704: 4780 RS events

Method: flavor at production tagged via $D^{*+} \rightarrow D^0 \pi^+$ (pion charge) flavor at decay tagged via $D^0(t) \rightarrow K^{(*)+}l^-v$ (lepton charge)

 \Rightarrow mixing signal is $\pi^+ l^-$ or $\pi^- l^+$ ("wrong-sign"), normalize sens. to $\pi^+ l^+$ or $\pi^- l^-$ ("right-sign")

$$V \text{ momentum: } P_{v} = P_{cms} - P_{\pi Ke} - P_{rest} |P_{rest}| \text{ adjusted to give } (P_{cms} - P_{rest})^{2} = m_{D^{*}}^{2}$$

$$\overrightarrow{p}_{rest} \text{ direction adjusted to give } m_{v}^{2} = 0$$
Fit: $\Delta m = m_{K\pi ev} - m_{Kev}$:

A. J. Schwartz

UK Forum - Cosener's House, Abingdon

Wrong-sign $D^{\theta}(t) \rightarrow K^{(*)+}l^{-}v$ decays (arXiv:0705.0704)

344 fb⁻¹, make many selection cuts to eliminate background:

- Fully reconstruct D decay on opposite side ("double-tagging") 0.10 effic
- Neural network selection based on p_{π} , $p_{\kappa e}$, thrust axis, opening angles
- p_{e} > 600 MeV/c, $\pi_{s} p_{T}$ and P_{L} selection 0.72 effic
- lifetime must be in the range 600 –3900 fs $(1.5\tau_p 9.5\tau_p)$ 0.80 effic

Determine "signal" yield by counting events; background estimate comes from MC sample:

(shaded histogram: after $\pi_s p_{\tau}$ and P_{L} selection)

Determine confidence intervals from rise of likelihood function:

$$R_{M} = (0.004^{+0.070}_{-0.060})\%$$

= (-0.13, 0.12)%
at 90% CL