Future flavour physics at the LHC

Jim Libby (University of Oxford)

22/6/2007

Cosener's Heavy Flavour Forum

1

Flavour physics with an upgraded LHCb

Jim Libby (University of Oxford)

22/6/2007

Flavour Physics with an upgraded LHCb

LHCb

Reminder of what is planned by 2012/2013

SuperLHCb

- Luminosity goals
- Technical requirements and desires

The SLHCb physics programme

- Unitarity triangle and CPV
- FCNC decays
- Charm physics

Conclusion

Including comments on time-scale and cost

Primary sources

- Hans Dijkstra (FPCP)
- Sheldon Stone (Flavour in the era of the LHC)
- Guy Wilkinson (1st LHCb upgrade workshop)

- Level-0: high $p_t l^{\pm}$, hadron or γ hardware trigger 40 \rightarrow 1 MHz
 - Effectively $10 \rightarrow 1 \text{ MHz}$
- Software Higher Level Trigger (HLT):
 - ensure high p_t object associated with large impact parameter tracks
 - inclusive and exclusive selections to reduce storage rate to 2 kHz

LHCb programme and goals

- Highlights of the physics programme by 2013 (data set ~10 fb⁻¹)
 - $\square B_s \rightarrow \mu^+ \mu^- \text{ observed}$
 - BR measured to ~15% if SM
 - B_s mixing phase measured with an uncertainty 0.01 rad
 - Current CKMFitter prediction –0.036±0.003
 - γ measured to a few degrees (several ways)
 - B→DK
 - $\bullet B_s \rightarrow D_s K$
 - $B_{(s)} \rightarrow h^+h^-$ exploiting U-spin
 - □ $B \rightarrow K^* \mu^+ \mu^-$: 38k events with B/S<0.5
 - angular analyses

The particle physics landscape in 2013

- All measurements listed on previous slide very sensitive to virtual NP effects
- Three tangible scenarios in 2013
 - 1. NP at GPDs and LHCb
 - 2. NP at LHCb but not at GPDs
 - 3. NP at GPDs not at LHCb
 - But maybe a few 2-3σ effects

Trivial to motivate upgrade in first two

- If we can build a powerful case for scenario 3 then we can justify upgrade before we see any NP signature
- There is a scenario 4 (LHC wasteland)
 - No one wants this!
 - However, virtual effects will be the only way to set scale of NP

Definition of an upgrade

- Before returning to the importance of such a data set in scenario 3, I will address the technical considerations
- An order of magnitude or more improvement
 - Tevatron a successful example:
 - \sim 100 pb⁻¹ (Run I) to 2000 pb⁻¹ and counting (Run II)
 - Improvements to detectors particular silicon and trigger
 - Super Flavour Factory use this standard also:
 - 2 to 75 ab⁻¹
 - Mainly accelerator
- Sets the scale for SLHCb
 - □ 10 to 100 fb⁻¹
 - All necessary improvements are in the detector

LHC and luminosity

- Peak LHC luminosity 10³⁴ cm⁻²s⁻¹
- LHC operating at 2×10³² cm⁻²s⁻¹
 - □ 10 MHz of crossings with \ge 1 int.
- LHC operating at 2×10³³ cm⁻²s⁻¹
 - □ 30 MHz of crossings with \ge 1 int.
 - Number of int./crossing increased by factor of two
 - BUT with spill-over (int. from previous crossing) increased by factor 3
- SLHC peak luminosity 8×10³⁴ cm⁻²s⁻¹
- Not needed by LHCb, but
 - Baseline scheme 25 ns bunches with alternating high (I^H) and low (I_L) current
 - $\Box \quad \text{GPDs: } \mathsf{I}^{\mathsf{H}} \times \mathsf{I}^{\mathsf{H}}, \mathsf{I}_{\mathsf{L}} \times \mathsf{I}_{\mathsf{L}}, \mathsf{I}^{\mathsf{H}} \times \mathsf{I}^{\mathsf{H}}, \mathsf{I}_{\mathsf{L}} \times \mathsf{I}_{\mathsf{L}}, \dots \dots$
 - Effective 20 MHz crossing rate
 - $\Box \quad LHCb: I^{H} \times I_{L}, I_{L} \times I^{H}, I^{H} \times I_{L}, I_{L} \times I^{H}, \dots$
 - Select I_L for desired luminosity

