Theoretical Uncertainties of CKM Parameters

Patricia Ball

IPPP, Durham

Heavy Flavour Forum, Cosener's House, Solstice 2007

Outline

Status of and prospects for

- \bigcirc $|V_{us}|$
- $|V_{cb}|$
- $|V_{ub}|$
- γ

Don't include:

- $\alpha \rightarrow \text{talk on global fits}$
- $|V_{td}|$, $|V_{ts}|$: potentially contaminated by new physics
- $|V_{cd}|$, $|V_{cs}|$ from charm decays & lattice
- DCS penguin pollution of β

How to determine $|V_{us}|$?

- $K_{\ell 3}$ decays (i.e. $K \to \pi \ell \nu$)
- ratio f_K/f_{π} and leptonic decays $\Gamma(K \to \ell \nu)/\Gamma(\pi \to \ell \nu)$
- hadronic τ decays
- hyperon decays

News from $K \to \pi \ell \nu$

$$\Gamma(K \to \pi \ell \nu) \propto |V_{us}|^2 \int dt \lambda^{3/2}(t) f_+^2(t)$$

Determine shape of form factor from data on spectrum, extract $|V_{us}f_+(0)|$ from data: (recent new results from E865, KTeV, NA48, KLOE)

$$|V_{us}f_{+}(0)|_{exp} = 0.2169(9)$$
 (PDG 06)
 $|V_{us}f_{+}(0)|_{exp} = 0.21673(46)$ (FLAVIAnet K WG 06)

New result for $f_+(0)$ from lattice (UKQCD/RBC): (CKM06, hep-lat/0702026)

 $f_+(0) = 0.9609(51)$, i.e. error is 0.5% ($\Delta(1 - f_+(0)) = 13\%$)

Gives

NB:
$$f_+(0) = 1 - O((m_s - m_q)^2)$$
 (Ademollo-Gatto theorem)

$$|V_{us}| = 0.2257(9)_{exp}(12)_{th}$$
 (PDG 06)
 $|V_{us}| = 0.2255(5)_{exp}(12)_{th}$ (FLAVIAnet K WG 06)

News from $K \to \pi \ell \nu$

$$\Gamma(K \to \pi \ell \nu) \propto |V_{us}|^2 \int dt \lambda^{3/2}(t) f_+^2(t)$$

Determine shape of form factor from data on spectrum, extract $|V_{us}f_+(0)|$ from data: (recent new results from E865, KTeV, NA48, KLOE)

$$|V_{us}f_{+}(0)|_{exp} = 0.2169(9)$$
 (PDG 06)
 $|V_{us}f_{+}(0)|_{exp} = 0.21673(46)$ (FLAVIAnet K WG 06)

New result for $f_+(0)$ from lattice (UKQCD/RBC): (CKM06, hep-lat/0702026)

 $f_+(0) = 0.9609(51)$, i.e. error is 0.5% ($\Delta(1 - f_+(0)) = 13\%$)

NB: $f_+(0) = 1 - O((m_s - m_q)^2)$ (Ademollo-Gatto theorem)

Funnily enough, this new result coincides with the rather old one from Leutwyler/Roos (1984) (χ PT + quark model):

$$f_+(0) = 0.961(8).$$

News from $K \to \pi \ell \nu$

$$|V_{us}| = 0.2257(9)_{exp}(12)_{th}$$
 (PDG 06)
 $|V_{us}| = 0.2255(5)_{exp}(12)_{th}$ (FLAVIAnet K WG 06)

Theory error still larger than experimental one...

UKQCD/RBC result is preliminary and has been obtained using domain wall quarks with 2+1 dynamical flavours. Finalisation & further improvements under way.

Expected accuracy?

News from $K o \pi \ell u$

$$|V_{us}| = 0.2257(9)_{exp}(12)_{th}$$
 (PDG 06)
 $|V_{us}| = 0.2255(5)_{exp}(12)_{th}$ (FLAVIAnet K WG 06)

Theory error still larger than experimental one...

UKQCD/RBC result is preliminary and has been obtained using domain wall quarks with 2+1 dynamical flavours. Finalisation & further improvements under way.

Expected accuracy?

