Future Flavour Physics at an e⁺e⁻ Collider

Tim Gershon University of Warwick

Cosener's Forum on Heavy Flavour Physics 21st – 22nd June 2007

What I Will NOT Talk About

- General motivation for flavour physics in the LHC era
 see all preceeding talks in this meeting
- Physics programme of $e^+e^- \rightarrow \phi \rightarrow KK$
 - DANAE proposal at LNF (see G.Isidori's talk)
- Physics programme of dedicated $e^+e^- \to \psi(3770) \to DD$ (and similar energies)
 - BEPCII at IHEP and BINP proposal (see A.Schwartz's talk)
- Flavour physics at the ILC
 - see U.Martyn at final Flavour in the LHC Era workshop

http://indico.cern.ch/getFile.py/access?contribId=3&sessionId=3&resId=1&materiaIId=slides&confId=12011 2

What I Will Talk About

- Why a Super Flavour Factory is the single most important machine to explore flavour in the LHC era
 - − "Super Flavour Factory" = asymmetric $e^+e^- \rightarrow Y(4S)$ collider
- How it can be realised
 - SuperKEKB approach
 - SuperB approach

Exploration of Two Frontiers

4

Largely based on SuperB conceptual design report INFN/AE-07/02, SLAC-R-856, LAL 07-15

Available online: http://www.pi.infn.it/SuperB

See also

- SuperKEKB Letter of Intent, KEK Report 04-4
- SuperKEKB Physics Working Group, [arXiv:hep-ex/0406071], update in preparation
- J.L.Hewett, D.Hitlin (ed.), SLAC-R-709, [arXiv:hep-ph/0503261]
- Flavour in LHC Era workshops, yellow book in preparation 5

Flavour Observables Sensitive to New Physics $\Delta m_{\kappa} \epsilon_{\kappa} \epsilon_{\kappa} \delta(K_{I} \to \pi^{0} \nu \overline{\nu}) B(K^{+} \to \pi^{+} \nu \overline{\nu}) B(K^{+} \to I^{+} \nu)$ $\Delta m_d \quad A_{SI}(B_d) \quad S(B_d \rightarrow J/\psi K_S) \quad S(B_d \rightarrow \phi K_S)$ $\alpha(B \rightarrow \pi \, \pi \, , \rho \, \pi \, , \rho \, \rho) \qquad \gamma(B \rightarrow DK) \qquad \qquad CKM \ fits$ $\Delta m_{s} \quad A_{SI}(B_{s}) \quad S(B_{s} \rightarrow J/\psi\phi) \quad S(B_{s} \rightarrow \phi\phi)$ $B(b \rightarrow s \gamma) \quad A_{CP}(b \rightarrow s \gamma) \quad S(B^{0} \rightarrow K_{S} \pi^{0} \gamma) \quad S(B_{s} \rightarrow \phi \gamma)$ $B(b \rightarrow d\gamma) \quad A_{CP}(b \rightarrow d\gamma) \quad A_{CP}(b \rightarrow (d+s)\gamma) \quad S(B^{0} \rightarrow \rho^{0}\gamma)$ $B(b \rightarrow s I^+ I^-) \quad B(b \rightarrow d I^+ I^-) \quad A_{FB}(b \rightarrow s I^+ I^-) \quad B(b \rightarrow s v \overline{v})$ $B(B_{c} \rightarrow I^{+}I^{-}) \quad B(B_{d} \rightarrow I^{+}I^{-}) \quad B(B^{+} \rightarrow I^{+}\nu)$ $B(\mu \rightarrow e \gamma) \quad B(\mu \rightarrow e^+ e^- e^+) \quad (g-2)_\mu \quad \mu \quad EDM$ $B(\tau \rightarrow \mu \gamma) \quad B(\tau \rightarrow e \gamma) \quad B(\tau^+ \rightarrow I^+ I^- I^+) \quad \tau \quad CPV \quad \tau \quad EDM$ $B(D_{(s)}^+ \rightarrow I^+ v)$ $X_D Y_D$ charm CPV 6 ... add your favourite here ...