Current LHCb and luminosity

- Current LHCb no gain for hadron modes when lumi goes above 2×10³² cm⁻²s⁻¹
 - Limitation from L0 trigger
- Radiation damage
 - Spec was for less than 20 fb⁻¹
 - $\hfill \square$ Principally affects large η
- Tracking and particle ID:
 - Straws: significant problems from spill-over above 10³³ cm⁻²s⁻¹
 - Hadron PID and tagging OK to ~5×10³² but degrades with reduced tracking performance
 - Si tracking fine

Cosener's Heavy Flavour Forum

Current trigger limits

- Level-0 largest E_T hadron, $e(\gamma)$ and μ
- Bottleneck is 1 MHz output rate
 - Thresholds tuned to match this
- At L>10³³ cm⁻²s⁻¹
 - interactions @ 30 MHz so only 3% can be retained
 - Number of int./crossing 2-4
 - Leads to E_T threshold >> M_B !
- Furthermore, desire to improve efficiency for hadrons and photons
 - $\varepsilon_{L0}(B \rightarrow hadronic) \sim 25-35\%$
 - $\Box \quad \epsilon_{L0}(B \rightarrow \gamma X) \sim 30-40\%$
 - $\Box \quad \epsilon_{L0}^{-}(B \rightarrow \mu \mu X) \sim 60-70\%$
- Higher Level Trigger
 - Only limitation is CPU and our algorithmic ingenuity
 - (Former) improves with Moore's Law

Hardware path to upgrade

Address trigger bottleneck:

- Perform whole trigger in CPU farm .. read out 40 MHz
- Preliminary studies:
 - Event building at 40 MHz OK with suitable CPU
 - Hadron trigger efficiency can be increased by incorporating vertex and coarse momentum early (c.f. BTeV)
 - However, all subsystems front-end electronics need to be replaced
 - New RICH photon detectors

Radiation:

- Vertex detector replacement already required after ~6 fb⁻¹
 - Upgrade to rad. hard Si pixels?
- □ Inner region of calorimeter to crystals→improved $\sigma(E)/E$

Occupancy ×4 in outer tracker

- Only two fold without spillover \rightarrow faster gas?
- Increase inner Si coverage
- More radical SciFi tracker!

Apart from full 40 MHz readout no decisions taken on technologies-there is R&D to be done

Minimal Flavour Violation

- But before embarking on these technical challenges we must concentrate on whether 100 fb⁻¹ data set is motivated in scenario 3:
 - the new physics at GPDs is not influencing the flavour sector
- MFV: CP violation is purely Standard Model
 - no new phases in flavour sector of New Physics
 - test angles to the degree level or better
 - but (small) changes expected in rates and differential distributions of FCNC
 - $b \rightarrow s(d)$ transitions
 - $B_s \rightarrow \mu \mu$

The physics of 100 fb⁻¹

- Highlights of the physics programme by 2013 (~10 fb⁻¹) revisited
 - \Box γ measured to a few degrees (several ways)
 - $B \rightarrow DK, B_s \rightarrow D_s K$ and $B_{(s)} \rightarrow h^+h^-$ exploiting U-spin
 - Upgrade: improvements will lead to 20-fold increase in statistics
 - Upgrade: concentrating on theoretically cleanest modes < 1⁰ precision should be possible
 - B_s mixing phase measured with an uncertainty 0.01 rad
 - Current CKMFitter prediction –0.036±0.003
 - **Upgrade:** <10% measurement SM
 - **Upgrade:** most systematic uncertainties ∝ (Lumi.)⁻¹
 - □ $B \rightarrow K^* \mu^+ \mu^-$: 38k events with B/S<0.5 to perform angular analyses
 - Upgrade: Precision measurement of theoretically clean angular observables
 - $\Box \quad B_s \rightarrow \mu^+ \mu^- \text{ observed}$
 - BR measured to ~15% if SM
 - Upgrade: improve precision to systematic (lumi) limitations
 - **Upgrade:** $B_d \rightarrow \mu^+ \mu^-$?

