Minimal Flavour Violation Scenarios

Thorsten Feldmann

- Coseners Forum *Heavy Flavour Physics* - 21.-22. June 2007

Th. Feldmann (Siegen)

Minimal Flavour Violation Scenarios

June 2007 1 / 25

Outline

Introduction

2 MFV in the Quark Sector

- Quark flavour in the SM
- New Physics and Minimal Flavour Violation

3 MFV in the Lepton Sector

- Lepton flavour in the (minimally extended) SM
- MLFV phenomenology

4 Lessons

Introduction

Origin of Quark and Lepton Flavour in the SM remains a mystery!

- Only parametrization in terms of Yukawa matrices, yielding fermion masses and mixing angles after EWSB.
- In case of new physics at the TeV scale (→ hierarchy problem), and assuming generic new flavour couplings:
 Why NP hasn't been observed in rare flavour decays?
- Postulate additional constraints on NP flavour sector.
 Popular concept: Minimal Flavour Violation (MFV): New flavour couplings related to SM mixing angles and masses. (D'Ambrosio et al. '02. Ciuchini et al. '98. Buras et al.

<ロ> <同> <同> < 同> < 同> < 三> < 三>

Introduction

Origin of Quark and Lepton Flavour in the SM remains a mystery!

 Only parametrization in terms of Yukawa matrices, yielding fermion masses and mixing angles after EWSB.

 In case of new physics at the TeV scale (→ hierarchy problem), and assuming generic new flavour couplings:
 Why NP hasn't been observed in rare flavour decays?

 Postulate additional constraints on NP flavour sector.
 Popular concept: Minimal Flavour Violation (MFV): New flavour couplings related to SM mixing angles and masses. [D'Ambrosio et al. '02, Ciuchini et al. '98, Buras et al.

・ロ・・ (四・・ ヨ・・ ヨ・・ ヨ

Introduction

Origin of Quark and Lepton Flavour in the SM remains a mystery!

 Only parametrization in terms of Yukawa matrices, yielding fermion masses and mixing angles after EWSB.

 In case of new physics at the TeV scale (→ hierarchy problem), and assuming generic new flavour couplings:

Why NP hasn't been observed in rare flavour decays?

Postulate additional constraints on NP flavour sector.

• Popular concept: Minimal Flavour Violation (MFV):

New flavour couplings related to SM mixing angles and masses.

[D'Ambrosio et al. '02, Ciuchini et al. '98, Buras et al. '00]

・ロ・・ (日・・ (日・・ 日・)

MFV does ...

- provide additional suppression factors for NP flavour transitions, based on a symmetry principle.
- imply (SM-like) correlations between different flavour observables.
- give a systematic book-keeping device to parametrize flavour couplings in specific new-physics models. (reduction of free parameters in NP flavour sector)
- allow to formulate flavour violation within effective theory approach.

MFV does not ...

 represent a theory of flavour violation. (overall couplings in front of MFV structures still undetermined)

• *explain* the size of fermion masses and mixing angles. (origin of Yukawa matrices still unclear)

MFV does ...

- provide additional suppression factors for NP flavour transitions, based on a symmetry principle.
- imply (SM-like) correlations between different flavour observables.
- give a systematic book-keeping device to parametrize flavour couplings in specific new-physics models. (reduction of free parameters in NP flavour sector)
- allow to formulate flavour violation within effective theory approach.

MFV does not ...

 represent a theory of flavour violation. (overall couplings in front of MFV structures still undetermined)

• *explain* the size of fermion masses and mixing angles. (origin of Yukawa matrices still unclear)

Effective-Theory Framework for MFV

- MFV in the quark sector:
 - 1-Higgs-Doublet Models.
 - [Large $\tan \beta$ effects in 2-Higgs Models.]

[D'Ambrosio et al., hep-ph/0207036]

MFV in the lepton sector:

 minimal field content (+ dim-5 LN-violating operator)
 [extended field content (right-handed neutrino)]
 [Cirigliano et al., hep-ph/0507001, hep-ph/0601111]
 [from R-parity violating tri-linear coupling]

[Davidson/Palorini, hep-ph/0607329]

Effective-Theory Framework for MFV

- MFV in the quark sector:
 - 1-Higgs-Doublet Models.
 - [Large $\tan \beta$ effects in 2-Higgs Models.]