Good News and Bad News

Bad news

- no single "golden mode"
- (of course, some channels preferred in certain models)
- Good news
 - very many observables sensitive to new physics
 - maximize sensitivity by combining information
 - correlations between results distinguish models

Super Flavour Factory "treasure chest" of new physics observables

Correlations Distinguish Models

Plots show parameter scans in four different SUSY breaking schemes: – mSUGRA – U(2) flavour symmetry – SU(5) + v_{p} degenerate – SU(5) + v_{p} non-degenerate ⁹

MSSM + Generic Squark Mass Matrices

Today's central values with SuperB precision

Lepton Flavour Violation

 Observable LFV signals predicted in a wide range of models, including those inspired by Majorana neutrinos

Some Scenarios

1) LHC discovers new physics

- Can it be flavour blind? (ie. no signals in flavour)
 - No, it must couple to SM, which violates flavour
 - Any TeV scale NP model includes new flavoured particles
- What is the minimal flavour violation? (ie. worst case) (see T.Feldmann talk)
 - NP follows SM pattern of flavour and CP violation
 - SFF detects NP effects for particle masses up to >600 GeV (analysis relies on CKM fits and improvements in lattice calculations)
- What if NP flavour couplings are not suppressed?
 - SFF observes rich phenomenology: unique potential to measure NP flavour couplings and distinguish models

Some Scenarios

2) LHC does not discover new physics

- Problem for naturalness?
 - Not really just an order of magnitude argument
- How to probe higher mass scales?
 - NP models with unsuppressed flavour couplings can reach scales of 10s, 100s or even 1000s of TeV

Super Flavour Factory is best chance to observe NP beyond LHC reach

Estimated Sensitivities

Observable	Super Flavour Factory sensitivity
$\sin(2\beta) \left(J/\psi K^0\right)$	0.005-0.012
$\gamma (B \to D^{(*)} K^{(*)})$	$1-2^{\circ}$
$\alpha \left(B \to \pi \pi, \rho \rho, \rho \pi \right)$	$1-2^{\circ}$
$ V_{ub} $ (exclusive)	3-5%
$ V_{ub} $ (inclusive)	2-6%
$\bar{\rho}$	1.7-3.4%
$\bar{\eta}$	0.7 - 1.7%
$S(\phi K^0)$	0.02-0.03
$S(\eta' K^0)$	0.01-0.02
$S(K^0_S K^0_S K^0_S)$	0.02-0.04
$\mathcal{B}(B \to \tau \nu)$	3-4%
$\mathcal{B}(B \to \mu \nu)$	5-6%
$\mathcal{B}(B \to D \tau \nu)$	2 - 2.5%
$\mathcal{B}(B \to \rho \gamma) / \mathcal{B}(B \to K^* \gamma)$	3-4%
$A_{CP}(b \rightarrow s\gamma)$	0.004 - 0.005
$A_{CP}(b \rightarrow (s+d)\gamma)$	0.01
$S(K_s^0\pi^0\gamma)$	0.02 - 0.03
$S(ho^0\gamma)$	0.08 - 0.12
$A^{\rm FB}(B \to X_s \ell^+ \ell^-) s_0$	4-6%
$\mathcal{B}(B \to K \nu \bar{\nu})$	16-20%
$\mathcal{B}(\tau \to \mu \gamma)$	$2-8 \times 10^{-9}$
$\mathcal{B}(au o \mu \mu \mu)$	$0.2-1 \times 10^{-9}$
$\mathcal{B}(\tau \to \mu \eta)$	$0.4 - 4 \times 10^{-9}$

Range of estimated sensitivities from SuperB CDR and SuperKEKB Lol

Super Flavour Factory

- Data taken at Y(4S) allows studies of tau, charm, charmonia, ISR, γγ physics (and more)
- SuperB is designed with flexible running energy
 - charm-tau threshold region
 - other Upsilon resonances including Y(5S)

 \Rightarrow <u>can</u> study B_s sector, including ϕ_s (but not Δm_s)

- Considering beam polarization option
 - provides luminosity enhancement
 - significant improvement in sensitivity for τ EDM

How Can it be Achieved?