CPV in gluonic penguin

- One of the poster children of a SFF
 - □ For good reason given the tantalising hints of a discrepancy with sin2 β from b→ccs
- Concentrate on the cleanest modes $B_d \rightarrow \phi K^0, \eta \ K^0$ and $K^0 \ K^0 \ K^0$
 - Average discrepancy 0.10±0.06
 - No attempt to add theory
 - 5σ with current central value an important goal
- $B_d \rightarrow \phi K^0$ most promising at current LHCb
 - Precision at end of LHCb 0.14
 - End of SLHCb 0.03
 - assuming $2 \times \varepsilon_{trigger}$
 - same as SFF but they have the other important modes.....

Cosener's Heavy Flavour Forum

$$B_{s} \rightarrow \phi \phi$$

- B_s analogue of $B_d \rightarrow \phi K^0, \eta' K^0 etc$
- Dependence on V_{ts} in both the decay and B_s mixing amplitudes leads to the SM CPV being < 1%
 - for example M. Raidal, PRL 89, 231803 (2002)
- P→VV decay requires full angular analysis to extract CP info
- Simulation studies with background and detector effects
 - 2000 (4000) events/fb⁻¹ @ (S)LHCb
 - NP phase sensitivity of 0.042 at current LHCb
 - SLHCb sensitivity 0.009 (0.5°)

Toward a sub-degree error on γ

Extrapolating to 100 fb⁻¹ only consider strategies which are theoretically clean

	LHCb	Super-LHCb	SFF	
	(10 fb ⁻¹)	(100 fb ⁻¹)	(75 ab ⁻¹)	
D _s K	27 k	540k	-	
D(K _s ππ)K	≤25k	0.5M	80k 🦟	Extrapolations
D(Kπ) _{fav} K	280k	5.6M	131k 📈	B-factory analyses

- $B_s \rightarrow D_s K$: statistical scaling leads to **1**° uncertainty for 100 fb⁻¹
- $B^{\circ} \rightarrow D(K_{s}\pi\pi)K$: statistical scaling leads to **1.2** ° for 100 fb⁻¹ need to consider model independent method (Bondar & Poluektov) exploiting $\psi'' \rightarrow DD$ data with $K\pi\pi vs CP$ and $K\pi\pi vs K\pi\pi$
 - 3° with final CLEO-c statistics BES-III coming soon
 - Other modes B $\rightarrow D(K_{c}K\pi)K$, B $\rightarrow D(K_{c}KK)K$ and 4-body to be exploited
- $B \rightarrow D(hh)K: ADS/GLW$ methods statistics huge but will need global fit including additional information to overconstrain

Mixing phases-the systematic frontier

$B \rightarrow K^* \mu \mu$

- A_{FB}(s₀)=0 is not enough:
 - $\ \ \, \square \quad SLHCb \ \sigma_{s0} / s_0 = 2.1\%$
 - $\hfill\square$ Exclusive NLO theory today $\sigma_{s0}/s_0\!\!=\!\!9\%$
 - Not unreasonable to expect exclusive error to improve by 2020
- Inclusive reconstruction has lower theory uncertainties ~5%
 - But a truly inclusive measurement (Bbeam) at a SFF will not match this
- However, transversity angle asymmetry analysis looks extremely promising
 - □ Probes chiral structure (c.f. TDCPV $B \rightarrow K^* \gamma$)
 - Theoretically clean
 - Will benefit greatly from SLCHb statistics

