K-K-Scattering at Maximal Isospin from $N_f = 2 + 1 + 1$ Twisted Mass Lattice QCD

Christopher Helmes

C. Jost, B. Knippschild, B. Kostrzewa, L. Liu, C. Urbach, M. Werner

Why Low Energy Scattering Lengths?

- Many particles in standard model resonances created in scattering processes
- κ -Meson from π -K-scattering
- Complications: different Isospin channels, several quark flavours, ...
 - Tue, 5:10 pm: L. Liu, π - π -scattering at I = 0
 - Tue, 2:00 pm: M. Werner, ρ -resonance from π - π at I = 1
- Simpler: *K*-*K*-scattering to learn about strange quarks
- Take analysis procedure from π - π -scattering at $I = 2^1$

¹ETMC, J. High Energ. Phys. (2015) 2015:109

Scattering Parameters

Definition of scattering length a₀ (phaseshift δ₀, scattering momentum q):

$$\lim_{q\to 0}q\cot\delta_0(q)=-\frac{1}{a_0}$$

• Two particles in finite box \Rightarrow wave functions overlap \Rightarrow energy of total system gets shifted

$$\delta E_{KK}^{I=1} = \left(E_{KK}^{I=1} - 2M_K \right)$$

• Expansion of δE in terms of a_0 and L^{-1} by Lüscher²

$$\delta E_{KK}^{I=1} = -\frac{4\pi a_0}{M_K L^3} \left[1 + c_1 \frac{a_0}{L} + c_2 \left(\frac{a_0}{L}\right)^2 \right] + O(L^{-6})$$

²M.Lüscher, Comm. Math. Phys. Volume 105, Number 2 (1986), 153-188.

Correlation Functions

• Kaon interpolating fields with $\vec{p} = \vec{0}$

$$\begin{split} \mathcal{K}(t) &= \sum_{\vec{x}} \bar{\psi}_{s}(\vec{x},t) \gamma_{5} \psi_{u}(\vec{x},t) \\ \mathcal{O}_{KK}(t) &= \mathcal{K}(t) \mathcal{K}(t) \end{split}$$

- 2-pt correlation function $C_{K}(t)=\langle K(t)K^{\dagger}(0)
 angle
 ightarrow M_{K}$
- 4-pt correlation function $C_{KK}(t) = \langle \mathcal{O}_{KK}(t) \mathcal{O}_{KK}^{\dagger}(0) \rangle \rightarrow E_{KK}$

Extracting Energies

- Get energies from fits to correlation functions
- 2 challenges for $C_{KK}(t)$:
 - at early times: excited states shift plateaus to late times ⇒ Stochastic Laplacian Heaviside Smearing³
 - 2 at late times: temporally constant thermal states spoil plateaus \Rightarrow Shifted ratio⁴ $R(\tilde{t})$

$$R(t+a/2)=rac{C_{KK}(t)-C_{KK}(t+a)}{C_{K}^2(t)-C_{K}^2(t+a)}$$

³C. Morningstar, et al.: Phys. Rev. D 83 (2011) 114505 ⁴Feng, Jansen, Renner: Phys. Lett. B684 (2010) 268-274

Lattice Setup

- Gauge Configurations: ETMC $N_f = 2 + 1 + 1$ WtmLQCD at maximal twist
- Sea quarks: Wilson twisted mass dynamical fermions
- Valence quarks: Osterwalder-Seiler fermions for flavour s:
 - Avoid flavour mixing in heavy doublet
 - Can correct for small mismatches in sea quark action

Ensemble parameters

- 3 lattice spacings with each 3 strange quark masses
- Up to 5 light quark masses per lattice spacing $\Rightarrow M_{\pi} \in (280, 500) \text{MeV}$
- 2 lattice volumes on 2 of 3 lattice spacings $\Rightarrow L \in (2, 4)$ fm
- About 300 Configurations per ensemble
- \Rightarrow Sound basis for chiral and continuum extrapolation

Contact with Physical World

- Have 3 strange quark mass parameters $a\mu_s$ available
- Relation between continuum and lattice:

$$m_s = rac{(a\mu_s)}{Z_{P}a}, \quad M_K^{
m phys} = rac{(aM_K)^{
m lat}}{a}$$

- Renormalization Constant⁵ Z_P , lattice spacing a
- Consistency check by fixing m_s in two ways
 - A: $r_0^2(M_K^2 0.5M_\pi^2)$
 - B⁵: (renormalised) strange quark mass μ_s .
- strange quark mass set to its physical value using M_K (light quark mass using M_π)

⁵ETMC: Nucl.Phys. B887 (2014) 19-68

K-K-Scattering in Physical and Continuum Limit

A: Fixing m_s with $r_0^2(M_K^2 - 0.5M_\pi^2)_{\text{phys}}$

Fit formula: $M_K a_0 = p_0 M_\pi^2 + p_1 a^2 + p_2$

B: Fixing m_s with μ_s

Fit formula:
$$M_K a_0 = p_0 M_\pi^2 + p_1 a^2 + p_2$$

Fit-Results A & B

	Method A	Method B
$(M_K a_0)_{\rm ext}$	-0.42(1)	-0.41(2)
$\chi^2/{ m dof}$	13.16/7	6.27/7
p-val	0.07	0.5