Luminosity must be $\sim 10^{36}$ /cm²/s or higher

- Enables integration of over 10/ab/year
- Two orders of magnitude higher than now
- \Rightarrow Push current B factories to the limit (SuperKEKB)

Upgraded Components for SuperKEKB

Something Completely Different

Attempts to upgrade PEP-II and KEKB with high current hit limitations due to beam instabilities, backgrounds and power

- \Rightarrow Approach with small emittance bunches (SuperB)
 - initially inspired by ILC damping rings
 - large Piwinski angle ($\varphi = \theta \sigma_z / \sigma_x$)
 - "crab waist"
- High luminosity
- ⇒ Low currents
- Small backgrounds
- Stable dynamic aperture
- → Wall plug power ~30 MW

Maximize beam overlap with finite crossing angle

Backgrounds and Detectors

- Backgrounds depend on various factors
 - luminosity
 - radiative BhaBha scattering
 - e⁺e⁻ pair production
 - currents
 - synchrotron radiation
 - beam-gas interaction
 - beam size
 - Touschek scattering —
 - beam-beam interactions

main problem for SuperKEKB: beam backgrounds ~ 20 x today

possible problem for SuperB: motivates smaller beam asymmetry (7 GeV on 4 GeV)

- For either SuperKEKB or SuperB:
 - interaction point design & shielding requires care
 - detector can be based on existing BaBar / Belle

Detector R&D

- Both designs require detector R&D for the same subsystems
 - vertex detector
 - first layer close (~1cm) to beam spot
 - use pixels or striplets to cope with occupancy
 - particle identification
 - improved readout for barrel (DIRC)
 - forward PID device (focussing RICH?)
 - calorimeter
 - CsI(Tl) too slow for endcaps \rightarrow pure CsI? LSO?
 - electronics, trigger, DAQ & offline computing
 - need to deal with high physics trigger rate

improvements in hermeticity important for many measurements

SuperB Detector

Site

SuperKEKB

would be sited at KEK

SuperB

- site not yet fixed
- SuperB design at, eg., SLAC, FNAL or KEK "possible"

(political &/or technical difficulties notwithstanding)

• however, there is, of course, a baseline ...

Potential SuperB site on the University of Rome Tor Vergata campus

Costs & Funding Model

SuperKEKB

Total cost ~415 M\$

+ unspecified "replacement value"

 Funded by KEK + international (in kind?) contributions

SuperB

Total cost ~340 M€

+ ~170 M€ "replacement value"

- Funding model under development:
 - Italian government ad hoc contribution
 - Regione Lazio contribution
 - INFN regular budget
 - EU contribution
 - In-kind contributions (PEP-II + BaBar elements)
 - Partner countries contributions

What's Next?

SuperKEKB

- JAHEP has approved pursuit of flavour physics (K, B & v) before ILC
- Recommendation from KEK director general expected this summer
- No serious funding available until end of JPARC construction
- Approx. 2 years construction time necessary

SuperB

- CERN Council Strategy Group approved flavour physics as regional initiative
- CDR being read by an international review committee
- Expect report by end of year
- Crab waist beam tests planned at LNF in autumn
- Approx. 5 years construction time necessary

Assumption that only one Super Flavour Factory will be built. "contraction and convergence"?

Summary

- The case for flavour physics in the LHC era is compelling
- A Super Flavour Factory is the ideal tool to explore the new phenomenology
- Two approaches to achieve the necessary luminosity, based on radically different concepts
 - exciting progress in accelerator technology
 - both have strong regional support
- Clear road ahead to explore the flavour treasure chest by mid-2010s
 - stay tuned for further developments

Back Up

Timeline

SuperKEKB

- Construction 2009-10
- Data taking starts 2011

SuperB

- Construction 2008-2012 (?)
- Data taking starts 2013

Either scenario gives large data samples by mid-2010s

Comparison between SuperB and SuperKEKB

		SuperB (Upgrade) SuperKEKB (Low Emittance)			
Emittance	ε _x	0.8	9	nm	smaller than SuperKEKB
Horizontal beta	β_x^*	20	200	mm	23.00 #23.00
Vertical beta	β_y^{*}	0.2	3	mm	
Horizontal beam size	σ_x^{*}	* Basic Co 4 * Paramet High-Dis	42	μm	
Vertical beam size	$\sigma_y^{\ *}$	20	367	nm	
Bunch length	σ _z		ts (Mar. 2006) on of the SuperB <mark>B</mark> gn(Nov, 2007) the SuperB collaboration	mm	
Half crossing angle	φ _x	17 · Conclusio	en and how to build the SuperB ns 15	mrad	
Piwinski angle	φ	25.5	1	rad	
Current(LER/HER)	l _b	3.95/2.17	10.4/4.4	А	
Luminosity (x10 ³⁵)	L	24	8.25	cm ⁻² s ⁻¹	
AC Plug Power	Р	35	83	MW	