[D'Ambrosio et al., hep-ph/0207036]

- MFV in the lepton sector:
 - minimal field content (+ dim-5 LN-violating operator)
 - [extended field content (right-handed neutrino)]

[Cirigliano et al., hep-ph/0507001, hep-ph/0601111]

• [from R-parity violating tri-linear coupling]

[Davidson/Palorini, hep-ph/0607329]

< (□) ▶ < 三 ▶

(1-Higgs Models)

Th. Feldmann (Siegen)

Minimal Flavour Violation Scenarios

▲ 클 → 클 → ۹.0 June 2007 6 / 25

(日)

Flavour symmetry group that commutes with SM gauge group:

 $\textit{F} = \textit{SU}(3)_{\textit{Q}_{L}} imes \textit{SU}(3)_{\textit{U}_{R}} imes \textit{SU}(3)_{\textit{D}_{R}}$

Quark multiplets for three families transform as

$$Q_L = egin{pmatrix} U_L \ D_L \end{pmatrix} \sim (\mathbf{3},\mathbf{1},\mathbf{1})\,, \quad U_R \sim (\mathbf{1},\mathbf{3},\mathbf{1})\,, \quad D_R \sim (\mathbf{1},\mathbf{1},\mathbf{3})\,.$$

• SM Yukawa matrices Y_U , Y_D break flavour symmetry F:

• Diagonalized by bi-unitary transformations: $\Rightarrow m_q^{
m diag} = y_q v$

 V_{CKM} = V[†]_{UL} V_{dL} parameterizing the mismatch between the left-handed up- and down-quark rotations.

Flavour symmetry group that commutes with SM gauge group:

 $\textit{F} = \textit{SU}(3)_{\textit{Q}_{L}} imes \textit{SU}(3)_{\textit{U}_{R}} imes \textit{SU}(3)_{\textit{D}_{R}}$

Quark multiplets for three families transform as

$$Q_L = egin{pmatrix} U_L \ D_L \end{pmatrix} \sim (\mathbf{3},\mathbf{1},\mathbf{1})\,, \quad U_R \sim (\mathbf{1},\mathbf{3},\mathbf{1})\,, \quad D_R \sim (\mathbf{1},\mathbf{1},\mathbf{3})\,.$$

- SM Yukawa matrices Y_U, Y_D break flavour symmetry F:
- Diagonalized by bi-unitary transformations: $\Rightarrow m_q^{\text{diag}} = y_q v$
- $V_{\text{CKM}} = V_{U_L}^{\dagger} V_{d_L}$ parameterizing the mismatch between the left-handed up- and down-quark rotations.

• Consider Y_U , Y_D as spurion fields, transforming as

$$Y_U \sim (3, \bar{3}, 1), \qquad Y_D \sim (3, 1, \bar{3}).$$

under flavour group $F = SU(3)_{Q_L} \times SU(3)_{U_R} \times SU(3)_{D_R}$.

- Yukawa terms formally invariant under flavour group.
- Background values for Y_U and Y_D finally break F.
- Concept can be generalized to higher-dimensional operators!

Analogy: Treatment of quark mass matrix in ChPT ...

New Physics and Minimal Flavour Violation

- Consider SM as Effective Theory at the electroweak scale.
- Allow for higher-dimensional operators, induced by NP effects above the electroweak scale.
- Assume that Flavour- and CP-symmetry breaking is still governed by SM spurions Y_U and Y_D, only.

NP contributions to flavour transitions suppressed by same factors of V_{CKM} and m_Q as in the SM.