News from $K o \pi \ell u$

$$|V_{us}| = 0.2257(9)_{exp}(12)_{th}$$
 (PDG 06)
 $|V_{us}| = 0.2255(5)_{exp}(12)_{th}$ (FLAVIAnet K WG 06)

Theory error still larger than experimental one...

UKQCD/RBC result is preliminary and has been obtained using domain wall quarks with 2+1 dynamical flavours. Finalisation & further improvements under way.

Expected accuracy?

A question for Chris & Jonathan...

News from
$$\Gamma(K \to \ell \nu) / \Gamma(\pi \to \ell \nu)$$

From $\Gamma(K \to \ell \nu) / \Gamma(\pi \to \ell \nu)$, get

$$\frac{|V_{us}|}{|V_{ud}|} \frac{f_K}{f_\pi} = 0.27618(48) \,.$$

Nuclear β decay: $|V_{ud}| = 0.97377(27)$.

New lattice result (HPQCD/UKQCD, arXiv:0706.1726):

 $f_K/f_{\pi} = 1.189(7)$, i.e. error is 0.6%.

gives

$$|V_{us}| = 0.2262(4)_{\exp}(13)_{\text{th}}$$

Theory error larger than experimental one.

That's a new state-of-the-art result, so probably too much to ask for improve-

ment soon.

$|V_{us}|$ from hadronic au decays and hyperons

$$\tau$$
 decays: $R_{\tau} = \Gamma(\tau \rightarrow \text{hadrons}) / \Gamma(\tau \rightarrow e\nu_e\nu_{\tau}) = 3.6410(10).$

Related to QCD correlation functions, calculable from operator product expansion (Braaten/Narison/Pich 92).

Most recent result: (Gamiz et al., hep-ph/0612154, updated by Jamin, Moriond EW 07)

$$|V_{us}| = 0.2214(33)_{\exp}(10)_{\mathrm{th}}$$

Hyperon decays: $\Lambda \rightarrow$

-
$$pe
u$$
, $\Sigma
ightarrow ne
u$, $\Xi
ightarrow \Sigma e
u$, $\Xi
ightarrow \Lambda e
u$

 $\left| V_{us}
ight| = 0.226(5)$ (Mateu/Pich 05)

- no longer competitive with other determinations
- main disadvantage: in contrast to $K \to \pi e \nu$, contribution from AV form factors, not protected by Ademollo-Gatto

Final Result for $|V_{us}|$

$$|V_{us}|(K_{\ell 3}) = 0.2257(15)$$
 $|V_{us}|(f_K/f_\pi) = 0.2262(14)$
 $|V_{us}|(\tau) = 0.2225(34)$ $|V_{us}|(hyp) = 0.226(5)$

Average: $|V_{us}| = 0.2257(10)$, i.e. 0.4% error

Up from Jamin's average 0.2240(11) (Moriond EW 07) because of larger $|V_{us}|(K_{\ell 3})$ and $|V_{us}|(f_K/f_{\pi})$.

Check unitarity relation: $|V_{ud}| + |V_{us}|^2 + |V_{ub}|^2 = 1 - \delta$

 $\delta = (0.8 \pm 0.7) \cdot 10^{-3}$: no significant discrepancy

$|V_{cb}|$ exclusive from $B o D^* \ell u$

Based on application of heavy quark symmetry (HQS) :

$$\frac{d\Gamma(B \to D^* \ell \nu)}{dw} \propto |V_{cb}|^2 (\mathcal{F}(w))^2 \,,$$

 $w = \frac{m_B^2 + m_{D^*}^2 - q^2}{2m_B m_{D^*}} \,.$

Form factor $\mathcal{F}(1) = 1$ in HQL (Isgur-Wise function), corrections only 2nd order in $1/m_{b,c}$ (Luke's theorem). Parametrise $\mathcal{F}(w) = \eta_{\text{QED}} \eta_{\text{QCD}} \left[1 + \delta_{1/m^2} + \dots \right] - (w - 1)\rho^2 + O((w - 1)^2).$

Exp: $\mathcal{F}(1)|V_{cb}| = 35.7(6) \cdot 10^{-3}$ (2% error). Th: $\mathcal{F}(1) = 0.9130^{+0.029}_{-0.035}$ (4% error).