Backgrounds

- Dominated by QED cross section
 - Low currents / high luminosity
 - Beam-gas are not a problem
 - SR fan can be shielded

	Cross section	Evt/bunch xing	Rate		John Strange
Radiative Bhabha	~340 mbarn (Eγ/Ebeam > 1%)	~680	0.3THz		
e⁺e⁻ pair production	~7.3 mbarn	~15	7GHz	<i>p</i>	<i>q</i> 1
Elastic Bhabha	O(10 ⁻⁵) mbarn (Det. acceptance)	~20/Million	10KHz		
Y (4S)	O(10 ⁻⁶) mbarn	~2/million	I KHz	p_+	<i>q</i> ₂ 31

Interaction Region Design

CDR cost estimate

Costs are presented "ILC-style", with replacement value for reusable PEP-II/BABAR components

Possible savings from reusing other hardware not yet considered in detail

CDR schedule

- Impossible to read here, check the CDR
- Includes site construction, PEP-II & BaBar disassembly, shipping, reassembly, etc.
- Five years from T0 to commissioning

Figure 5-1. Overall schedule for the construction of the SuperB project.

Compare to ILC "value estimate"

Costs are presented "ILC-style", with replacement value for reusable PEP-II/BABAR components

	Tota	ls	337,613 k€	172,801 k€
Detector	283	156	40,747	46,471
Site	119	138	105,700	0
Accelerator	452	291	191,166	126,330
	EDIA [my]	Labor [my]	M & S [k€]	Replacement value [k€]

SHARED VALUE = SITE-DEPENDENT VALUE =	4.87 Billion ILC VALUE UNITS 1.78 Billion ILC VALUE UNITS	NB. ILC costs do not include detector, lanc acquisition, inflation
TOTAL VALUE =	6.65 Billion ILC VALUE UNITS	
(shared + site-dependent)	= 5.519.500 k€	

= 5,519,500 k€

22 million person-hours = 13,000 person-years LABOUR = (assuming 1700 person-hours per person-year)

1 ILC VALUE UNIT =

1 US Dollar (2007) = 0.83 Euros = 117 Yen

MORE THAN AN ORDER OF MAGNITUDE **DIFFERENCE!**

International Review Committee

- R. Petronzio, President of INFN, has formed an International Review Committee to evaluate SuperB CDR
- The committee members are:

J. Dainton (chair) [UK]H. Aihara [Japan]R. Heuer [Germany]Y.-K. Kim [US]A. Masiero [Italy]J. Siegrist [US]D. Shulte [CERN]

- First meeting of the committee expected July 2007
- Expect several IRC meetings, some with interactions with primary authors, and a report by end of the year
- Possible further report in Spring 2008 following DaΦNe beam test results

- 320 Signatures
- About 85 institutions
- 174 Babar members

Theorists

13%

 65 non Babar experimentalists.

Experimentalists

75%

UK signatories

- University of Birmingham (1)
- Brunel University (1)
- ASTeC, Daresbury Laboratory (1)
- IPPP, Durham University (3)
- University of Edinburgh (2)
- Imperial College London (1)
- University of Liverpool (2)
- University of Liverpool and Cockcroft Institute (1)
- Royal Holloway University of London (1)
- Queen Mary University of London (3)
- University of Manchester (2)
- Rutherford Appleton Laboratory (1)
- University of Warwick (5)

24 individuals (~9 non faculty), 13 institutes

News from Japan

- Crab cavities installed and being tested
 - some improvement in specific luminosity seen at low currents
 - now testing with higher currents
- Low emittance scheme under consideration at KEK
 - no stable dynamic aperture found as yet
 - concerns over geological stability
 - intermediate schemes also being considered
- Support for SuperKEKB from
 - Japanese High Energy Physics community (JAHEP)
 - Belle Program Advisory Committee (PAC)
 - statement from KEK director general expected this summer
- No funds available until end of J-PARC construction

What about LHC?

- Important to note that flavour observables are complementary to those at the energy frontier
 - measure different new physics parameters
 - powerful to distinguish models
- Why not wait for LHC?