Example: MFV in the MSSM

New flavour structures arise from "soft SUSY-breaking" terms.
 Squark mass matrices:

$$\begin{split} \tilde{m}_{Q_L}^2 &= \tilde{m}^2 \left(a_1 + b_1 Y_U Y_U^{\dagger} + b_2 Y_D Y_D^{\dagger} + \ldots \right) , \\ \tilde{m}_{U_R}^2 &= \tilde{m}^2 \left(a_2 + b_5 Y_U^{\dagger} Y_U \right) , \\ \tilde{m}_{D_R}^2 &= \tilde{m}^2 \left(a_3 + b_6 Y_D^{\dagger} Y_D \right) \end{split}$$

Squark tri-linear couplings:

$$\begin{array}{lll} A_U &=& A \left(a_4 + b_7 \; Y_D^\dagger Y_D \right) \; Y_U \, , \\ A_D &=& A \left(a_5 + b_8 \; Y_U^\dagger Y_U \right) \; Y_D \, , \end{array}$$

Integrating out SUSY particles yields MFV structures at EW scale.

Th. Feldmann (Siegen)

Minimal Flavour Violation Scenarios

Wolfenstein expansion

Off-diagonal CKM elements suppressed by Wolfenstein-λ ~ 0.2.
 Quark masses small compared to EW scale. (except for m_t)

- ⇒ The more spurion insertions, the more suppression.
 - Exception: $t \rightarrow b$ transitions ($V_b \sim 1, m \sim v$).
- Only need to consider minimal number of spurion insertions:
 no insertion necessary for charged left-handed decays.
 - 0....
 - 4 insertions necessary for neutral right-handed decays

• All FCNCs with external down-type quarks controlled by

 $(\Delta_{LL}^q)_{i\neq j} = (Y_U Y_U^{\dagger})_{ij} = y_t^2 (V_{\text{CKM}}^*)_{3i} (V_{\text{CKM}})_{3j} \qquad (y_t = \mathcal{O}(1))$

Wolfenstein expansion

- Off-diagonal CKM elements suppressed by Wolfenstein- $\lambda \sim 0.2$.
- Quark masses small compared to EW scale.

(except for m_t)

 \Rightarrow The more spurion insertions, the more suppression.

Exception: $t \rightarrow b$ transitions ($V_{tb} \sim 1, m_t \sim v$)

- Only need to consider minimal number of spurion insertions:
 - no insertion necessary for charged left-handed decays,
 - ...
 - 4 insertions necessary for neutral right-handed decays.

• All FCNCs with external down-type quarks controlled by $(\Delta_{LL}^q)_{i \neq j} = (Y_U Y_U^{\dagger})_{ij} = y_t^2 (V_{CKM}^*)_{3i} (V_{CKM})_{3j} \qquad (y_t = O(1))$

Wolfenstein expansion

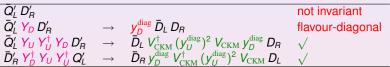
- Off-diagonal CKM elements suppressed by Wolfenstein- $\lambda \sim 0.2$.
- Quark masses small compared to EW scale.
- \Rightarrow The more spurion insertions, the more suppression.

Exception: $t \rightarrow b$ transitions ($V_{tb} \sim 1, m_t \sim v$)

- Only need to consider minimal number of spurion insertions:
 - no insertion necessary for charged left-handed decays,
 - ...
 - 4 insertions necessary for neutral right-handed decays.

All FCNCs with external down-type quarks controlled by

$$(\Delta_{LL}^q)_{i\neq j} = (Y_U Y_U^\dagger)_{ij} = y_t^2 (V_{\rm CKM}^*)_{3i} (V_{\rm CKM})_{3j} \qquad (y_t = \mathcal{O}(1))$$


(except for m_t)

Example: $b \rightarrow s\gamma$

Leading operators in weak effective Hamiltonian:

 $O_7 = \bar{s}_L \,\sigma_{\mu\nu} \, b_R \, F^{\mu\nu} \,, \qquad O_7' = \bar{s}_R \,\sigma_{\mu\nu} \, b_L \, F^{\mu\nu} \,.$

Construct FCNC D_L-D_R transitions, invariant under F:

FCNC require (at least) two CKM elements.right-handed guarks suppressed by guark mass.

•
$$O_7$$
 pre-factor: $\sim \frac{m_b}{v} y_t^2 V_{ts}^* V_{tb}$ O_7' pre-factor: $\sim \frac{m_s}{v} y_t^2 V_{ts}^* V_{tb}$

The same flavour factors as from penguin diagrams in the SM !