 $|V_{cb}|_{\text{ex}} = 39.1(7)_{\text{exp}} (^{+15}_{-12})_{\text{th}} \cdot 10^{-3}$ (4% error)

$|V_{cb}|$ exclusive from $B \rightarrow D^* \ell \nu$ – Prospects

- current theoretical $\mathcal{F}(1)$ from quenched lattice calculations (Hashimoto et al. 2002)
- method does not rely on explicit $1/m_b$ expansion, also include $1/m_b^3$ terms
- unquenching under way: 2+1 staggered fermions, Fermilab method for heavy quarks (Laiho et al.)
- first results may be available for this year's lattice conference (Laiho, priv. comm.)
 - one complication: $D^* \rightarrow D\pi$ threshold to be crossed when extrapolating input light quark to physical quark masses (Laiho/van de Water 05)

$|V_{cb}|$ exclusive from $B ightarrow D\ell u$

$$\frac{d\Gamma(B \to D\ell\nu)}{dw} \propto |V_{cb}|^2 (\mathcal{G}(w))^2 ,$$

$$w = \frac{m_B^2 + m_D^2 - q^2}{2m_B m_D}$$

Still form factor $\mathcal{G}(1) = 1$ in HQL, but now corrections are 1st order in $1/m_{b,c} \rightarrow HQS$ not that useful any more. Parametrise

$$\mathcal{G}(w) = \mathcal{G}(1) \left[1 - (w - 1)\rho^2 + O((w - 1)^2) \right].$$

Exp: $\mathcal{G}(1)|V_{cb}| = 42.3(45) \cdot 10^{-3}$ (11% error).

Th1: $\mathcal{G}(1)_{latt} = 1.074(24)$ (2% error) (Okamoto et al. 04, unquenched, preliminary) Th2: $\mathcal{G}(1)_{BPS} = 1.04(1)$ (1% error) (Uraltsev 03)

 $|V_{cb}|_{\text{Th1}} = 39.4(42)_{\exp}(9)_{\text{th}} \cdot 10^{-3}$

$$V_{cb}|_{\text{Th2}} = 40.7(43)_{\text{exp}}(4)_{\text{th}} \cdot 10^{-3}$$

$|V_{cb}|$ inclusive

Theoretical tool: operator product expansion (OPE)

- hadronic physics encoded in a few parameters (m_b , μ_{π}^2 etc.)
- basic theoretical assumption: validity of quark-hadron duality
 - deviations would manifest themselves as badly converging $1/m_b$ expansion: no sign for that

$|V_{cb}|$ inclusive

Status of theory:

- $\Gamma(B \to X_c \ell \nu)$ at $O(\alpha_s^2 \beta_0)$, but not $O(\alpha_s^2)$
- power corrections at tree level
- technology for two-loop calculation of spectra available (Anastasiou/Melnikov/Petriello 2005)
- work in progress! (Neubert et al.)

Result:

 $|V_{cb}| = 41.78(36)_{\text{fit}}(08)_{\tau_B} \cdot 10^{-3}$, i.e. theory error 0.9% (HFAG 2007, prelim.)

$|V_{ub}|$ inclusive – Error Estimates

Neubert, talk at FPCP07:

- perturbative error on $|V_{cb}|$
 - $O(\alpha_s^2)$ to total rate not known, BLM approximation $O(\alpha_s^2\beta)$ need not be very good (see $\Gamma(\tau \to X\nu)$)
 - estimate this uncertainty by averaging the non-BLM $O(\alpha_s^2)$ terms in $\Gamma(\tau \to X\nu)$ and $\Gamma(B \to X_u e\nu)$

• gives $\delta |V_{cb}|_{pert} = \pm 0.72 \cdot 10^{-3}$, i.e. 1.7%: twice the theory error quoted by HFAG 2007

Conclusion: need to complete $O(\alpha_s^2)$ corrections!

A rising "tension"...