- Fit-Results at physical point agree well
- Observe sizeable discretisation effects
- \Rightarrow Try combined fit of both Methods

Simultaneous Fit of A & B

Results

• Combined Fitresults

$(M_K a_0)_{\rm phys}$	$\chi^2/{ m dof}$	<i>p</i> -val
-0.42(1)	25.72/16	0.06

• Comparison

Method	$(M_K a_0)_{\rm phys}$
A: $M_K^2 - 0.5 M_\pi^2$	-0.42(1)
B: $M_{K,phys}^2$	-0.41(2)
<i>p</i> -value weighted	$ -0.41(2)(^{+0}_{-114})$
Combined	-0.42(1)

Comparison with NPLQCD⁶ and PACS-CS⁷

Summary & Challenges

- Calculated scattering length of K-K-scattering at maximum isospin
- Investigated 2 ways to fix m_s
- Used 3 lattice spacings and 10 values of M_π
- Arrive at: $(M_K a_0)_{phys} = -0.42(1)$
- Raw data agree with PACS-CS and NPLQCD within errors
- Well equipped to address π -K-scattering in isospin channels I = 1/2, 3/2

Thank you

Appendix

Comparison with NPLQCD⁸ and PACS-CS⁹

- No direct agreement
- PACS-CS and NPLQCD use χ-PT in (M_K/f_K)
- Dependance of *a* not directly taken into account

⁸S. Beane, et al. Phys. Rev. D 77, 094507 (2008)
 ⁹K. Sasaki, et al. Phys. Rev. D 89, 054502 (2014)

Discretisation Effects from M_K in Method A

Fit formula: $(r_0 M_K)^2 = p_0 (r_0 M_\pi)^2 + p_1 (\frac{a}{r_0})^2 + p_2$

Discretisation Effects from M_K in Method B

Fit formula: $(r_0 M_K)^2 = p_0 (r_0 M_\pi)^2 + p_1 (\frac{a}{r_0})^2 + p_2$

Stochastic Laplacian Heaviside Smearing

- Cut off eigenspectrum of lattice Laplace Operator to reduce excited state contributions
- Noise reduction in correlation functions by diluting quark propagators
- Store and Reuse all-to-all quark propagators once they are computed
- Useful for scenarios with many operators
- $\bullet\,$ Needs: careful tuning, serious amount of computing time, already ${\rm done}^1$

¹ETMC, J. High Energ. Phys. (2015) 2015:109

Stochastic Laplacian Heaviside Smearing

• Laplacian-Heaviside smearing of quark fields for excited states reduction

$$ilde{\psi}_{\mathsf{a},lpha}(\mathsf{x}) = \mathcal{S}_{\mathsf{a}\mathsf{b}}(\mathsf{x},\mathsf{y})\psi(\mathsf{y})_{\mathsf{b},lpha}$$

+ ${\mathcal S}$ given by truncating eigenvalues of smeared spatial Laplace operator \varDelta on the lattice

$$\begin{split} \mathcal{S} &= \Theta(\sigma^2 + \Delta) \\ \Delta &= \mathcal{V}_{\Delta} \Theta(\sigma^2 + \Lambda_{\Delta}) \mathcal{V}_{\Delta}^{\dagger} \\ &\Rightarrow \mathcal{S} \approx \mathcal{V}_{\mathcal{S}} \mathcal{V}_{\mathcal{S}}^{\dagger} \end{split}$$

• Use ${\mathcal S}$ together with diluted random vectors ${\mathcal P}^{(b)}\rho$ to estimate quark propagators

Ensemble Parameters

ensemble	β	$\pmb{a}\mu_\ell$	$\pmb{a}\mu_{\pmb{\sigma}}$	$\pmb{a}\mu_{\delta}$	$(L/a)^3 imes T/a$	$N_{\rm conf}$
A30.32	1.90	0.0030	0.150	0.190	$32^3 \times 64$	280
A40.24	1.90	0.0040	0.150	0.190	$24^3 imes 48$	404
A40.32	1.90	0.0040	0.150	0.190	$32^3 imes 64$	250
A60.24	1.90	0.0060	0.150	0.190	$24^3 imes 48$	314
A80.24	1.90	0.0080	0.150	0.190	$24^3 imes 48$	306
A100.24	1.90	0.0100	0.150	0.190	$24^3 imes 48$	312
B35.32	1.95	0.0035	0.135	0.170	$32^3 \times 64$	250
<i>B</i> 55.32	1.95	0.0055	0.135	0.170	$32^3 imes 64$	311
<i>B</i> 85.24	1.95	0.0085	0.135	0.170	$32^3 imes 64$	296
D45.32 <i>sc</i>	2.10	0.0045	0.0937	0.1077	$32^3 imes 64$	301