• • • • • • • • • • • •

No significant NP impact on CP asymmetries:
 e.g. A^{dir,mix}_{CP} for B → J/ψK_s and B → φK_s as in SM

- NP contributions to different FCNC decays are related:
 e.g. ratio of b → sγ and b → dγ still determined by |V_{ts}/V_{td}|
 ΔM_{B_s}/ΔM_{B_d} still given by |V_{ts}/V_{td}|
- NP contributions to charged decays insignificant:
 e.g. |V_{ub}| from b → uℓν

Corrections to flavour observables smaller than in generic case

 \Rightarrow NP scales in the TeV range still allowed.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• No significant NP impact on CP asymmetries:

- e.g. $A_{\rm CP}^{
 m dir,mix}$ for $B \to J/\psi K_s$ and $B \to \phi K_s$ as in SM
- NP contributions to different FCNC decays are related:
 - e.g. ratio of $b \to s\gamma$ and $b \to d\gamma$ still determined by $|V_{ts}/V_{td}|$
 - $\Delta M_{B_s} / \Delta M_{B_d}$ still given by $|V_{ts} / V_{td}|$
- NP contributions to charged decays insignificant:
 e.g. |V_{ub}| from b → uℓν

Corrections to flavour observables smaller than in generic case

 \Rightarrow NP scales in the TeV range still allowed.

• • • • • • • • • • • •

- No significant NP impact on CP asymmetries:
 - e.g. $A_{CP}^{dir,mix}$ for $B \rightarrow J/\psi K_s$ and $B \rightarrow \phi K_s$ as in SM
- NP contributions to different FCNC decays are related:
 - e.g. ratio of $b \rightarrow s\gamma$ and $b \rightarrow d\gamma$ still determined by $|V_{ts}/V_{td}|$
 - $\Delta M_{B_s} / \Delta M_{B_d}$ still given by $|V_{ts} / V_{td}|$
- NP contributions to charged decays insignificant:
 e.g. |V_{ub}| from b → uℓν

Corrections to flavour observables smaller than in generic case

 \Rightarrow NP scales in the TeV range still allowed.

< **□** > < **□** >

- No significant NP impact on CP asymmetries:
 - e.g. $A_{CP}^{dir,mix}$ for $B \rightarrow J/\psi K_s$ and $B \rightarrow \phi K_s$ as in SM
- NP contributions to different FCNC decays are related:
 - e.g. ratio of $b \rightarrow s\gamma$ and $b \rightarrow d\gamma$ still determined by $|V_{ts}/V_{td}|$
 - $\Delta M_{B_s} / \Delta M_{B_d}$ still given by $|V_{ts} / V_{td}|$
- NP contributions to charged decays insignificant:
 - e.g. $|V_{ub}|$ from $b \rightarrow u\ell\nu$

• Corrections to flavour observables smaller than in generic case

 \Rightarrow NP scales in the TeV range still allowed.

Phenomenological Signatures for beyond MFV ?

Violation of MFV relations in FCNC:

- $b \rightarrow s\gamma$ vs. $b \rightarrow d\gamma$
- ΔM_{B_d} vs. ΔM_{B_s}
- $B \rightarrow J/\psi K_s$ vs. $B \rightarrow \phi K_s$
- ...

- SM, MFV $\sqrt{}$ SM, MFV $\sqrt{}$ (\rightarrow nMFV)
- Sizeable right-handed contributions to charged decays:
 - test of left-handedness in $b \rightarrow c \ell \nu$ SM, MFV $\sqrt{}$ from moment analysis of inclusive decay spectra
 - [Mannel et al, hep-ph/0701054]

A (1) > A (2) > A

• inconsistencies in $|V_{ub}/V_{cb}|$ measurements (exclusive vs. inclusive vs. sin 2 β)

 $((\rightarrow n MFV))$

• ...