Some Key Measurements

42

Couplings and Scales

$$L = L_{SM} + \sum_{k=1} \left(\sum_{i} c_{i}^{k} Q_{i}^{(k+4)} \right) / \Lambda^{k}$$

- New physics effects are governed by:
 - new physics scale Λ
 - effective flavour-violating couplings c_i
 - couplings may have a particular pattern (symmetries)
 - coupling strengths can vary (different interactions)
- If Λ known from LHC, measure c_i
- If Λ not known, measure c_{i}/Λ

MFV Confronts the Data

- Current experimental situation
 - some new physics flavour couplings are small

Minimal flavour violation

all new physics flavour couplings are zero

MFV is a long way from being verified! Need to establish correlations between different flavour sectors (B_d,B_s,K)

New Physics Sensitivity in MFV

$$\begin{aligned} \mathcal{H}_{\text{eff}}^{\Delta F=2} &= \mathcal{H}_{\text{SM}} + \mathcal{H}_{\text{NP}} = \left(V_{tq}V_{tq'}^*\right)^2 \left(\frac{S_0(x_t)}{\Lambda_0^2} + \frac{a_{\text{NP}}}{\Lambda^2}\right) (\bar{q}'q)_{(V-A)} (\bar{q}'q)_{(V-A)} \\ S_0(x_t) &\rightarrow S_0(x_t) + \delta S_0, \quad |\delta S_0| = O\left(4\frac{\Lambda_0^2}{\Lambda^2}\right), \quad \Lambda_0 = \frac{\pi Y_t}{\sqrt{2}G_F M_W} \sim 2.4 \text{ TeV} \\ \hline \text{Today} \\ \Lambda(\text{MFV}) &> 2.3\Lambda_0 @95\text{C.L.} \\ \text{NP masses} > 200\text{GeV} \qquad \qquad \text{NP masses} > 600\text{GeV} \end{aligned}$$

- analysis relies on CKM fits and improvements in lattice calculations
- only $\Delta F=2$ (mixing) operators considered
- further improvements possible including also $\Delta F=1$ (especially $b \rightarrow s\gamma$)

Leptonic B Decays

Hadronic b→s Penguins

Current B factory hot topic

		sin($(2\beta^{el})$	^{ff})≡	sin(2	2 ¢	eff 1 Morior PRELI	AG d 2007 MINARY
b→c	CS	World Aver	age		-		0.68	3 ± 0.03
	_	BaBar		-	<u>→ 68</u>		0.12 ± 0.3	1 ± 0.10
	ъ	Belle			<u> </u>		0.50 ± 0.2^{-1}	1 ± 0.06
	÷	Average			Ξē		0.39	9±0.18
		BaBar					0.58 ± 0.10	0 ± 0.03
Ϋ́		Belle			4.		0.64 ± 0.10	0 ± 0.04
_ ۲		Average					0.6	1 ± 0.07
	Ľ,	BaBar			C i	-	0.71 ± 0.24	4 ± 0.04
	Ř	Belle			<u> </u>		0.30 ± 0.32	2 ± 0.08
	ž	Average			3		0.58	3 ± 0.20
. v		BaBar			1 <mark>070</mark> 1		0.33 ± 0.26	5 ± 0.04
l 🗧		Belle					0.33 ± 0.35	5±0.08
ĸ		Average			王울		0.33	3 ± 0.21
	ř	BaBar		A C	7 7		0.20 ± 0.52	2 ± 0.24
L	ಿ	Average			<u> </u>		0.20	0 ± 0.57
ι Ω		BaBar			<mark>с к</mark>	-	0.62 +0.2	5±0.02
X		Belle			* 🗧 🗄		0.11 ± 0.46	6 ± 0.07
		Average			_ <mark>-E</mark> S		0.48	3 ± 0.24
	ο,	BaBar			<mark>⊕</mark> ∾+	•	0.62	2 ± 0.23
	×	Belle		•			0.18 ± 0.23	3±0.11
	÷	Average					0.42	2 ± 0.17
o.		BaBar –	Ă	D D			$-0.72 \pm 0.7^{\circ}$	1 ± 0.08
		Average	<u> </u>	5			-0.72	2 ± 0.71
F	Š	BaBar Q2B				0.4	$1 \pm 0.18 \pm 0.07$	7 ± 0.11
	¥	Belle				• 0	.68 ± 0.15 ± 0	.03 -0.13
:	Ť	Average					0.58	3±0.13
-3		-2	-1	C)	1	2	з