 β known in terms of $|V_{ub}/V_{cb}|$, γ and $\lambda \equiv |V_{us}|$:

$$\sin \beta = \frac{R_b \sin \gamma}{\sqrt{1 + R_b^2 - 2R_b \cos \gamma}}, \quad \cos \beta = \frac{1 - R_b \cos \gamma}{\sqrt{1 + R_b^2 - 2R_b \cos \gamma}}$$

with
$$R_b = \left(1 - \frac{\lambda^2}{2}\right) \frac{1}{\lambda} \frac{|V_{ub}|}{|V_{cb}|}.$$

For $\gamma \in [50^\circ, 80^\circ]$

- Vub(incl) β from $|V_{ub}|_{excl}$ from[HFAG] $B \rightarrow \pi e \nu$ agrees perfectly β (from charm.)well with β from $B \rightarrow (c\bar{c})K$ Vub(excl) [FN](Flynn/Nieves, arXiv:0705.3553)
 - β from $|V_{ub}|_{incl}$ from inclusive $B \rightarrow X_u e\nu$ as averaged by HFAG is on the large side.

Significance? See global fits...

$$|V_{ub}|$$
 from $B \to \pi e \nu$

Theory input needed: form factors:

$$\langle \pi(p) | \bar{u} \gamma_{\mu} (1 - \gamma_{5}) b | B(p+q) \rangle$$

$$= (q+2p)_{\mu} f_{+}(q^{2}) + \frac{m_{B}^{2} - m_{\pi}^{2}}{q^{2}} q_{\mu} \left(f_{0}(q^{2}) - f_{+}(q^{2}) \right)$$

$$0 \leq q^{2} \leq (m_{B} - m_{\pi})^{2} \quad \longleftrightarrow \quad m_{\pi} \leq E_{\pi} \leq \frac{1}{2m_{B}} \left(m_{B}^{2} - m_{\pi}^{2} \right)$$

$$0 \le q^2 \le 26.4 \,\mathrm{GeV}^2 \qquad \longleftrightarrow \qquad 0.14 \,\mathrm{GeV} \le E_\pi \le 2.6 \,\mathrm{GeV}$$

Theoretical methods:

- Iattice: HPQCD (Dalgic et al. 06) & Fermilab (Arnesen et al. 05): unquenched, 2+1 staggered fermions
- SCET/dispersive constraints (Arnesen et al. 05, Williamson/Zupan 06)
- QCD sum rules on the light-cone (Ball/Zwicky 04)

$$|V_{ub}|$$
 from $B
ightarrow \pi e
u$

$$\mathcal{B}(\bar{B}^0 \to \pi^+ \ell^- \bar{\nu}_\ell) = 1.37(6)_{\text{stat}}(6)_{\text{syst}} \cdot 10^{-4}$$
 (HFAG), i.e. 6% error.

 q^2 -spectrum measured by BaBar, Belle and CLEO in various bins in q^2 . Allows model-independent extraction of $|V_{ub}f_+(0)|$ based on five different parametrisations of the shape of f_+ in q^2 (Ball 06, only BaBar spectrum):

$$|V_{ub}f_+(0)|_{\exp} = 9.1(7) \cdot 10^{-4}$$

 $f_+(0)$ from QCD sum rules one the light-cone:

$$f_{+}(0)|_{\text{LCSR}} = 0.258(31)$$

$$|V_{ub}|$$
 from $B \to \pi e \nu$

$$\mathcal{B}(\bar{B}^0 \to \pi^+ \ell^- \bar{\nu}_\ell) = 1.37(6)_{\text{stat}}(6)_{\text{syst}} \cdot 10^{-4}$$
 (HFAG), i.e. 6% error.

 q^2 -spectrum measured by BaBar, Belle and CLEO in various bins in q^2 . Allows model-independent extraction of $|V_{ub}f_+(0)|$ based on five different parametrisations of the shape of f_+ in q^2 (Ball 06, only BaBar spectrum):

$$|V_{ub}f_+(0)|_{\exp} = 9.1(7) \cdot 10^{-4}$$

Lattice calculations only available for $q^2 > 16 \text{ GeV}^2$. Combine experimental partial branching fractions with HPQCD/Fermilab and LCSR results, parametrise $f_+(q^2)$ based on Omnès representation: (Flynn/Nieves hep-ph/0703284)

$$|V_{ub}| = 3.90(32)_{\text{exp+th}}(18)_{\text{syst}} \cdot 10^{-3}$$

$$|V_{ub}|$$
 from $B \to \pi e \nu$

$$\mathcal{B}(\bar{B}^0 \to \pi^+ \ell^- \bar{\nu}_\ell) = 1.37(6)_{\text{stat}}(6)_{\text{syst}} \cdot 10^{-4}$$
 (HFAG), i.e. 6% error.