Variations on MFV / Beyond MFV	
 Extended Scalar Sector: 2-Higgs models: y_b ⋅ tan β ~ O(1) MSSM with large μ: y_b ⋅ μ ~ O(m) 	[D'Ambrosio et al.] [Buras et al.]
 Extended Fermion Sector: Littlest Higgs Models with <i>T</i>-parity Froggatt-Nielsen scenarios 	[Buras et al., Hubisz et al.]
 Extended Gauge Sector: MFV and SU(5) 	[Grinstein et al., hep-ph/0608123]
Dominant couplings to 3rd generation	[Agashe et al., hep-ph/0509117]
General framework would allow for several new spurion fields, with different transformations under flavour group, but still small expansion parameters in	

transformations under flavour group, but still small expansion parameters in off-diagonal elements. [TF/Mannel 2006]

Th. Feldmann (Siegen)

Minimal Flavour Violation Scenarios

MFV in the Lepton Sector

(minimal field content)

Th. Feldmann (Siegen)

Minimal Flavour Violation Scenarios

・ ▲ ≣ ▶ ■ りへの June 2007 16 / 25

< ロ > < 同 > < 回 > < 回 >

- Flavour symmetry group: $F_{lept.} = SU(3)_{L_l} \times SU(3)_{E_R}$
- Lepton multiplets: $L_L = \begin{pmatrix} \nu_\ell \\ \ell \end{pmatrix}_L \sim (3, 1), \quad E_R \sim (1, 3).$
- Charged-lepton Yukawas $Y_{\ell} \sim (3, \overline{3})$ break flavour symmetry.
- No neutrino Yukawas ⇒ No lepton-mixing in the SM

Including Neutrino Masses

• The combination $N = H^T \tau_2 L_L$ is a SM gauge singlet.

 \Rightarrow Gauge-invariant dim-5 operator:

$$\mathcal{L}_{\mathrm{Maj}} = rac{1}{2\Lambda_{LN}} \left(N^{T} \, g \, N
ight)$$

- Does not conserve lepton number.
- Generates neutrino Majorana mass terms of order ν²/Λ_{LN} ≪ 1
- New flavour matrix:

(in basis where Y_{ℓ} is diagonal)

$$g=rac{\Lambda_{
m LN}}{v^2}\,U_{
m PMNS}^*\,m_
u^{
m diag}\,U_{
m PMNS}^\dagger$$

MLFV: Treat new flavour matrix as spurion field: $g \sim (\overline{6}, 1)$

Uniqueness of MLFV ?

- Mechanism for neutrino mass generation unknown !
- Implementation of MFV in Lepton Sector not unambiguous !

see the discussion in [Davidson/Palorini, hep-ph/0607329]

Lepton-flavour transitions induced by spurion g

- Consider all gauge-invariant operators of dim-6 (and higher) [Cirigliano et al., hep-ph/0507001]
- Bi-linear building blocks:

 $(\bar{L}g^{\dagger}gL), \quad (\bar{L}g^{\dagger}gY_{\ell}^{\dagger}R), \quad (\bar{R}Y_{\ell}g^{\dagger}gY_{\ell}^{\dagger}R)$

 \Rightarrow e.g. radiative decays $\ell \rightarrow \ell' \gamma$ controlled by y_ℓ and

$$egin{array}{rcl} (g^{\dagger}g)^{e}_{ au} &\simeq& rac{\Lambda^2_{
m LN}}{\sqrt{2}v^4} \left(-s_{12}c_{12}\,\Delta m^2_{
m sol}\pm s_{13}e^{i\delta}\Delta m^2_{
m atm}
ight) \ (g^{\dagger}g)^{\mu}_{ au} &\simeq& rac{\Lambda^2_{
m LN}}{2v^4} \left(-c^2_{12}\,\Delta m^2_{
m sol}\pm \Delta m^2_{
m atm}
ight) \,, \ (g^{\dagger}g)^{e}_{\mu} &\simeq& rac{\Lambda^2_{
m LN}}{\sqrt{2}v^4} \left(s_{12}c_{12}\,\Delta m^2_{
m sol}\pm s_{13}e^{i\delta}\Delta m^2_{
m atm}
ight) \,, \end{array}$$