Bare Strange Quark Masses

β	Z _P	$a\mu_s$
	0.529(7)	0.01850
1.90		0.02250
		0.02464
1.95	0.509(4)	0.01600
		0.01860
		0.02100
2.10		0.01300
	0.516(2)	0.01500
		0.01800

Diagrams

• 2-pt Correlation function

• 4-pt Correlation function

Discretisation Effects from Match to Meson Masses

Ensemble	$(r_0 M_{\pi})^2$	$(r_0 M_K)^2$
A30.32	0.4328(0)	1.5698(477)
A40.32	0.5639(0)	1.6349(496)
A40.24	0.5922(0)	1.6493(500)
A60.24	0.8414(0)	1.7746(541)
A80.24	1.1138(0)	1.9126(580)
A100.24	1.4013(0)	2.0542(626)
B25.32t	0.3898(0)	1.5481(326)
B35.32	0.5287(0)	1.6186(340)
B55.32	0.8017(0)	1.7549(368)
B85.24	1.2525(0)	1.9793(417)
D45.32	0.8415(0)	1.7749(380)

Data Values from Match to Meson Masses

Ensemble	$(r_0 M_{\pi})^2$	M _K a ₀
A30.32	0.4328(14)	-0.3185(149)
A40.32	0.5639(22)	-0.3276(106)
A40.24	0.5922(43)	-0.3461(32)
A60.24	0.8414(44)	-0.3547(38)
A80.24	1.1138(46)	-0.3673(31)
A100.24	1.4013(44)	-0.3749(28)
B25.32t	0.3898(37)	-0.3176(209)
B35.32	0.5287(25)	-0.3578(119)
B55.32	0.8017(22)	-0.3615(98)
B85.24	1.2525(49)	-0.3949(34)
D45.32	0.8415(42)	-0.3943(83)

Data Values from Matching to $m_{s,ren}$

Ensemble	$(r_0 M_{\pi})^2$	M _K a ₀
A30.32	0.4328(14)	-0.4172(323)
A40.32	0.5639(22)	-0.4070(147)
A40.24	0.5922(43)	-0.4060(46)
A60.24	0.8414(44)	-0.4099(57)
A80.24	1.1138(46)	-0.4232(42)
A100.24	1.4013(44)	-0.4270(38)
B25.32t	0.3898(37)	-0.2975(381)
B35.32	0.5287(25)	-0.4237(257)
B55.32	0.8017(22)	-0.3992(110)
B85.24	1.2525(49)	-0.4350(49)
D45.32	0.8415(42)	-0.4174(86)

Discretisation Effects from Match to $m_{s,ren}$

Ensemble	$(r_0 M_{\pi})^2$	$(r_0 M_K)^2$
A30.32	0.4328(14)	1.9919(605)
A40.32	0.5639(22)	2.0617(626)
A40.24	0.5922(43)	2.0967(636)
A60.24	0.8414(44)	2.2097(673)
A80.24	1.1138(46)	2.3468(713)
A100.24	1.4013(44)	2.4978(760)
B25.32t	0.3898(37)	1.8746(395)
B35.32	0.5287(25)	1.9099(401)
B55.32	0.8017(22)	2.0526(431)
B85.24	1.2525(49)	2.2889(482)
D45.32	0.8415(42)	2.0125(430)

Thermal state cancellation¹⁰

• Define shifted Ratio $R(\tilde{t})$ for cancelling thermal states

$$R(t+a/2) = \frac{C_{KK}(t) - C_{KK}(t+a)}{C_K^2(t) - C_K^2(t+a)}$$

• δE now is fitparameter of

$$\begin{aligned} R(t + a/2) &= A_R \left(\cosh \left(\delta E_{KK} t' \right) + \sinh \left(\delta E_{KK} t' \right) \coth \left(2M_K t' \right) \right) \\ t' &= t + \frac{a}{2} - \frac{N_t}{2} \end{aligned}$$

¹⁰Feng, Jansen, Renner: Phys. Lett. B684 (2010) 268-274

Dilution Schemes

- Each $P^{(b)}$ combines dilution in Time, Dirac space and LapH space
- Statistical errors of correlation functions
 - Random vectors $\propto \frac{1}{\sqrt{N_R}}$
 - Dilution vectors $\propto \frac{1}{N_D}$

 \Rightarrow Find balance between N_R and N_D for best signal in dependence of number of inversions

• Inversions: typically between 1500 and 2500 per configuration

Discretisation Effects

	M1	M2	Physical
$(r_0 M_K)^2_{\text{ext.}}$	1.4103(91)	1.4053(104)	1.4058
$\chi^2/{ m dof}$	0.00/8	5.3/8	
<i>p</i> -val	1.00	0.73	
p_0	0.500(16)	0.519(18)	
ρ_1	0	11(1)	
<i>p</i> ₂	1.354(3)	1.347(11)	