 q^2 -spectrum measured by BaBar, Belle and CLEO in various bins in q^2 . Allows model-independent extraction of $|V_{ub}f_+(0)|$ based on five different parametrisations of the shape of f_+ in q^2 (Ball 06, only BaBar spectrum):

$$|V_{ub}f_+(0)|_{\exp} = 9.1(7) \cdot 10^{-4}$$

Lattice calculations only available for $q^2 > 16 \text{ GeV}^2$. Combine experimental partial branching fractions with HPQCD/Fermilab and LCSR results, parametrise $f_+(q^2)$ based on Omnès representation: (Flynn/Nieves arXiv:0705.3553):

$$3.90(32)(18) \cdot 10^{-3} \rightarrow |V_{ub}| = 3.47(29)_{\text{exp+th}}(03)_{\text{syst}} \cdot 10^{-3}$$

$$|V_{ub}|$$
 from $B
ightarrow \pi e
u$

$$\mathcal{B}(\bar{B}^0 \to \pi^+ \ell^- \bar{\nu}_\ell) = 1.37(6)_{\text{stat}}(6)_{\text{syst}} \cdot 10^{-4}$$
 (HFAG), i.e. 6% error.

 q^2 -spectrum measured by BaBar, Belle and CLEO in various bins in q^2 . Allows model-independent extraction of $|V_{ub}f_+(0)|$ based on five different parametrisations of the shape of f_+ in q^2 (Ball 06, only BaBar spectrum):

$$|V_{ub}f_+(0)|_{\exp} = 9.1(7) \cdot 10^{-4}$$

Lattice calculations only available for $q^2 > 16 \text{ GeV}^2$. Combine experimental partial branching fractions with HPQCD/Fermilab and LCSR results, parametrise $f_+(q^2)$ based on Omnès representation: (Flynn/Nieves arXiv:0705.3553):

$$3.90(32)(18) \cdot 10^{-3} \rightarrow |V_{ub}| = 3.47(29)_{\text{exp+th}}(03)_{\text{syst}} \cdot 10^{-3}$$

Why? Original HPQCD result incorrect – correct result ca. 15% smaller. hep-lat/0601021v4 – p.19

$|V_{ub}|$ from $B o X_u e u$

Experimental problem: reduce/eliminate dominant $B \rightarrow X_c e\nu$ background Theoretical tool: light-cone expansion (LCE) (Neubert 93, Bigi et al. 93)

In LCE, $d\Gamma(B \to X_u e\nu) = HJ \otimes S$:

- H, J: hard and jet functions, calculate in perturbation theory
- S: shape function, non-perturbative & process-independent

$|V_{ub}|$ from $B o X_u e u$

Strategy (BLNP): (Bosch et al. 04,05)

- extract shape function from $B \to X_s \gamma$ spectrum in photon energy, use this to predict $B \to X_u e\nu$ spectra
- functional form of shape function restricted from moment relations

Other approaches: dressed gluon exponentiation (DGE): (Gardi 04)

- renormalon-inspired model for the leading shape function
- sub-leading shape functions not related to renormalon in m_b not included
- predictive functional form of shape function
- numerical results very close to BNLP