Cosener's Heavy Flavour 1 orunn

B_{s(d)} μμ

- 5σ observation expected at current LHCb even if value of BF is SM
- Theory prediction already at ~10%
- More precise determination at SLHCb would be constraining of NP models with large tanβ
- $B_s \rightarrow \mu \mu / B_d \rightarrow \mu \mu = 32.4 \pm 1.9$ tightly constrained in SM and MFV
 - one of the magic numbers of CMFV (Buras)
- Matching theory precision is impossible with 100 fb⁻¹
 - □ But observation possible at SLHCb as long PID can cope with double punch-through background from $B_d \rightarrow \pi\pi$
 - Maybe SLHC GPDs???? Or UltraLHCb!

Charm physics

If charm mixing has indeed been observed, what next?

- Precise measurements of $x^{(\cdot)}$ and $y^{(\cdot)}$
- Search for (and detailed study) of CPV in charm v. promising for NP

Target charm analyses at LHCb and SLHCb (diverse programme!):

- Mixing studies in $D^0 \rightarrow hh$
- CPV search in partial width differences in D⁰→KK, ππ (SCS)
- CPV search in T-odd moment & amplitude analysis of D⁰→KKππ (SCS)
- CPV search in D⁺ \rightarrow K⁻ $\pi\pi$ Dalitz (SCS)
- Mixing and CPV in $D^0 \rightarrow K_s \pi \pi$ Dalitz
- Mixing and CPV in $D^0 \rightarrow K^+\pi\pi\pi$ (DCS)
- Rare decays, eg. $D^{(0)}_{(s)} \rightarrow I^+I^-[(Xu,s)]$

Recent detailed simulation studies at LHCb show great promise in $D^0 \rightarrow hh$ decays.

• After all selection cuts yield from B decays alone is expected to be 10-20 times (10 fb⁻¹) that of total from B-factories (2 ab⁻¹).

Will benefit from change of trigger strategy at SLHCB

Conclusion

- There is a strong case to continue flavour physics even without clear NP signatures by 2013
 - If MFV is correct can be verified through precise determination of CPV and FCNC in B(D) decays at SLHCb
- Schedule
 - 2010 decision on upgrade instrumentation
 - □ 2013-2015 upgrade detector during planned SLHC upgrade
 - 2015-2020 gather 100 fb⁻¹
- Cost
 - □ Current LHCb cost 45 M€
 - Upgrade no detailed costing given lack of instrumentation decisions made
 - Front-end electronics replacement estimate 12 M€
 - Previous cost probably a sensible upper limit

Backup

Other physics highlights

CP violation

 \Box α from $\rho\pi$ and $\rho\rho$

FCNC

- RH currents with $B_s \rightarrow \phi \gamma$
- $b \rightarrow d\gamma$
- □ b→dµµ
- LFV
 - $\square \quad B \rightarrow e\mu$
 - $\square B \rightarrow K^* e \mu$
 - $\Box \quad \tau \rightarrow \mu \mu \mu$

By no means exhaustive

Current HLT trigger performance

- HLT partitioning
 - 200 Hz exclusive B: core modes
 - 600 Hz high mass μμ unbiased in lifetime: B→J/ψX
 - 300 Hz D* for charm physics (CPV) and PID calibration
 - 900 Hz large impact parameter single µ for data mining (untriggable modes)
- Data mining stream
 - 550 Hz true B with tagging εD²=0.15
 - ~35% of the other B decays fully contained
 - 1.5 billion fully contained B events/2 fb-1
 - Equivalent to ~1.4 (0.7) ab⁻¹ of untagged (tagged) e⁺e⁻

CP tagged D0 decays at the $\psi(3770)$

CP Tagged $K_s \pi \pi$ Dalitz Plots (CLEO-c Data)

Cosener's Heavy Flavour Forum