(insensitive to absolute neutrino mass scale and Majorana phases)

Th. Feldmann (Siegen)

Minimal Flavour Violation Scenarios

June 2007 20 / 25

< 🗇 > < 🖃 >

Lepton-flavour transitions induced by spurion *g* (continued)

• 4-lepton operators:

 $(\overline{L} g^{\dagger} g L)(\overline{L}L), \quad (\overline{L} g^{\dagger} g L)(\overline{R}R), \qquad \text{etc.}$

include the same flavour structures as radiative decays.

independent flavour structure from:

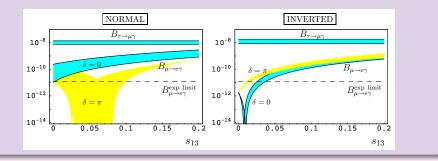
 $(g)_{ij}(g^*)^{kl}(\bar{L}_kL^i)(\bar{L}_lL^j)$

(corresponds to 27plet in $\overline{6} \otimes 6 = 1 + 8 + 27$)

Sensitive to absolute neutrino mass scale and Majorana phases !

[Cirigliano/Grinstein, hep-ph/0601111]

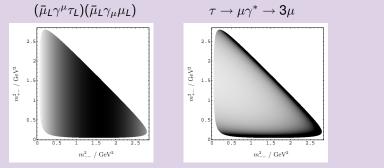
- dim-6 operators suppressed by $1/\Lambda_{NP}^2$
- dominating flavour coefficients $|(g^{\dagger}g)_{ij}| \lesssim 1$
- Sizeable LFV effects possible for Λ_{NP} in the TeV range (i.e. $\Lambda_{NP} \ll \Lambda_{LN})$
- radiative decays $\ell \to \ell' \gamma$
- decays into charged leptons $au \to \mathbf{3}\ell$ and $\mu \to \mathbf{3}\ell$
- hadronic decays ($au o \mu \pi^0 \dots$),
 - μe conversion in nuclei.
- leptogenesis [hep-ph/0607068, hep-ph/0609067, hep-ph/0612262]


[hep-ph/0601111]

Radiative decays

[Cirigliano et al., hep-ph/0507001]

< ロ > < 同 > < 三 > < 三 >


- $s_{13} \leq 0.25$ and $\Delta m_{\mathrm{atm}}^2 \gg \Delta m_{\mathrm{sol}}^2$,
- fix remaining parameters such that $B_{\tau \to \mu \gamma} = \frac{\Gamma(\tau \to \mu \gamma)}{\Gamma(\tau \to \mu \nu_{\tau} \bar{\nu}_{\mu})} \sim 10^{-8}$

- $\mu \rightarrow e\gamma$ most sensitive probe of MLFV scenario.
- With existing bounds on μ → eγ and for s₁₃ ≥ 0.1, observation of τ → μγ at near future experiments unlikely within MLFV.

Leptonic decays $\ell \rightarrow 3\ell'$

- two competing flavour structures: $(gg^{\dagger})_{\ell\ell'}$ vs. $g_{\ell\ell'}g^{*}_{\ell'\ell'}$ \Rightarrow Study ratios $\Gamma[\ell \rightarrow 3\ell']/\Gamma[\ell \rightarrow \ell'\gamma]$. [hep-ph/0601111]
- 4-lepton operators vs. radiative decays ⇒ study decay distributions.
 Example: Dalitz plots for τ⁻ → μ⁻μ⁺μ⁻ contributions:

[Dassinger/TF/Mannel/Turczyk, preprint HEP-2007-06]

< □ > < □ > < □ > < □ > < □ > < □ >

Exploring NP flavour sector:

- (1.) Establish NP in discovery channels
- (2.) Test flavour precision data against MFV hypothesis:
 - either: disprove MFV (violation of correlations)
 - \hookrightarrow Allow for new flavour structures (spurion fields).
 - \hookrightarrow Flavour puzzle even more pronounced.
 - or: determine parameters within your favourite NP model for (1.)
 - \hookrightarrow use MFV for book-keeping.

< (□) ▶ < 三 ▶