 $|V_{ub}|$ from $B o X_u e
u$

Results for various cuts: (HFAG 2007)

	accepted region	f_u	$ V_{ub} [10^{-3}]$
CLEO [313]	$E_e > 2.1 \mathrm{GeV}$	0.13	$4.09 \pm 0.48 \pm 0.37$
BELLE [316]	$E_e > 1.9 \mathrm{GeV}$	0.24	$4.82 \pm 0.45 \pm 0.30$
BABAR [315]	$E_e > 2.0 \mathrm{GeV}$	0.19	$4.39 \pm 0.25 \pm 0.32$
BABAR [314]	$E_e > 2.0 { m GeV}, s_{ m h}^{ m max} < 3.5 { m GeV^2}$	0.13	$4.57 \pm 0.31 \pm 0.42$
BELLE [309]	$M_X < 1.7 \mathrm{GeV}/c^2$	0.47	$4.06 \pm 0.27 \pm 0.24$
BELLE [318]	$M_X < 1.7 \mathrm{GeV}/c^2, q^2 > 8 \mathrm{GeV}^2/c^2$	0.24	$4.37 \pm 0.46 \pm 0.29$
BABAR [317]	$M_X < 1.7 { m GeV}/c^2, q^2 > 8 { m GeV}^2/c^2$	0.24	$4.75 \pm 0.35 \pm 0.31$
Average	$\chi^2 = 6/6, \text{CL} = 0.41$		$4.52 \pm 0.19 \pm 0.27$

Neubert FPCP07:

select "best" determinations (highest effi ciency, best theoretical control):

 $|V_{ub}| = 4.10(30)_{\exp}(?)(29)_{\text{th}} \cdot 10^{-3}$

 $|V_{ub}|$ from $B \to X_u e \nu$

Results for various cuts: (HFAG 2007)

	accepted region	f_u	$ V_{ub} [10^{-3}]$
CLEO [313]	$E_e > 2.1 \mathrm{GeV}$	0.13	$4.09 \pm 0.48 \pm 0.37$
BELLE [316]	$E_e > 1.9 \mathrm{GeV}$	0.24	$4.82 \pm 0.45 \pm 0.30$
BABAR [315]	$E_e > 2.0 \mathrm{GeV}$	0.19	$4.39 \pm 0.25 \pm 0.32$
BABAR [314]	$E_e > 2.0 { m GeV}, s_{ m h}^{ m max} < 3.5 { m GeV^2}$	0.13	$4.57 \pm 0.31 \pm 0.42$
BELLE [309]	$M_X < 1.7 \mathrm{GeV}/c^2$	0.47	$4.06 \pm 0.27 \pm 0.24$
BELLE [318]	$M_X < 1.7 \mathrm{GeV}/c^2, q^2 > 8 \mathrm{GeV}^2/c^2$	0.24	$4.37 \pm 0.46 \pm 0.29$
BABAR [317]	$M_X < 1.7 { m GeV}/c^2, q^2 > 8 { m GeV}^2/c^2$	0.24	$4.75 \pm 0.35 \pm 0.31$
Average	$\chi^2 = 6/6, \text{CL} = 0.41$		$4.52 \pm 0.19 \pm 0.27$

Neubert FPCP07:

select "best" determinations (highest effi ciency, best theoretical control):

 $|V_{ub}| = 4.10(30)_{\exp}(?)(29)_{\text{th}} \cdot 10^{-3}$

Again – caveat emptor: shape function uncertainty in exp. error – what impact would a more conservative analysis have?

Tension? What tension?

^{Vub(excl) [FN]} If Neubert's estimate of $|V_{ub}|_{incl}$ stands after a more thorough analysis, $|V_{ub}|_{incl}$ will still be on the large side, but not significantly so.

Can even attempt to average $|V_{ub}|_{excl,FN}$ and $|V_{ub}|_{incl,N}$:

 $|V_{ub}|_{\rm HF forum} = 3.68(24) \cdot 10^{-3}$

Tension? What tension?

Tension? What tension?

$$|V_{ub}|$$
 from $B
ightarrow X_u e
u$

Reduce dependence on shape-function by constructing SF-free relations between weighted spectra, for instance (Neubert 93):

$$\frac{V_{ub}}{V_{tb}V_{ts}^*}\Big|^2 = \frac{3\alpha}{\pi} |C_7(m_b)|^2 \eta_{\text{QCD}} \frac{\hat{\Gamma}_u(E_0)}{\hat{\Gamma}_s(E_0)} + O(1/m_b)$$

with a lower cut-off E_0 on the spectra.