Many channels can be measured with $\Delta S \sim (0.01-0.04)$

Observable	B Factories (2 ab^{-1})	SuperB		
$S(\phi K^0)$	0.13	0.02~(*)	[0.030]	
$S(\eta' K^0)$	0.05	0.01 (*)	[0.020]	
$S(K^0_{s}K^0_{s}K^0_{s})$	0.15	0.02 (*)	[0.037]	
$S(K^0_s\pi^0)$	0.15	$0.02 \; (*)$	[0.042	
$S(\omega K^0_s)$	0.17	$0.03 \; (*)$		
$S(f_0K_s^0)$	0.12	$0.02\;(*)$		

Running at the Y(5S)

- Belle & CLEO have demonstrated potential for $e^+e^- \rightarrow Y(5S) \rightarrow B_s^{(*)}B_s^{(*)}$
- Some important channels, such as $B_s \rightarrow \gamma \gamma$, $A_{SL}(B_s)$ are unique to SuperB
- Problem: cannot resolve fast Δm_{c} oscillations
 - retain some sensitivity to φ_s , since $\Delta \Gamma_s \neq 0$

$$\Gamma_{\bar{B}_s \to f}(\Delta t) + \Gamma_{B_s \to f}(\Delta t) = \mathcal{N} \frac{e^{-|\Delta t|/\tau(B_s)}}{2\tau(B_s)} \Big[\cosh(\frac{\Delta\Gamma_s \Delta t}{2}) - \frac{2\operatorname{Re}(\lambda_f)}{1+|\lambda_f|^2} \sinh(\frac{\Delta\Gamma_s \Delta t}{2}) \Big] \frac{1}{(1-24)^3} \Big] \frac{1}{(1-24)^3} \Big[\cosh(\frac{\Delta\Gamma_s \Delta t}{2}) - \frac{2\operatorname{Re}(\lambda_f)}{1+|\lambda_f|^2} \Big] \frac{1}{(1-24)^3} \Big] \frac{1}{(1-24)^3} \Big] \frac{1}{(1-24)^3} \Big[\cosh(\frac{\Delta\Gamma_s \Delta t}{2}) - \frac{2\operatorname{Re}(\lambda_f)}{1+|\lambda_f|^2} \Big] \frac{1}{(1-24)^3} \Big] \frac{1}{(1-24)^3} \Big] \frac{1}{(1-24)^3} \Big[\cosh(\frac{\Delta\Gamma_s \Delta t}{2}) - \frac{2\operatorname{Re}(\lambda_f)}{1+|\lambda_f|^2} \Big] \frac{1}{(1-24)^3} \Big] \frac{1}{(1-24)^3} \Big] \frac{1}{(1-24)^3} \Big[\cosh(\frac{\Delta\Gamma_s \Delta t}{2}) - \frac{2\operatorname{Re}(\lambda_f)}{1+|\lambda_f|^2} \Big] \frac{1}{(1-24)^3} \Big] \frac{1}{(1-24)^3} \Big] \frac{1}{(1-24)^3} \Big] \frac{1}{(1-24)^3} \Big[\cosh(\frac{\Delta\Gamma_s \Delta t}{2}) - \frac{2\operatorname{Re}(\lambda_f)}{1+|\lambda_f|^2} \Big] \frac{1}{(1-24)^3} \Big] \frac{1}{(1-24)^3} \Big] \frac{1}{(1-24)^3} \Big[\cosh(\frac{\Delta\Gamma_s \Delta t}{2}) - \frac{2\operatorname{Re}(\lambda_f)}{1+|\lambda_f|^2} \Big] \frac{1}{(1-24)^3} \Big] \frac{1}{(1-24)^3} \Big] \frac{1}{(1-24)^3} \Big[\cosh(\frac{\Delta\Gamma_s \Delta t}{2}) - \frac{1}{(1-24)^3} \Big] \frac{1}{(1-24)^3} \Big]$$

cf. D0 untagged measurement of $\phi_{_{s}}$ $_{_{48}}$

Large New Physics Contributions Excluded

Will be studied at LHCb (+ upgrade)