- power-corrections (sub-leading shape functions) must blow up for $E_0 \rightarrow m_B/2$
- nicely verified by Golubev/ Skovpen/Lüth 07 (see plot)
- LLR and Neubert 01 don't include power-corrections and produce deceivingly small errors for large E₀

Prospects for $|V_{ub}|$

Evidently, theorists have some homework to do:

- Fermilab calculation of $f_{+}^{B \to \pi}$ still preliminary: expect results soon?
- breaking through the low- q^2 barrier: moving NRQCD? (HPQCD)
- lattice form factor calculations not based on staggered fermions? (e.g. domain wall light + fully relativistic heavy quarks at fi nite volume + step scaling [Sommer + Alpha coll.])
- anything about sub-leading shape functions

Also, some words of caution (see Neubert, FPCP07):

- don't average theory approaches using different approximations (e.g. LO vs. NLO)
- don't quote small theory errors from approaches without a serious error-analysis
- don't be fooled by the notion of "model-independent" approaches: that doesn't imply errors are 0 or small!! Always look out for estimates of neglected corrections!

$\gamma \operatorname{from} B \to DK$

Many ways lead to γ ...

... but not all of them are theoretically clean or feasable presently. Focus on method suggested by Gronau/Wyler 1991:

• interference between $b \to c \bar{u} s$ and $b \to u \bar{c} s$

• no penguin contributions

$$B
ightarrow (K_S \pi^+ \pi^-)_D K$$

Inteference between amplitudes Cabibbo-suppressed \rightarrow extraction of γ from low-statistics data.

Only method with significant results so far: $B \rightarrow (K_S \pi^+ \pi^-)_D K$:(Giri et al. 03)

$$\gamma = (92 \pm 41 \pm 11 \pm 12)^{\circ}$$
 (BaBar), $\gamma = (53^{+15}_{-18} \pm 3 \pm 9)^{\circ}$ (Belle)

Right now error limited by statistics – at what level do we have to worry about theory errors?

$$B
ightarrow (K_S \pi^+ \pi^-)_D K$$

Inteference between amplitudes Cabibbo-suppressed \rightarrow extraction of γ from low-statistics data.

Only method with significant results so far: $B \rightarrow (K_S \pi^+ \pi^-)_D K$:(Giri et al. 03)

$$\gamma = (92 \pm 41 \pm 11 \pm 12)^{\circ}$$
 (BaBar), $\gamma = (53^{+15}_{-18} \pm 3 \pm 9)^{\circ}$ (Belle)

Right now error limited by statistics – at what level do we have to worry about theory errors?

Sources of theory errors:

- treatment of Dalitz plot of $D \to K_S \pi^+ \pi^-$
- neglect of *D* mixing (Grossman/Soffer/Zupan 05)
- neglect of B lifetime difference in $B^0 \rightarrow DK_S$ (Gronau et al. 07)

Dalitz-Plot Analysis

Main source of uncercainty: ansatz for A_D

- standard: fit A_D as a sum of Breit-Wigners plus a constant non-resonant term
 - best for describing isolated, non-overlapping resonances far from threshold of additional decay channels
 - expect induced error of γ to be $\sim 10^\circ$ (Zupan CKM06)
- alternative I: K matrix formalism : recently implemented by FOCUS for $D^+ \rightarrow K^- \pi^+ \pi^-$ (Focus 07, see also Descotes-Genon CKM06)

 alternative II: model-independent description: partition Dalitz plot in bins (Giri et al. 03)
 implemented & studied by Belle (Poluektov CKM06), needs input from CLEO

Summary

- determinations of $|V_{us}|$ in a very mature state
 - small error reduction possible from even better lattice calculation of $f_+(0)$
- determinations of $|V_{cb}|$ in mature state
 - small discrepancy $\sim 1.6 \sigma$ between exclusive and inclusive determination could be resolved by unquenched form factor calculation and calculation of full $O(\alpha_s^2)$ corrections to $\Gamma(B \to X_c e \nu)$
- determinations of $|V_{ub}|$ in a slightly puzzling state
 - correction of HPQCD form factor has increased "tension" between exclusive and inclusive (HFAG) $|V_{ub}|$
- determination of γ from $B \rightarrow DK$ still limited by statistics
 - some theory questions to ponder about: model-independent Dalitz plot analysis including finite lifetime $\Delta\Gamma_d$ and D mixing